Блоки питания формата TFX предназначены для корпусов очень компактных размеров, где обычно не предполагается использование мощной дискретной видеокарты, а зачастую — дискретной видеокарты в принципе. Как правило, в рознице такие решения встречаются гораздо реже решений формата SFX, а уж тем более ATX.
Исследуемый в этот раз БП формата TFX — Powerman PM-300TFX — попал к нам, будучи установленным внутри корпуса Inwin CK709, поэтому оценивать данный источник питания стоит исходя из места его использования. Впрочем, данная модель встречается и в рознице (а этот корпус Inwin продается и в варианте без БП), поэтому обзор может оказаться полезен довольно широкому кругу пользователей.
Характеристики
Все необходимые параметры указаны на корпусе блока питания в полном объеме, для мощности шины +12VDC заявлено значение 240 Вт. Соотношение мощности по шине +12VDC и полной мощности составляет 0,8, что для устройств малой мощности можно считать вполне удовлетворительным.
Провода и разъемы
Наименование разъема | Количество разъемов | Примечания |
---|---|---|
24 pin Main Power Connector | 1 | разборный |
4 pin 12V Power Connector | — | |
8 pin SSI Processor Connector | 1 | разборный |
6 pin PCI-E 1.0 VGA Power Connector | — | |
8 pin PCI-E 2.0 VGA Power Connector | — | |
4 pin Peripheral Connector | — | |
15 pin Serial ATA Connector | 3 | на 2 шнурах |
4 pin Floppy Drive Connector | — |
Длина проводов до разъемов питания
Провода использованы 18AWG, что вполне адекватно. Защитная втулка в отверстии вывода присутствует.
- до основного разъема АТХ — 25 см
- до процессорного разъема 8 pin SSI — 28 см
- до первого разъема SATA Power Connector — 30 см
- до первого разъема SATA Power Connector — 45 см, плюс 7 см до второго такого же разъема
Провода у блока питания относительно короткие, ведь он в первую очередь предназначен для компактных корпусов, где подобной длины в большинстве случаев будет вполне достаточно.
Количество разъемов и их взаиморасположение тоже стоит оценивать с оглядкой на использование в компактных корпусах. Для типовых систем с накопителями, которые установлены в одной или двух зонах, этого набора разъемов вполне достаточно, однако производитель мог бы проявить творческий подход к комплектации блока питания различными переходниками, чтобы минимизировать число используемых шнуров питания в конкретном системном блоке. Например, не помешал бы переходник с SATA Power на периферийный разъем, так как нужда в разъемах последнего типа в случае современных компактных корпусов обычно исчезающе мала, а переходник стоит копейки. Впрочем, для бюджетного БП и это, видимо, непозволительные расходы.
Все разъемы SATA Power угловые, а использование таких разъемов не слишком удобно в случае накопителей, размещаемых с тыльной стороны основания для системной платы или на любых других поверхностях. К тому же, в разъемах SATA Power отсутствует линия питания +3.3VDC, которая по стандарту там быть обязана. Понятно, что на работоспособность сколько-нибудь современной системы это никак не повлияет, но все-таки.
На всякий случай констатируем, что разъемов питания для видеокарт у этого БП нет вовсе, ни 6-, ни 8-, ни тем более 16-контактных. При необходимости можно использовать переходники (с тех же разъемов SATA Power), но тут в первую очередь надо задуматься о том, стоит ли вообще использовать подобный БП для системы с дискретной видеокартой.
Схемотехника и охлаждение
Блок питания оснащен активным корректором коэффициента мощности и имеет довольно широкий диапазон питающих напряжений от 100 до 240 вольт. Это обеспечивает устойчивость к понижению напряжения в электросети ниже нормативных значений.
Платформа явно не самая передовая: реализована групповая стабилизация каналов +5VDC и +12VDC, а также +3.3VDC на отдельном стабилизаторе на базе магнитного усилителя. Всё вполне типично для решений нижней части бюджетного сегмента.
Высоковольтные силовые элементы установлены на одном радиаторе. Элементы выпрямителя также установлены на отдельном радиаторе.
Конденсаторы в блоке питания преимущественно представлены продукцией под торговой маркой ChengX.
В блоке питания установлен низкопрофильный (высотой 15 мм) вентилятор DF08020128BL типоразмера 80 мм, с частотой вращения 2400 об/мин. Подключение двухпроводное, через разъем. Вентилятор основан на подшипнике скольжения, что говорит о некоторой экономии на данном элементе, но, безусловно, гарантийный срок и этот вентилятор должен отработать.
