Блоки питания особо высокой мощности (от 1000 Вт) приобретают, как правило, для специфических задач — для майнинговых ферм, для специализированных тестовых систем, для высоконагруженных компьютеров для рендеринга, расчетов, а также для разгона. Впрочем, иногда такие источники питания приобретают, просто желая создать ощутимый запас по мощности для существующей системы или в расчете на будущий апгрейд. Стоимость подобных решений может сильно отличаться, что ставит покупателя перед непростой задачей выбора модели с нужным соотношением цены и потребительских качеств. Сегодня мы рассмотрим одно из доступных на рынке решений.
Розничные предложения |
---|
Thermaltake Toughpower PF1 1200W Platinum имеет сертификат 80+ Platinum и укомплектован исключительно японскими конденсаторами. Система охлаждения может работать в двух режимах: в гибридном, когда вентилятор при некоторых условиях не вращается, и в обычном — с постоянно вращающимся вентилятором. Переключаются режимы двухпозиционной клавишей на внешней панели корпуса БП (позиция On соответствует гибридному режиму).
Длина корпуса этой модели составляет около 140 мм, дополнительно понадобится 15-20 мм для подвода проводов, поэтому при монтаже стоит рассчитывать на установочный размер порядка 160 мм. Для блоков питания подобной мощности эти размеры можно считать действительно скромными, так как основная масса киловаттных источников питания имеет длину корпуса от 160 мм.
Поставляется блок питания в коробке с цветной полиграфией, которая стилизована в соответствии с уровнем сертификата.
К сожалению, ручки для переноски у коробки нет, и подобная ситуация вполне типична для современных блоков питания независимо от их веса.
Характеристики
Все необходимые параметры указаны на корпусе блока питания в полном объеме, для мощности шины +12VDC заявлено значение 1200 Вт. Соотношение мощности по шине +12VDC и полной мощности составляет 1,0, что, разумеется, является отличным показателем.
Провода и разъемы
Наименование разъема | Количество разъемов | Примечания |
---|---|---|
24 pin Main Power Connector | 1 | разборный |
4 pin 12V Power Connector | — | |
8 pin SSI Processor Connector | 2 | 1 разборный |
6 pin PCI-E 1.0 VGA Power Connector | — | |
8 pin PCI-E 2.0 VGA Power Connector | 8 | на 4 шнурах |
4 pin Peripheral Connector | 4 | эргономичные |
15 pin Serial ATA Connector | 12 | на 3 шнурах |
4 pin Floppy Drive Connector | 1 | через переходник |
Длина проводов до разъемов питания
Все без исключения провода являются модульными, то есть их можно снять, оставив лишь те, которые необходимы для конкретной системы.
- до основного разъема АТХ — 60 см
- до процессорного разъема 8 pin SSI — 65 см
- до процессорного разъема 8 pin SSI — 65 см
- до первого разъема питания видеокарты PCI-E 2.0 VGA Power Connector — 50 см, плюс еще 15 см до второго такого же разъема
- до первого разъема питания видеокарты PCI-E 2.0 VGA Power Connector — 50 см, плюс еще 15 см до второго такого же разъема
- до первого разъема питания видеокарты PCI-E 2.0 VGA Power Connector — 50 см, плюс еще 15 см до второго такого же разъема
- до первого разъема питания видеокарты PCI-E 2.0 VGA Power Connector — 50 см, плюс еще 15 см до второго такого же разъема
- до первого разъема SATA Power Connector — 50 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема
- до первого разъема SATA Power Connector — 50 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема
- до первого разъема SATA Power Connector — 50 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема
- до разъема Peripheral Connector («молекс») — 50 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема
Длина проводов средняя, она является достаточной для комфортного использования в корпусах типоразмера full tower и более габаритных с верхним расположением блока питания. В корпусах высотой до 55 см с нижнерасположенным блоком питания длина проводов также должна быть достаточной: до разъемов питания процессора — по 65 см. Таким образом, с большинством современных корпусов проблем быть не должно. Правда, с учетом конструкции современных корпусов, имеющих развитые системы скрытой прокладки проводов, один из шнуров вполне можно было бы сделать и более длинным: скажем, 75-80 см, чтобы обеспечить максимальное удобство работы при сборке системы.
