Обзор блока питания Corsair RM650 (2019)

Розничные предложения

Наш материал посвящен очередному обновлению серии RM блоков питания Corsair, в которой появились три новые модели с прежним названием: RM650, RM750, RM850. Отличить их можно по номеру модели или по SKU-номеру, но его продавцы указывают не всегда. С моделью мощностью 750 Вт мы уже познакомились ранее, а сегодня на очереди младшая модель мощностью 650 Вт (CP-9020194).

Впрочем, в данном случае путаницы возникнуть не должно, так как в розничных сетях представлены преимущественно новые модели — визуально их проще всего отличить по надписи белого цвета на боку, тогда как у старой серии буквы RM в названии были золотистого цвета. Все новинки характеризуются наличием сертификата 80Plus Gold, имеют гибридную систему охлаждения, а вот подсветка и программный интерфейс у них отсутствуют. Да, Corsair — один из немногих производителей, который не пошел на поводу у моды и радует покупателей отсутствием подсветки в подавляющем большинстве источников питания под своей торговой маркой. Не стоит путать данную модель и с RM650x: такой БП стоит чуть дороже, но в нем установлены конденсаторы японских производителей.

Длина корпуса блока питания составляет около 160 мм, дополнительно понадобится 15-20 мм для подвода проводов, поэтому при монтаже стоит рассчитывать на установочный размер порядка 180 мм. Для малогабаритных корпусов подобные модели обычно не подходят, но в почти любой полноразмерный корпус они влезут без проблем. Дизайн корпуса БП немного изменился. Если раньше продольные ребра были заметно скошены, то сейчас они в большей мере закруглены. Старый вариант выглядел более брутально и эстетично.

Упаковка блока питания представляет собой картонную коробку достаточной прочности с матовой полиграфией. В оформлении преобладают оттенки черного и желтого цветов, что для современных решений Corsair вполне типично и узнаваемо.

Характеристики

Все необходимые параметры указаны на корпусе блока питания в полном объеме, для мощности шины +12VDC заявлено значение 648 Вт. Соотношение мощности по шине +12VDC и полной мощности составляет 0,997, что, разумеется, является отличным показателем.

Провода и разъемы

Наименование разъема Количество разъемов Примечания
24 pin Main Power Connector 1 разборный
4 pin 12V Power Connector  
8 pin SSI Processor Connector 2 разборные
6 pin PCI-E 1.0 VGA Power Connector  
8 pin PCI-E 2.0 VGA Power Connector 4 на трех шнурах
4 pin Peripheral Connector 4 эргономичные
15 pin Serial ATA Connector 6 на двух шнурах
4 pin Floppy Drive Connector  

Длина проводов до разъемов питания

  • до основного разъема АТХ — 60 см
  • до процессорного разъема 8 pin SSI — 65 см
  • до процессорного разъема 8 pin SSI — 65 см
  • до первого разъема питания видеокарты PCI-E 2.0 VGA Power Connector — 60 см, плюс еще 15 см до второго такого же разъема
  • до первого разъема питания видеокарты PCI-E 2.0 VGA Power Connector — 60 см, плюс еще 15 см до второго такого же разъема
  • до первого разъема SATA Power Connector — 50 см, плюс 10 см до второго и еще 10 см до третьего такого же разъема
  • до первого разъема SATA Power Connector — 50 см, плюс 10 см до второго и еще 10 см до третьего такого же разъема
  • до первого разъема Peripheral Connector («молекс») — 45 см, плюс 10 см до второго, еще 10 см до третьего и еще 10 см до четвертого такого же разъема

Все без исключения провода являются модульными, то есть их можно снять, оставив лишь те, которые необходимы для конкретной системы.

Длина проводов является достаточной для комфортного использования в корпусах типоразмера full tower и более габаритных с верхним расположением блока питания. В корпусах высотой до 55 см с нижнерасположенным блоком питания длина проводов также должна быть достаточной: до разъемов питания процессора — по 65 сантиметров. Таким образом, с большинством современных корпусов проблем быть не должно. Правда, с учетом конструкции современных корпусов, имеющих развитые системы скрытой прокладки проводов, один из шнуров вполне можно было бы сделать и более длинным: скажем, 75-80 см, чтобы обеспечить максимальное удобство работы при сборке системы.

Разъемов SATA Power достаточное количество, и размещены они на двух шнурах питания. Единственное замечание к ним: все разъемы угловые, а использование таких разъемов не слишком удобно в случае накопителей, размещаемых с тыльной стороны основания для системной платы.

С положительной стороны стоит отметить использование ленточных проводов до разъемов, что повышает удобство при сборке. Правда, провода до основного разъема питания выполнены в виде обычного шнура с нейлоновой оплеткой, что менее удобно с точки зрения сборки и дальнейшей эксплуатации.

Схемотехника и охлаждение

Блок питания оснащен активным корректором коэффициента мощности и имеет расширенный диапазон питающих напряжений от 100 до 240 вольт. Это обеспечивает устойчивость к понижению напряжения в электросети ниже нормативных значений.

Полупроводниковые элементы высоковольтных цепей размещены на одном довольно габаритном радиаторе с оребрением. Входная диодная сборка также оснащена собственным радиатором. Элементы синхронного выпрямителя размещены на дочерней плате, установленной вертикально. Независимые источники +3.3VDC и 5VDC установлены на дочерней печатной плате и, по традиции, дополнительных теплоотводов не имеют — это вполне типично для блоков питания с активным охлаждением.