Измерение электрических характеристик
Далее мы переходим к инструментальному исследованию электрических характеристик источника питания при помощи многофункционального стенда и другого оборудования.
Величина отклонения выходных напряжений от номинала кодируется цветом следующим образом:
Цвет | Диапазон отклонения | Качественная оценка |
---|---|---|
более 5% | неудовлетворительно | |
+5% | плохо | |
+4% | удовлетворительно | |
+3% | хорошо | |
+2% | очень хорошо | |
1% и менее | отлично | |
−2% | очень хорошо | |
−3% | хорошо | |
−4% | удовлетворительно | |
−5% | плохо | |
более 5% | неудовлетворительно |
Работа на максимальной мощности
Первым этапом испытаний является эксплуатация блока питания на максимальной мощности продолжительное время. Такой тест с уверенностью позволяет удостовериться в работоспособности БП.
Кросс-нагрузочная характеристика
Следующим этапом инструментального тестирования является построение кросснагрузочной характеристики (КНХ) и представление ее на четвертьплоскости, ограниченной максимальной мощностью по шине 3,3&5 В с одной стороны (по оси ординат) и максимальной мощностью по шине 12 В с другой (по оси абсцисс). В каждой точке измеренное значение напряжения обозначается цветовым маркером в зависимости от отклонения от номинального значения.
КНХ позволяет нам определить, какой уровень нагрузки можно считать допустимым, особенно по каналу +12VDC, для тестируемого экземпляра. В данном случае отклонения действующих значений напряжения от номинала по каналу +12VDC не превышают 5% во всем диапазоне мощности, что является удовлетворительным результатом. При типичном распределении мощности по каналам отклонения от номинала не превышают 3% по каналу +3.3VDC, 3% по каналу +5VDC и 5% по каналу +12VDC.
В целом, при нагрузке в пределах 180 Вт по шине +12VDC и порядка 10 Вт по +3.3&5VDC, параметры работы БП можно считать вполне удовлетворительными.
Нагрузочная способность
Следующий тест призван определить максимальную мощность, которую можно подать через соответствующие разъемы при нормированном отклонении значения напряжения в размере 3 или 5 процентов от номинала.
Поскольку разъемов для питания видеокарт в данном случае нет, остается изучить параметры работы с использованием разъемов питания процессора и системной платы.
При нагрузке через разъем питания процессора максимальная мощность по каналу +12VDC составляет около 245 Вт при отклонении в пределах 3%. Этого вполне достаточно для типовых систем, у которых на системной плате есть только один разъем для питания процессора.
В случае системной платы максимальная мощность по каналу +12VDC составляет свыше 150 Вт при отклонении 3%. Так как сама плата потребляет по данному каналу в пределах 10 Вт, высокая мощность может потребоваться для питания карт расширения — например, для видеокарт без дополнительного разъема питания, которые обычно имеют потребление в пределах 75 Вт.
Экономичность и эффективность
При оценке эффективности компьютерного блока питания можно идти двумя путями. Первый путь заключается в оценке компьютерного блока питания как отдельного преобразователя электрической энергии с дальнейшей попыткой минимизировать сопротивление линии передачи электрической энергии от БП к нагрузке (где и измеряется ток и напряжение на выходе БП). Для этого блок питания обычно подключается всеми имеющимися разъемами, что ставит разные блоки питания в неравные условия, так как набор разъемов и количество токоведущих проводов зачастую разное даже у блоков питания одинаковой мощности. Таким образом, хотя результаты получаются корректными для каждого конкретного источника питания, в реальных условиях полученные данные малоприменимы, поскольку в реальных условиях блок питания подключается ограниченным количеством разъемов, а не всеми сразу. Поэтому логичным представляется вариант определения эффективности (экономичности) компьютерного блока питания не только на фиксированных значениях мощности, включая распределение мощности по каналам, но и с фиксированным набором разъемов для каждого значения мощности.