Распределение разъемов SATA Power по шнурам питания позволяет полноценно обеспечить питанием комплектующие в нескольких зонах даже при значительном количестве установленных устройств, однако шнуров тут всего три, а разъемов — 12. В случае типовой системы сложности маловероятны, но все-таки в комплекте недешевого БП хотелось бы видеть не только стандартные шнуры, рассчитанные на подключение четырех устройств, но и шнуры с 1-2 разъемами питания с прямым штекером для подключения устройств в местах со сложным доступом, поскольку в данном случае почти все разъемы SATA Power, за исключением самых крайних на шнурах, угловые, а использование таких разъемов не слишком удобно в случае накопителей, размещаемых с тыльной стороны основания для системной платы или на любой другой похожей поверхности.
С положительной стороны стоит отметить использование исключительно ленточных проводов до разъемов, что повышает удобство при сборке.
Схемотехника и охлаждение
Блок питания оснащен активным корректором коэффициента мощности и имеет довольно широкий диапазон питающих напряжений от 100 до 240 вольт. Это обеспечивает устойчивость к понижению напряжения в электросети ниже нормативных значений.
Конструкция блока питания вполне соответствует современным тенденциям: активный корректор коэффициента мощности, синхронный выпрямитель для канала +12VDC, независимые импульсные преобразователи постоянного тока для линий +3.3VDC и +5VDC.
Высоковольтные силовые элементы установлены на нескольких радиаторах разных размеров.
Элементы синхронного выпрямителя размещены на дочерней плате, там же есть небольшие теплорассеивающие элементы в виде тонких пластин. Плата синхронного выпрямителя установлена вертикально, что улучшает охлаждение по сравнению с вариантом размещения элементов синхронного выпрямителя на основной плате методом поверхностного монтажа.
Элементы импульсных преобразователей каналов +3.3VDC и +5VDC размещены на дочерней печатной плате, установленной вертикально, на которой также присутствует дополнительный теплоотвод в виде пластины.
Конденсаторы в блоке питания имеют японское происхождение. В основной массе это продукция под торговыми марками Nippon Chemi-Con, Nichicon и Rubycon. Установлено и большое количество полимерных конденсаторов. Подобная комбинация обычно соответствует устройствам высокого уровня.
Вентилятор, установленный в блоке питания, брендирован компанией Thermaltake, однако на нем имеется и маркировка изготовителя. В данном случае перед нами продукт производства компании Hong Sheng — A1225M12S. Thermaltake заявляет об использовании гидродинамического подшипника в вентиляторе данного источника питания. Вентилятор типоразмера 120 мм, подключение двухпроводное, через разъем. Использование гидродинамического подшипника подразумевает долгий срок его службы.
Измерение электрических характеристик
Далее мы переходим к инструментальному исследованию электрических характеристик источника питания при помощи многофункционального стенда и другого оборудования.
Величина отклонения выходных напряжений от номинала кодируется цветом следующим образом:
Цвет | Диапазон отклонения | Качественная оценка |
---|---|---|
более 5% | неудовлетворительно | |
+5% | плохо | |
+4% | удовлетворительно | |
+3% | хорошо | |
+2% | очень хорошо | |
1% и менее | отлично | |
−2% | очень хорошо | |
−3% | хорошо | |
−4% | удовлетворительно | |
−5% | плохо | |
более 5% | неудовлетворительно |
Работа на максимальной мощности
Первым этапом испытаний является эксплуатация блока питания на максимальной мощности продолжительное время. Такой тест с уверенностью позволяет удостовериться в работоспособности БП.

Кросс-нагрузочная характеристика
Следующим этапом инструментального тестирования является построение кросснагрузочной характеристики (КНХ) и представление ее на четвертьплоскости, ограниченной максимальной мощностью по шине 3,3&5 В с одной стороны (по оси ординат) и максимальной мощностью по шине 12 В с другой (по оси абсцисс). В каждой точке измеренное значение напряжения обозначается цветовым маркером в зависимости от отклонения от номинального значения.



КНХ позволяет нам определить, какой уровень нагрузки можно считать допустимым, особенно по каналу +12VDC, для тестируемого экземпляра. В данном случае отклонения действующих значений напряжения от номинала по каналу +12VDC не превышают 3% во всем диапазоне мощности, что является хорошим результатом. При типичном распределении мощности по каналам отклонения от номинала не превышают 4% по каналу +3.3VDC, 2% по каналу +5VDC и 3% по каналу +12VDC.
Данная модель БП хорошо подходит для мощных современных систем из-за высокой практической нагрузочной способности канала +12VDC.
Нагрузочная способность
Следующий тест призван определить максимальную мощность, которую можно подать через соответствующие разъемы при нормированном отклонении значения напряжения в размере 3 или 5 процентов от номинала.

В случае видеокарты с единственным разъемом питания максимальная мощность по каналу +12VDC составляет около 125 Вт при отклонении в пределах 3%.