Представление эффективности компьютерного блока питания в виде значения КПД (коэффициента полезного действия) имеет свои традиции. Прежде всего, КПД — это коэффициент, определяемый соотношением мощностей на выходе и на входе блока питания, то есть КПД показывает эффективность преобразования электрической энергии. Обычному же пользователю данный параметр почти ничего не скажет, за исключением того, что более высокий КПД вроде как говорит о большей экономичности БП и более высоком его качестве. Зато КПД стал отличным маркетинговым якорем, особенно в комбинацией с сертификатом 80Plus. Однако с практической точки зрения КПД не оказывает заметного влияния на функционирование системного блока: он не увеличивает производительность, не снижает шум или температуру внутри системного блока. Это просто технический параметр, уровень которого в основном определяется развитием промышленности в текущий момент времени и себестоимостью продукта. Для пользователя же максимизация КПД выливается в увеличение розничной цены.
С другой стороны, иногда нужно объективно оценить экономичность компьютерного блока питания. Под экономичностью мы подразумеваем потерю мощности при преобразовании электроэнергии и ее передаче к конечным потребителям. И для оценки этого КПД не нужен, так как можно использовать не отношение двух величин, а абсолютные значения: рассеиваемую мощность (разницу между значениями на входе и выходе блока питания), а также потребление энергии источником питания за определенное время (день, месяц, год и т. д.) при работе с постоянной нагрузкой (мощностью). Это позволяет легко увидеть реальную разницу в потреблении электроэнергии конкретными моделями БП и при необходимости рассчитать экономическую выгоду от использования более дорогих источников питания.
Таким образом, на выходе мы получаем понятный для всех параметр — рассеиваемую мощность, которая легко преобразуется в киловатт-часы (кВт·ч), которые и регистрирует счетчик электрической энергии. Умножив полученное значение на стоимость киловатт-часа, получим стоимость электрической энергии при условии эксплуатации системного блока круглосуточно в течение года. Подобный вариант, конечно, чисто гипотетический, но он позволяет оценить разницу между стоимостью эксплуатации компьютера с различными источниками питания в течение длительного периода времени и сделать выводы об экономической целесообразности приобретения конкретной модели БП. В реальных условиях высчитанное значение может достигаться за более долгий период — например, от 3 лет и более. При необходимости каждый желающий может разделить полученное значение на нужный коэффициент в зависимости от количества часов в сутках, в течение которых системный блок эксплуатируется в указанном режиме, чтобы получить расход электроэнергии за год.
Мы решили выделить несколько типовых вариантов по мощности и соотнести их с количеством разъемов, которое соответствует данным вариантам, то есть максимально приблизить методику измерения экономичности к условиям, которые достигаются в реальном системном блоке. Вместе с тем, это позволит оценивать экономичность разных блоков питания в полностью одинаковых условиях.
Нагрузка через разъемы | 12VDC, Вт | 5VDC, Вт | 3.3VDC, Вт | Общая мощность, Вт |
---|---|---|---|---|
основной ATX, процессорный (12 В), SATA | 5 | 5 | 5 | 15 |
основной ATX, процессорный (12 В), SATA | 80 | 15 | 5 | 100 |
основной ATX, процессорный (12 В), SATA | 180 | 15 | 5 | 200 |
основной ATX, процессорный (12 В), 6-контактный PCIe, SATA | 380 | 15 | 5 | 400 |
основной ATX, процессорный (12 В), 6-контактные PCIe (1 шнур с 2 разъемами), SATA | 480 | 15 | 5 | 500 |