В случае видеокарты с двумя разъемами питания при использовании одного шнура питания максимальная мощность по каналу +12VDC составляет около 110 Вт при отклонении в пределах 3%.

В случае видеокарты с двумя разъемами питания при использовании двух шнуров питания максимальная мощность по каналу +12VDC составляет не менее 140 Вт при отклонении в пределах 3%, что является посредственным результатом.

При нагрузке через четыре разъема PCI-E на двух шнурах мощность по каналу +12VDC составляет около 250 Вт при отклонении в пределах 3%.

При нагрузке через шесть разъемов PCI-E на трех шнурах мощность по каналу +12VDC составляет около 500 Вт при отклонении в пределах 3%.

При нагрузке через разъем питания процессора максимальная мощность по каналу +12VDC составляет не менее 80 Вт при отклонении в пределах 3%.

При нагрузке через два разъема питания процессора максимальная мощность по каналу +12VDC составляет не менее 175 Вт при отклонении в пределах 3%.

В случае системной платы максимальная мощность по каналу +12VDC составляет около 90 Вт при отклонении 3%. Так как сама плата потребляет по данному каналу в пределах 10 Вт, высокая мощность может потребоваться для питания карт расширения — например, для видеокарт без дополнительного разъема питания, которые обычно имеют потребление в пределах 75 Вт.
Результаты получились довольно странные, особенно для источника питания мощностью 1200 Вт и стоимостью свыше 200 долларов. То есть заявленную мощность БП отдать способен, но при этом будут наблюдаться заметные просадки напряжения по линии 12 В. Возможно, нам, как это иногда бывает, не повезло с конкретным экземпляром.
Экономичность и эффективность
При оценке эффективности компьютерного блока питания можно идти двумя путями. Первый путь заключается в оценке компьютерного блока питания как отдельного преобразователя электрической энергии с дальнейшей попыткой минимизировать сопротивление линии передачи электрической энергии от БП к нагрузке (где и измеряется ток и напряжение на выходе БП). Для этого блок питания обычно подключается всеми имеющимися разъемами, что ставит разные блоки питания в неравные условия, так как набор разъемов и количество токоведущих проводов зачастую разное даже у блоков питания одинаковой мощности. Таким образом, хотя результаты получаются корректными для каждого конкретного источника питания, в реальных условиях полученные данные малоприменимы, поскольку в реальных условиях блок питания подключается ограниченным количеством разъемов, а не всеми сразу. Поэтому логичным представляется вариант определения эффективности (экономичности) компьютерного блока питания не только на фиксированных значениях мощности, включая распределение мощности по каналам, но и с фиксированным набором разъемов для каждого значения мощности.
Представление эффективности компьютерного блока питания в виде значения КПД (коэффициента полезного действия) имеет свои традиции. Прежде всего, КПД — это коэффициент, определяемый соотношением мощностей на выходе и на входе блока питания, то есть КПД показывает эффективность преобразования электрической энергии. Обычному же пользователю данный параметр почти ничего не скажет, за исключением того, что более высокий КПД вроде как говорит о большей экономичности БП и более высоком его качестве. Зато КПД стал отличным маркетинговым якорем, особенно в комбинацией с сертификатом 80Plus. Однако с практической точки зрения КПД не оказывает заметного влияния на функционирование системного блока: он не увеличивает производительность, не снижает шум или температуру внутри системного блока. Это просто технический параметр, уровень которого в основном определяется развитием промышленности в текущий момент времени и себестоимостью продукта. Для пользователя же максимизация КПД выливается в увеличение розничной цены.
С другой стороны, иногда нужно объективно оценить экономичность компьютерного блока питания. Под экономичностью мы подразумеваем потерю мощности при преобразовании электроэнергии и ее передаче к конечным потребителям. И для оценки этого КПД не нужен, так как можно использовать не отношение двух величин, а абсолютные значения: рассеиваемую мощность (разницу между значениями на входе и выходе блока питания), а также потребление энергии источником питания за определенное время (день, месяц, год и т. д.) при работе с постоянной нагрузкой (мощностью). Это позволяет легко увидеть реальную разницу в потреблении электроэнергии конкретными моделями БП и при необходимости рассчитать экономическую выгоду от использования более дорогих источников питания.
Таким образом, на выходе мы получаем понятный для всех параметр — рассеиваемую мощность, которая легко преобразуется в киловатт-часы (кВт·ч), которые и регистрирует счетчик электрической энергии. Умножив полученное значение на стоимость киловатт-часа, получим стоимость электрической энергии при условии эксплуатации системного блока круглосуточно в течение года. Подобный вариант, конечно, чисто гипотетический, но он позволяет оценить разницу между стоимостью эксплуатации компьютера с различными источниками питания в течение длительного периода времени и сделать выводы об экономической целесообразности приобретения конкретной модели БП. В реальных условиях высчитанное значение может достигаться за более долгий период — например, от 3 лет и более. При необходимости каждый желающий может разделить полученное значение на нужный коэффициент в зависимости от количества часов в сутках, в течение которых системный блок эксплуатируется в указанном режиме, чтобы получить расход электроэнергии за год.
Мы решили выделить несколько типовых вариантов по мощности и соотнести их с количеством разъемов, которое соответствует данным вариантам, то есть максимально приблизить методику измерения экономичности к условиям, которые достигаются в реальном системном блоке. Вместе с тем, это позволит оценивать экономичность разных блоков питания в полностью одинаковых условиях.
Нагрузка через разъемы | 12VDC, Вт | 5VDC, Вт | 3.3VDC, Вт | Общая мощность, Вт |
---|---|---|---|---|
основной ATX, процессорный (12 В), SATA | 5 | 5 | 5 | 15 |
основной ATX, процессорный (12 В), SATA | 80 | 15 | 5 | 100 |
основной ATX, процессорный (12 В), SATA | 180 | 15 | 5 | 200 |
основной ATX, процессорный (12 В), 6-контактный PCIe, SATA | 380 | 15 | 5 | 400 |
основной ATX, процессорный (12 В), 6-контактные PCIe (1 шнур с 2 разъемами), SATA | 480 | 15 | 5 | 500 |
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 1 разъему), SATA | 480 | 15 | 5 | 500 |
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 2 разъема), SATA | 730 | 15 | 5 | 750 |
Полученные результаты выглядят следующим образом:
Рассеиваемая мощность, Вт | 15 Вт | 100 Вт | 200 Вт | 400 Вт | 500 Вт (1 шнур) |
500 Вт (2 шнура) |
750 Вт |
---|---|---|---|---|---|---|---|
Enhance ENP-1780 | 21,2 | 23,8 | 26,1 | 35,3 | 42,7 | 40,9 | 66,6 |
Super Flower Leadex II Gold 850W | 12,1 | 14,1 | 19,2 | 34,5 | 45 | 43,7 | 76,7 |
Super Flower Leadex Silver 650W | 10,9 | 15,1 | 22,8 | 45 | 62,5 | 59,2 | |
High Power Super GD 850W | 11,3 | 13,1 | 19,2 | 32 | 41,6 | 37,3 | 66,7 |
Corsair RM650 (RPS0118) | 7 | 12,5 | 17,7 | 34,5 | 44,3 | 42,5 | |
EVGA Supernova 850 G5 | 12,6 | 14 | 17,9 | 29 | 36,7 | 35 | 62,4 |
EVGA 650 N1 | 13,4 | 19 | 25,5 | 55,3 | 75,6 | ||
EVGA 650 BQ | 14,3 | 18,6 | 27,1 | 47,2 | 61,9 | 60,5 | |
Chieftronic PowerPlay GPU-750FC | 11,7 | 14,6 | 19,9 | 33,1 | 41 | 39,6 | 67 |