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 1 разъему), SATA | 480 | 15 | 5 | 500 |
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 2 разъема), SATA | 730 | 15 | 5 | 750 |
Полученные результаты выглядят следующим образом:
Рассеиваемая мощность, Вт | 15 Вт | 100 Вт | 200 Вт | 400 Вт | 500 Вт (1 шнур) |
500 Вт (2 шнура) |
750 Вт |
---|---|---|---|---|---|---|---|
Cooler Master MWE Bronze 750W V2 | 15,9 | 22,7 | 25,9 | 43,0 | 58,5 | 56,2 | 102,0 |
Cougar BXM 700 | 12,0 | 18,2 | 26,0 | 42,8 | 57,4 | 57,1 | |
Cooler Master Elite 600 V4 | 11,4 | 17,8 | 30,1 | 65,7 | 93,0 | ||
Cougar GEX 850 | 11,8 | 14,5 | 20,6 | 32,6 | 41,0 | 40,5 | 72,5 |
Cooler Master V1000 Platinum (2020) | 19,8 | 21,0 | 25,5 | 38,0 | 43,5 | 41,0 | 55,3 |
Cooler Master V650 SFX | 7,8 | 13,8 | 19,6 | 33,0 | 42,4 | 41,4 | |
Chieftec BDF-650C | 13,0 | 19,0 | 27,6 | 35,5 | 69,8 | 67,3 | |
XPG Core Reactor 750 | 8,0 | 14,3 | 18,5 | 30,7 | 41,8 | 40,4 | 72,5 |
Deepcool DQ650-M-V2L | 11,0 | 13,8 | 19,5 | 34,7 | 44,0 | ||
Deepcool DA600-M | 13,6 | 19,8 | 30,0 | 61,3 | 86,0 | ||
Fractal Design Ion Gold 850 | 14,9 | 17,5 | 21,5 | 37,2 | 47,4 | 45,2 | 80,2 |
XPG Pylon 750 | 11,1 | 15,4 | 21,7 | 41,0 | 57,0 | 56,7 | 111,0 |
Thermaltake TF1 1550 | 13,8 | 15,1 | 17,0 | 24,2 | 30,0 | 42,0 | |
Chieftronic PowerUp GPX-850FC | 12,8 | 15,9 | 21,4 | 33,2 | 39,4 | 38,2 | 69,3 |
Thermaltake GF1 1000 | 15,2 | 18,1 | 21,5 | 31,5 | 38,0 | 37,3 | 65,0 |
MSI MPG A750GF | 11,5 | 15,7 | 21,0 | 30,6 | 39,2 | 38,0 | 69,0 |
Chieftronic PowerPlay GPU-850FC | 12,0 | 15,9 | 19,7 | 28,1 | 34,0 | 33,3 | 56,0 |
Cooler Master MWE Gold 750W V2 | 12,2 | 16,0 | 21,0 | 34,6 | 42,0 | 41,6 | 76,4 |
XPG Pylon 450 | 12,6 | 18,5 | 28,4 | 63,0 | |||
Chieftronic PowerUp GPX-550FC | 12,2 | 15,4 | 21,6 | 35,7 | 47,1 | ||
Chieftec BBS-500S | 13,3 | 16,3 | 22,2 | 38,6 | |||
Cougar VTE X2 600 | 13,3 | 18,3 | 28,0 | 49,3 | 64,2 | ||
Thermaltake GX1 500 | 12,8 | 14,1 | 19,5 | 34,8 | 47,6 | ||
Thermaltake BM2 450 | 12,2 | 16,7 | 26,3 | 57,9 | |||
Chieftec PPS-1050FC | 10,8 | 13,0 | 17,4 | 29,1 | 35,1 | 34,6 | 58,0 |
Super Flower SF-750P14XE | 14,0 | 16,5 | 23,0 | 35,0 | 42,0 | 44,0 | 76,0 |
XPG Core Reactor 850 | 9,8 | 14,9 | 18,1 | 29,0 | 38,4 | 37,0 | 63,0 |
Asus TUF Gaming 750B | 11,1 | 13,8 | 20,7 | 38,6 | 50,7 | 49,3 | 93,0 |
Deepcool PQ1000M | 10,4 | 12,6 | 16,7 | 28,1 | 34,4 | ||
Chieftronic BDK-650FC | 12,6 | 14,3 | 20,4 | 41,1 | 53,5 | 50,6 | |
Cooler Master XG Plus 750 Platinum | 13,8 | 14,2 | 18,9 | 36,5 | 43,0 | 40,0 | 61,1 |
Chieftec GPC-700S | 15,6 | 21,4 | 30,9 | 63,5 | 84,0 | ||
Gigabyte UD1000GM PG5 | 11,0 | 14,4 | 19,9 | 31,4 | 40,1 | 37,8 | 66,6 |
Zalman ZM700-TXIIv2 | 12,5 | 19,5 | 30,8 | 62,0 | 83,0 | 80,0 | |
Cooler Master V850 Platinum | 17,8 | 20,1 | 24,6 | 34,5 | 38,3 | 37,8 | 58,5 |
Thermaltake PF1 1200 Platinum | 12,8 | 18,3 | 24,0 | 35,0 | 43,0 | 39,5 | 67,2 |
XPG CyberCore 1000 Platinum | 10,1 | 19,6 | 21,6 | 33,9 | 37,4 | 36,7 | 57,7 |
Chieftec CSN-650C | 10,7 | 12,5 | 17,5 | 32,0 | 43,5 | ||
Asus ROG Loki SFX-L 1000W Platinum | 13,7 | 14,5 | 17,6 | 24,9 | 38,7 | ||
Thermaltake GF3 1000 | 8,8 | 17,0 | 21,7 | 35,5 | 44,8 | 41,6 | 70,5 |
Chieftronic PowerPlay GPU-1200FC | 13,8 | 17,9 | 22,2 | 31,6 | 36,0 | 33,2 | 55,5 |
Galax Hall of Fame GH1300 | 12,7 | 14,2 | 18,2 | 24,7 | 29,9 | ||
Deepcool PX1200G | 10,7 | 19,5 | 24,2 | 30,0 | 35,0 | ||
Powerman PM-300TFX | 12,0 | 20,0 | 38,2 | ||||
Chieftec Polaris Pro 1300W | 13,2 | 16,9 | 20,3 | 28,2 | 32,6 | 31,9 | 48,0 |
В целом данная модель имеет невысокую экономичность во всех протестированных режимах.