Deepcool DQ850-M-V2L | 12,5 | 16,8 | 21,6 | 33 | 40,4 | 38,8 | 71 |
Chieftec PPS-650FC | 11 | 13,7 | 18,5 | 32,4 | 41,6 | 40 | |
Super Flower Leadex Platinum 2000W | 15,8 | 19 | 21,8 | 29,8 | 34,5 | 34 | 49,8 |
Chieftec CTG-750C-RGB | 13 | 17 | 22 | 42,5 | 56,3 | 55,8 | 110 |
Chieftec BBS-600S | 14,1 | 15,7 | 21,7 | 39,7 | 54,3 | ||
Cooler Master MWE Bronze 750W V2 | 15,9 | 22,7 | 25,9 | 43 | 58,5 | 56,2 | 102 |
Cougar BXM 700 | 12 | 18,2 | 26 | 42,8 | 57,4 | 57,1 | |
Cooler Master Elite 600 V4 | 11,4 | 17,8 | 30,1 | 65,7 | 93 | ||
Cougar GEX 850 | 11,8 | 14,5 | 20,6 | 32,6 | 41 | 40,5 | 72,5 |
Cooler Master V1000 Platinum (2020) | 19,8 | 21 | 25,5 | 38 | 43,5 | 41 | 55,3 |
Cooler Master V650 SFX | 7,8 | 13,8 | 19,6 | 33 | 42,4 | 41,4 | |
Chieftec BDF-650C | 13 | 19 | 27,6 | 35,5 | 69,8 | 67,3 | |
XPG Core Reactor 750 | 8 | 14,3 | 18,5 | 30,7 | 41,8 | 40,4 | 72,5 |
Deepcool DQ650-M-V2L | 11 | 13,8 | 19,5 | 34,7 | 44 | ||
Deepcool DA600-M | 13,6 | 19,8 | 30 | 61,3 | 86 | ||
Fractal Design Ion Gold 850 | 14,9 | 17,5 | 21,5 | 37,2 | 47,4 | 45,2 | 80,2 |
XPG Pylon 750 | 11,1 | 15,4 | 21,7 | 41 | 57 | 56,7 | 111 |
Thermaltake TF1 1550 | 13,8 | 15,1 | 17 | 24,2 | 30 | 42 | |
Chieftronic PowerUp GPX-850FC | 12,8 | 15,9 | 21,4 | 33,2 | 39,4 | 38,2 | 69,3 |
Thermaltake GF1 1000 | 15,2 | 18,1 | 21,5 | 31,5 | 38 | 37,3 | 65 |
MSI MPG A750GF | 11,5 | 15,7 | 21 | 30,6 | 39,2 | 38 | 69 |
Chieftronic PowerPlay GPU-850FC | 12 | 15,9 | 19,7 | 28,1 | 34 | 33,3 | 56 |
Cooler Master MWE Gold 750W V2 | 12,2 | 16 | 21 | 34,6 | 42 | 41,6 | 76,4 |
XPG Pylon 450 | 12,6 | 18,5 | 28,4 | 63 | |||
Chieftronic PowerUp GPX-550FC | 12,2 | 15,4 | 21,6 | 35,7 | 47,1 | ||
Chieftec BBS-500S | 13,3 | 16,3 | 22,2 | 38,6 | |||
Cougar VTE X2 600 | 13,3 | 18,3 | 28 | 49,3 | 64,2 | ||
Thermaltake GX1 500 | 12,8 | 14,1 | 19,5 | 34,8 | 47,6 | ||
Thermaltake BM2 450 | 12,2 | 16,7 | 26,3 | 57,9 | |||
Chieftec PPS-1050FC | 10,8 | 13 | 17,4 | 29,1 | 35,1 | 34,6 | 58 |
Super Flower SF-750P14XE | 14 | 16,5 | 23 | 35 | 42 | 44 | 76 |
XPG Core Reactor 850 | 9,8 | 14,9 | 18,1 | 29 | 38,4 | 37 | 63 |
Asus TUF Gaming 750B | 11,1 | 13,8 | 20,7 | 38,6 | 50,7 | 49,3 | 93 |
Deepcool PQ1000M | 10,4 | 12,6 | 16,7 | 28,1 | 34,4 | ||
Chieftronic BDK-650FC | 12,6 | 14,3 | 20,4 | 41,1 | 53,5 | 50,6 | |
Cooler Master XG Plus 750 Platinum | 13,8 | 14,2 | 18,9 | 36,5 | 43 | 40 | 61,1 |
Chieftec GPC-700S | 15,6 | 21,4 | 30,9 | 63,5 | 84 | ||
Gigabyte UD1000GM PG5 | 11 | 14,4 | 19,9 | 31,4 | 40,1 | 37,8 | 66,6 |
Zalman ZM700-TXIIv2 | 12,5 | 19,5 | 30,8 | 62 | 83 | 80 | |
Cooler Master V850 Platinum | 17,8 | 20,1 | 24,6 | 34,5 | 38,3 | 37,8 | 58,5 |
Thermaltake PF1 1200 Platinum | 12,8 | 18,3 | 24 | 35 | 43 | 39,5 | 67,2 |
В целом данная модель имеет высокую экономичность во всех протестированных режимах.
Вт | |
---|---|
Enhance ENP-1780 | 106,4 |
Super Flower Leadex II Gold 850W | 79,9 |
Super Flower Leadex Silver 650W | 93,8 |
High Power Super GD 850W | 75,6 |
Corsair RM650 (RPS0118) | 71,7 |
EVGA Supernova 850 G5 | 73,5 |
EVGA 650 N1 | 113,2 |
EVGA 650 BQ | 107,2 |
Chieftronic PowerPlay GPU-750FC | 79,3 |
Deepcool DQ850-M-V2L | 83,9 |
Chieftec PPS-650FC | 75,6 |
Super Flower Leadex Platinum 2000W | 86,4 |
Chieftec CTG-750C-RGB | 94,5 |
Chieftec BBS-600S | 91,2 |
Cooler Master MWE Bronze 750W V2 | 107,5 |
Cougar BXM 700 | 99 |
Cooler Master Elite 600 V4 | 125 |
Cougar GEX 850 | 79,5 |
Cooler Master V1000 Platinum (2020) | 104,3 |
Cooler Master V650 SFX | 74,2 |
Chieftec BDF-650C | 95,1 |
XPG Core Reactor 750 | 71,5 |
Deepcool DQ650-M-V2L | 79 |
Deepcool DA600-M | 124,7 |
Fractal Design Ion Gold 850 | 91,1 |
XPG Pylon 750 | 89,2 |
Thermaltake TF1 1550 | 70,1 |
Chieftronic PowerUp GPX-850FC | 83,3 |
Thermaltake GF1 1000 | 86,3 |
MSI MPG A750GF | 78,8 |
Chieftronic PowerPlay GPU-850FC | 75,7 |
Cooler Master MWE Gold 750W V2 | 83,8 |
XPG Pylon 450 | 122,5 |
Chieftronic PowerUp GPX-550FC | 84,9 |
Chieftec BBS-500S | 90,4 |
Cougar VTE X2 600 | 108,9 |
Thermaltake GX1 500 | 81,2 |
Thermaltake BM2 450 | 113,1 |
Chieftec PPS-1050FC | 70,3 |
Super Flower SF-750P14XE | 88,5 |
XPG Core Reactor 850 | 71,8 |
Asus TUF Gaming 750B | 84,2 |
Deepcool PQ1000M | 67,8 |
Chieftronic BDK-650FC | 88,4 |
Cooler Master XG Plus 750 Platinum | 83,4 |
Chieftec GPC-700S | 131,4 |
Gigabyte UD1000GM PG5 | 76,7 |
Zalman ZM700-TXIIv2 | 124,8 |
Cooler Master V850 Platinum | 97 |
Thermaltake PF1 1200 Platinum | 90,1 |
По суммарной экономичности на низкой и средней мощности данная модель хоть и не является лидером, но находится на вполне приличной позиции.
Потребление энергии компьютером за год, кВт·ч | 15 Вт | 100 Вт | 200 Вт | 400 Вт | 500 Вт (1 шнур) |
500 Вт (2 шнура) |
750 Вт |
---|---|---|---|---|---|---|---|
Enhance ENP-1780 | 317 | 1085 | 1981 | 3813 | 4754 | 4738 | 7153 |
Super Flower Leadex II Gold 850W | 237 | 1000 | 1920 | 3806 | 4774 | 4763 | 7242 |
Super Flower Leadex Silver 650W | 227 | 1008 | 1952 | 3898 | 4928 | 4899 | |
High Power Super GD 850W | 230 | 991 | 1920 | 3784 | 4744 | 4707 | 7154 |
Corsair RM650 (RPS0118) | 193 | 986 | 1907 | 3806 | 4768 | 4752 | |
EVGA Supernova 850 G5 | 242 | 999 | 1909 | 3758 | 4702 | 4687 | 7117 |
EVGA 650 N1 | 249 | 1042 | 1975 | 3988 | 5042 | ||
EVGA 650 BQ | 257 | 1039 | 1989 | 3918 | 4922 | 4910 | |
Chieftronic PowerPlay GPU-750FC | 234 | 1004 | 1926 | 3794 | 4739 | 4727 | 7157 |
Deepcool DQ850-M-V2L | 241 | 1023 | 1941 | 3793 | 4734 | 4720 | 7192 |
Chieftec PPS-650FC | 228 | 996 | 1914 | 3788 | 4744 | 4730 | |
Super Flower Leadex Platinum 2000W | 270 | 1042 | 1943 | 3765 | 4682 | 4678 | 7006 |
Chieftec CTG-750C-RGB | 245 | 1025 | 1945 | 3876 | 4873 | 4869 | 7534 |
Chieftec BBS-600S | 255 | 1014 | 1942 | 3852 | 4856 | ||
Cooler Master MWE Bronze 750W V2 | 271 | 1075 | 1979 | 3881 | 4893 | 4872 | 7464 |
Cougar BXM 700 | 237 | 1035 | 1980 | 3879 | 4883 | 4880 | |