Вт | |
---|---|
Deepcool PQ1000M | 39,7 |
Chieftec CSN-650C | 40,7 |
XPG Core Reactor 750 | 40,8 |
Cooler Master V650 SFX | 41,2 |
Chieftec PPS-1050FC | 41,2 |
XPG Core Reactor 850 | 42,8 |
Deepcool DQ650-M-V2L | 44,3 |
Galax Hall of Fame GH1300 | 45,1 |
Gigabyte UD1000GM PG5 | 45,3 |
Asus TUF Gaming 750B | 45,6 |
Asus ROG Loki SFX-L 1000W Platinum | 45,8 |
Thermaltake TF1 1550 | 45,9 |
Thermaltake GX1 500 | 46,4 |
Cougar GEX 850 | 46,9 |
Cooler Master XG Plus 750 Platinum | 46,9 |
Chieftronic BDK-650FC | 47,3 |
Thermaltake GF3 1000 | 47,5 |
Chieftronic PowerPlay GPU-850FC | 47,6 |
XPG Pylon 750 | 48,2 |
MSI MPG A750GF | 48,2 |
Cooler Master MWE Gold 750W V2 | 49,2 |
Chieftronic PowerUp GPX-550FC | 49,2 |
Chieftronic PowerUp GPX-850FC | 50,1 |
Chieftec Polaris Pro 1300W | 50,4 |
XPG CyberCore 1000 Platinum | 51,3 |
Chieftec BBS-500S | 51,8 |
Super Flower SF-750P14XE | 53,5 |
Chieftronic PowerPlay GPU-1200FC | 53,9 |
Fractal Design Ion Gold 850 | 53,9 |
DeepCool PX1200G | 54,4 |
Thermaltake GF1 1000 | 54,8 |
Thermaltake PF1 1200 Platinum | 55,1 |
Thermaltake BM2 450 | 55,2 |
Cougar BXM 700 | 56,2 |
Cooler Master Elite 600 V4 | 59,3 |
XPG Pylon 450 | 59,5 |
Chieftec BDF-650C | 59,6 |
Cougar VTE X2 600 | 59,6 |
Cooler Master V850 Platinum | 62,5 |
Zalman ZM700-TXIIv2 | 62,8 |
Deepcool DA600-M | 63,4 |
Cooler Master MWE 700 Bronze V2 | 64,5 |
Cooler Master V1000 Platinum (2020) | 66,3 |
Chieftec GPC-700S | 67,9 |
Powerman PM-300TFX | 70,2 |
Для сравнительной оценки данной модели методику расчета нашего индекса, если его можно так назвать, пришлось немного видоизменить, так как разъема питания видеокарт тут нет, а без него полноценное сравнение с другими участниками невозможно. В итоге вместо четырех значений, которые мы суммируем для получения индекса, мы использовали только три первые значения рассеиваемой мощности, пересчитав все результаты для более корректного сравнения.
По суммарной экономичности на низкой и средней мощности данная модель занимает последнее место в нашем списке на момент тестирования.