Cooler Master Elite 600 V4 | 231 | 1032 | 2016 | 4080 | 5195 | ||
Cougar GEX 850 | 235 | 1003 | 1933 | 3790 | 4739 | 4735 | 7205 |
Cooler Master V1000 Platinum (2020) | 305 | 1060 | 1975 | 3837 | 4761 | 4739 | 7054 |
Cooler Master V650 SFX | 200 | 997 | 1924 | 3793 | 4751 | 4743 | |
Chieftec BDF-650C | 245 | 1042 | 1994 | 3815 | 4991 | 4970 | |
XPG Core Reactor 750 | 202 | 1001 | 1914 | 3773 | 4746 | 4734 | 7205 |
Deepcool DQ650-M-V2L | 228 | 997 | 1923 | 3808 | 4765 | ||
Deepcool DA600-M | 251 | 1049 | 2015 | 4041 | 5133 | ||
Fractal Design Ion Gold 850 | 262 | 1029 | 1940 | 3830 | 4795 | 4776 | 7273 |
XPG Pylon 750 | 229 | 1011 | 1942 | 3863 | 4879 | 4877 | 7542 |
Thermaltake TF1 1550 | 252 | 1008 | 1901 | 3716 | 4643 | 6938 | |
Chieftronic PowerUp GPX-850FC | 244 | 1015 | 1940 | 3795 | 4725 | 4715 | 7177 |
Thermaltake GF1 1000 | 265 | 1035 | 1940 | 3780 | 4713 | 4707 | 7139 |
MSI MPG A750GF | 232 | 1014 | 1936 | 3772 | 4723 | 4713 | 7174 |
Chieftronic PowerPlay GPU-850FC | 237 | 1015 | 1925 | 3750 | 4678 | 4672 | 7061 |
Cooler Master MWE Gold 750W V2 | 238 | 1016 | 1936 | 3807 | 4748 | 4744 | 7239 |
XPG Pylon 450 | 242 | 1038 | 2001 | 4056 | |||
Chieftronic PowerUp GPX-550FC | 238 | 1011 | 1941 | 3817 | 4793 | ||
Chieftec BBS-500S | 248 | 1019 | 1947 | 3842 | |||
Cougar VTE X2 600 | 248 | 1036 | 1997 | 3936 | 4942 | ||
Thermaltake GX1 500 | 244 | 1000 | 1923 | 3809 | 4797 | ||
Thermaltake BM2 450 | 238 | 1022 | 1982 | 4011 | |||
Chieftec PPS-1050FC | 226 | 990 | 1904 | 3759 | 4688 | 4683 | 7078 |
Super Flower SF-750P14XE | 254 | 1021 | 1954 | 3811 | 4748 | 4765 | 7236 |
XPG Core Reactor 850 | 217 | 1007 | 1911 | 3758 | 4716 | 4704 | 7122 |
Asus TUF Gaming 750B | 229 | 997 | 1933 | 3842 | 4824 | 4812 | 7385 |
Deepcool PQ1000M | 223 | 986 | 1898 | 3750 | 4681 | ||
Chieftronic BDK-650FC | 242 | 1001 | 1931 | 3864 | 4849 | 4823 | |
Cooler Master XG Plus 750 Platinum | 252 | 1000 | 1918 | 3824 | 4757 | 4730 | 7105 |
Chieftec GPC-700S | 268 | 1064 | 2023 | 4060 | 5116 | ||
Gigabyte UD1000GM PG5 | 228 | 1002 | 1926 | 3779 | 4731 | 4711 | 7153 |
Zalman ZM700-TXIIv2 | 241 | 1047 | 2022 | 4047 | 5107 | 5081 | |
Cooler Master V850 Platinum | 287 | 1052 | 1968 | 3806 | 4716 | 4711 | 7083 |
Thermaltake PF1 1200 Platinum | 244 | 1036 | 1962 | 3811 | 4757 | 4726 | 7159 |
В данном случае мы также приводим и измерения традиционного КПД. Результаты регистрировались при постоянной нагрузке на каналы +3.3VDC (5 Вт) и +5VDC (15 Вт) и изменяемой мощности по каналу +12VDC.

Всего таким образом мы измерили параметры блока питания в 10 точках. В результате максимальный КПД в нашем случае составил 93,8% при выходной мощности 400 Вт. Максимальная рассеиваемая мощность составила 84 Вт при выходной мощности 1000 Вт, что относительно немного для блока питания подобной мощности.
Температурный режим
Все основные тесты проводились в режиме с постоянно вращающимся вентилятором. При этом термонагруженность конденсаторов при работе даже на максимальной мощности находится на сравнительно невысоком уровне.

Мы изучили функционирование данной модели и при гибридном режиме работы системы охлаждения. В результате тестирования было установлено, что вентилятор в блоке питания включается только при достижении пороговой температуры (около 55 градусов). Отключение вентилятора также происходит только при снижении температуры ниже порогового значения (около 45 градусов). Скачкообразного роста уровня шума при запуске вентилятора отмечено не было. Долговременно в безвентиляторном режиме блок питания способен работать лишь при мощности нагрузки 50 Вт и менее. Также стоит учитывать, что в случае работы с остановленным вентилятором температура компонентов внутри БП сильно зависит от температуры окружающего воздуха.
Акустическая эргономика
При подготовке данного материала мы использовали следующую методику измерения уровня шума блоков питания. Блок питания располагается на ровной поверхности вентилятором вверх, над ним на расстоянии 0,35 метра размещается измерительный микрофон шумомера Октава 110А-Эко, которым и производится измерение уровня шума. Нагрузка блока питания осуществляется при помощи специального стенда, имеющего бесшумный режим работы. В ходе измерения уровня шума осуществляется эксплуатация блока питания на постоянной мощности в течение 20 минут, после чего производится замер уровня шума.
Подобное расстояние до объекта измерения является наиболее приближенным для настольного размещения системного блока с установленным блоком питания. Данный метод позволяет оценить уровень шума блока питания в жестких условиях с точки зрения небольшого расстояния от источника шума до пользователя. При увеличении расстояния до источника шума и появлении дополнительных преград, имеющих хорошую звукоотражающую способность, уровень шума в контрольной точке также будет снижаться, что приведет к улучшению акустической эргономики в целом.
Данная модель имеет гибридную систему охлаждения, что означает возможность функционирования БП не только при активном, но и при пассивном охлаждении. Управление запуском вентилятора производится в зависимости от достижения температуры на встроенном термодатчике. При работе в гибридном режиме на мощности до 50 Вт включительно работу блока питания можно считать условно бесшумной, так как вентилятор в обычных условиях не вращается в течение продолжительного времени.

При работе с постоянно вращающимся вентилятором шум блока питания в диапазоне мощности до 300 Вт включительно находится на уровне около 23 дБА с расстояния 0,35 метра. Подобный уровень шума можно считать минимально заметным. При работе на мощности от 300 до 500 Вт шум блока питания находится на уровне менее 25 дБА с расстояния 0,35 метра. Подобный уровень шума можно считать действительно низким.
При дальнейшем увеличении выходной мощности уровень шума заметно повышается. При работе на мощности 750 Вт уровень шума заметно превышает эргономический порог в 40 дБА. При работе на мощности 1000 Вт шум очень высокий не только для жилого, но и для офисного помещения. На максимальной мощности уровень шума составил около 55 дБА, что очень много.
Таким образом, с точки зрения акустической эргономики данная модель обеспечивает комфорт при выходной мощности в пределах 500 Вт, причем в этом диапазоне шум находится на действительно низком уровне.
Также мы оцениваем уровень шума электроники блока питания, поскольку в некоторых случаях она является источником нежелательных призвуков. Данный этап тестирования осуществляется путем определения разницы между уровнем шума в нашей лаборатории с включенным блоком питания и с выключенным. В случае, если полученное значение находится в пределах 5 дБА, никаких отклонений в акустических свойствах БП нет. При разнице более 10 дБА, как правило, есть определенные дефекты, которые можно услышать с расстояния около полуметра. На данном этапе измерений микрофон шумомера располагается на расстоянии около 40 мм от верхней плоскости БП, так как на бо́льших расстояниях измерение шума электроники весьма затруднительно. Измерение производится в двух режимах: дежурном режиме (STB, или Stand by) и при работающем на нагрузку БП, но с принудительно остановленным вентилятором.
В режиме ожидания шум электроники почти полностью отсутствует. В целом шум электроники можно считать относительно низким: превышение фонового шума составило не более 3 дБА.
Потребительские качества
Потребительские качества данной модели сложно назвать выдающимися. Акустическая эргономика тут вполне типичная для блоков питания подобной мощности: при невысокой нагрузке шум относительно невысокий, но при ее увеличении шум становится весьма навязчивым и некомфортным. Реализованный гибридный режим охлаждения также не впечатляет: лишь до 50 Вт БП может работать с остановленным вентилятором, а при увеличении мощности нагрузки вентилятор будет регулярно включаться.
Итоги
Thermaltake Toughpower PF1 1200W Platinum продемонстрировал относительно высокий КПД, в нем использованы вентилятор на гидродинамическом подшипнике с высоким ресурсом работы и конденсаторы японских производителей. Таким образом, можно рассчитывать на достаточно долгую жизнь этого блока питания даже при постоянных нагрузках. Блок питания позволяет включить гибридный режим охлаждения, на малой мощности он может длительно работать с остановленным вентилятором.