Потребление энергии компьютером за год, кВт·ч | 15 Вт | 100 Вт | 200 Вт | 400 Вт | 500 Вт (1 шнур) |
500 Вт (2 шнура) |
750 Вт |
---|---|---|---|---|---|---|---|
Cooler Master MWE Bronze 750W V2 | 271 | 1075 | 1979 | 3881 | 4893 | 4872 | 7464 |
Cougar BXM 700 | 237 | 1035 | 1980 | 3879 | 4883 | 4880 | |
Cooler Master Elite 600 V4 | 231 | 1032 | 2016 | 4080 | 5195 | ||
Cougar GEX 850 | 235 | 1003 | 1933 | 3790 | 4739 | 4735 | 7205 |
Cooler Master V1000 Platinum (2020) | 305 | 1060 | 1975 | 3837 | 4761 | 4739 | 7054 |
Cooler Master V650 SFX | 200 | 997 | 1924 | 3793 | 4751 | 4743 | |
Chieftec BDF-650C | 245 | 1042 | 1994 | 3815 | 4991 | 4970 | |
XPG Core Reactor 750 | 202 | 1001 | 1914 | 3773 | 4746 | 4734 | 7205 |
Deepcool DQ650-M-V2L | 228 | 997 | 1923 | 3808 | 4765 | ||
Deepcool DA600-M | 251 | 1049 | 2015 | 4041 | 5133 | ||
Fractal Design Ion Gold 850 | 262 | 1029 | 1940 | 3830 | 4795 | 4776 | 7273 |
XPG Pylon 750 | 229 | 1011 | 1942 | 3863 | 4879 | 4877 | 7542 |
Thermaltake TF1 1550 | 252 | 1008 | 1901 | 3716 | 4643 | 6938 | |
Chieftronic PowerUp GPX-850FC | 244 | 1015 | 1940 | 3795 | 4725 | 4715 | 7177 |
Thermaltake GF1 1000 | 265 | 1035 | 1940 | 3780 | 4713 | 4707 | 7139 |
MSI MPG A750GF | 232 | 1014 | 1936 | 3772 | 4723 | 4713 | 7174 |
Chieftronic PowerPlay GPU-850FC | 237 | 1015 | 1925 | 3750 | 4678 | 4672 | 7061 |
Cooler Master MWE Gold 750W V2 | 238 | 1016 | 1936 | 3807 | 4748 | 4744 | 7239 |
XPG Pylon 450 | 242 | 1038 | 2001 | 4056 | |||
Chieftronic PowerUp GPX-550FC | 238 | 1011 | 1941 | 3817 | 4793 | ||
Chieftec BBS-500S | 248 | 1019 | 1947 | 3842 | |||
Cougar VTE X2 600 | 248 | 1036 | 1997 | 3936 | 4942 | ||
Thermaltake GX1 500 | 244 | 1000 | 1923 | 3809 | 4797 | ||
Thermaltake BM2 450 | 238 | 1022 | 1982 | 4011 | |||
Chieftec PPS-1050FC | 226 | 990 | 1904 | 3759 | 4688 | 4683 | 7078 |
Super Flower SF-750P14XE | 254 | 1021 | 1954 | 3811 | 4748 | 4765 | 7236 |
XPG Core Reactor 850 | 217 | 1007 | 1911 | 3758 | 4716 | 4704 | 7122 |
Asus TUF Gaming 750B | 229 | 997 | 1933 | 3842 | 4824 | 4812 | 7385 |
Deepcool PQ1000M | 223 | 986 | 1898 | 3750 | 4681 | ||
Chieftronic BDK-650FC | 242 | 1001 | 1931 | 3864 | 4849 | 4823 | |
Cooler Master XG Plus 750 Platinum | 252 | 1000 | 1918 | 3824 | 4757 | 4730 | 7105 |
Chieftec GPC-700S | 268 | 1064 | 2023 | 4060 | 5116 | ||
Gigabyte UD1000GM PG5 | 228 | 1002 | 1926 | 3779 | 4731 | 4711 | 7153 |
Zalman ZM700-TXIIv2 | 241 | 1047 | 2022 | 4047 | 5107 | 5081 | |
Cooler Master V850 Platinum | 287 | 1052 | 1968 | 3806 | 4716 | 4711 | 7083 |
Thermaltake PF1 1200 Platinum | 244 | 1036 | 1962 | 3811 | 4757 | 4726 | 7159 |
XPG CyberCore 1000 Platinum | 220 | 1048 | 1941 | 3801 | 4708 | 4702 | 7076 |
Chieftec CSN-650C | 225 | 986 | 1905 | 3784 | 4761 | ||
Asus ROG Loki SFX-L 1000W Platinum | 251 | 1003 | 1906 | 3722 | 4719 | ||
Thermaltake GF3 1000 | 209 | 1025 | 1942 | 3815 | 4772 | 4744 | 7188 |
Chieftronic PowerPlay GPU-1200FC | 252 | 1033 | 1947 | 3781 | 4695 | 4671 | 7056 |
Galax Hall of Fame GH1300 | 243 | 1000 | 1911 | 3720 | 4642 | ||
Deepcool PX1200G | 225 | 1047 | 1964 | 3767 | 4687 | ||
Powerman PM-300TFX | 237 | 1051 | 2087 | ||||
Chieftec Polaris Pro 1300W | 247 | 1024 | 1930 | 3751 | 4666 | 4659 | 6991 |
Температурный режим
Термонагруженность конденсаторов даже при работе продолжительное время на максимальной мощности находится на сравнительно невысоком уровне.
Акустическая эргономика
При подготовке данного материала мы использовали следующую методику измерения уровня шума блоков питания. Блок питания располагается на ровной поверхности вентилятором вверх, над ним на расстоянии 0,35 метра размещается измерительный микрофон шумомера Октава 110А-Эко, которым и производится измерение уровня шума. Нагрузка блока питания осуществляется при помощи специального стенда, имеющего бесшумный режим работы. В ходе измерения уровня шума осуществляется эксплуатация блока питания на постоянной мощности в течение 20 минут, после чего производится замер уровня шума.
Подобное расстояние до объекта измерения является наиболее приближенным для настольного размещения системного блока с установленным блоком питания. Данный метод позволяет оценить уровень шума блока питания в жестких условиях с точки зрения небольшого расстояния от источника шума до пользователя. При увеличении расстояния до источника шума и появлении дополнительных преград, имеющих хорошую звукоотражающую способность, уровень шума в контрольной точке также будет снижаться, что приведет к улучшению акустической эргономики в целом.
Вентилятор в этом блоке питания вращается всегда, но при работе в диапазоне мощности до 200 Вт включительно шум находится на среднем уровне при расположении БП в ближнем поле. При более значительном удалении блока питания и размещении его под столом такой шум можно будет трактовать как находящийся на уровне ниже среднего. В дневное время суток в жилом помещении источник с подобным уровнем шума будет не слишком заметен, особенно с расстояния в метр и более, и тем более он будет малозаметен в офисном помещении, так как фоновый шум в офисах обычно выше, чем в жилых помещениях. В ночное время суток источник с таким уровнем шума будет хорошо заметен, спать рядом будет затруднительно. Подобный уровень шума можно считать комфортным при работе за компьютером.
На мощности 300 Вт уровень шума превышает эргономичный порог в 40 дБА.
Таким образом, с точки зрения акустической эргономики данная модель обеспечивает относительный комфорт при выходной мощности в пределах 200 Вт.
Также мы оцениваем уровень шума электроники блока питания, поскольку в некоторых случаях она является источником нежелательных призвуков. Данный этап тестирования осуществляется путем определения разницы между уровнем шума в нашей лаборатории с включенным блоком питания и с выключенным. В случае, если полученное значение находится в пределах 5 дБА, никаких отклонений в акустических свойствах БП нет. При разнице более 10 дБА, как правило, есть определенные дефекты, которые можно услышать с расстояния около полуметра. На данном этапе измерений микрофон шумомера располагается на расстоянии около 40 мм от верхней плоскости БП, так как на бо́льших расстояниях измерение шума электроники весьма затруднительно. Измерение производится в двух режимах: дежурном режиме (STB, или Stand by) и при работающем на нагрузку БП, но с принудительно остановленным вентилятором.
В режиме ожидания шум электроники почти полностью отсутствует. В целом шум электроники можно считать относительно низким: превышение фонового шума составило не более 3 дБА.
Потребительские качества
Потребительские качества данной модели находятся на удовлетворительном уровне. Шум средний, а нагрузочная способность вполне приемлемая, хотя экономичность низкая. В принципе, от очень бюджетного БП, который предустанавливается в столь же бюджетный корпус, особых прорывов и не ожидалось.
Итоги
Powerman PM-300TFX — продукт нишевый, как и все TFX-модели, но свою задачу по питанию компонентов в компактном корпусе он выполняет в целом удовлетворительно. Он пережил все наши исследования его возможностей и остался в исправном работоспособном состоянии.