Конденсаторы в блоке питания в основной массе представлены продукцией под торговыми марками Elite и Su’scon. Установлено и большое количество полимерных конденсаторов.

В блоке питания установлен вентилятор HA1425M12F-Z типоразмера 140 мм производства компании Hong Hua. Обычно такое обозначение соответствует решениям на гидродинамичеcком подшипнике, но на странице блока питания утверждается, что тут установлен вентилятор на подшипнике скольжения с винтовой нарезкой — это более дешевый вариант с меньшим сроком службы.

Измерение электрических характеристик

Далее мы переходим к инструментальному исследованию электрических характеристик источника питания при помощи многофункционального стенда и другого оборудования.

Величина отклонения выходных напряжений от номинала кодируется цветом следующим образом:

Цвет Диапазон отклонения Качественная оценка
  более 5% неудовлетворительно
  +5% плохо
  +4% удовлетворительно
  +3% хорошо
  +2% очень хорошо
  1% и менее отлично
  −2% очень хорошо
  −3% хорошо
  −4% удовлетворительно
  −5% плохо
  более 5% неудовлетворительно

Работа на максимальной мощности

Первым этапом испытаний является эксплуатация блока питания на максимальной мощности продолжительное время. Такой тест с уверенностью позволяет удостовериться в работоспособности БП.

Заметных проблем при тестировании выявлено не было.

Кросс-нагрузочная характеристика

Следующим этапом инструментального тестирования является построение кросснагрузочной характеристики (КНХ) и представление ее на четвертьплоскости, ограниченной максимальной мощностью по шине 3,3&5 В с одной стороны (по оси ординат) и максимальной мощностью по шине 12 В с другой (по оси абсцисс). В каждой точке измеренное значение напряжения обозначается цветовым маркером в зависимости от отклонения от номинального значения.

КНХ позволяет нам определить, какой уровень нагрузки можно считать допустимым, особенно по каналу +12VDC, для тестируемого экземпляра. В данном случае отклонения действующих значений напряжения от номинала по каналу +12VDC минимальные во всем диапазоне мощности, что является отличным результатом.

При типичном распределении мощности по каналам отклонения от номинала не превышают 2% по каналу +3.3VDC, 1% по каналу +5VDC и 2% по каналу +12VDC.

Данная модель БП хорошо подходит для мощных современных систем из-за высокой практической нагрузочной способности канала +12VDC.

Нагрузочная способность

Следующий тест призван определить максимальную мощность, которую можно подать через соответствующие разъемы при нормированном отклонении значения напряжения в размере 3 или 5 процентов от номинала.

В случае видеокарты с единственным разъемом питания максимальная мощность по каналу +12VDC составляет не менее 150 Вт при отклонении в пределах 3%.

В случае видеокарты с двумя разъемами питания при использовании одного шнура питания максимальная мощность по каналу +12VDC составляет не менее 250 Вт при отклонении в пределах 3%.

В случае видеокарты с двумя разъемами питания при использовании двух шнуров питания максимальная мощность по каналу +12VDC составляет не менее 300 Вт при отклонении в пределах 3%, что позволяет использовать очень мощную видеокарту.

При нагрузке через разъем питания процессора максимальная мощность по каналу +12VDC составляет около 240 Вт при отклонении в пределах 3% и не менее 250 Вт при отклонении в пределах 5%. Это позволяет использовать десктопные платформы среднего уровня, имея ощутимый запас.

В случае системной платы максимальная мощность по каналу +12VDC составляет не менее 100 Вт при отклонении не более 3% от номинала. Так как сама плата потребляет по данному каналу в пределах 10 Вт, высокая мощность может потребоваться для питания карт расширения — например, для видеокарт без дополнительного разъема питания, которые обычно имеют потребление в пределах 75 Вт. Таким образом, проблем тут быть не должно.

Экономичность и эффективность

При оценке эффективности компьютерного блока питания можно идти двумя путями. Первый путь заключается в оценке компьютерного блока питания как отдельного преобразователя электрической энергии с дальнейшей попыткой минимизировать сопротивление линии передачи электрической энергии от БП к нагрузке (где и измеряется ток и напряжение на выходе БП). Для этого блок питания обычно подключается всеми имеющимися разъемами, что ставит разные блоки питания в неравные условия, так как набор разъемов и количество токоведущих проводов зачастую разное даже у блоков питания одинаковой мощности. Таким образом, хотя результаты получаются корректными для каждого конкретного источника питания, в реальных условиях полученные данные малоприменимы, поскольку в реальных условиях блок питания подключается ограниченным количеством разъемов, а не всеми сразу. Поэтому логичным представляется вариант определения эффективности (экономичности) компьютерного блока питания не только на фиксированных значениях мощности, включая распределение мощности по каналам, но и с фиксированным набором разъемов для каждого значения мощности.

Представление эффективности компьютерного блока питания в виде значения КПД (коэффициента полезного действия) имеет свои традиции. Прежде всего, КПД — это коэффициент, определяемый соотношением мощностей на выходе и на входе блока питания, то есть КПД показывает эффективность преобразования электрической энергии. Обычному же пользователю данный параметр почти ничего не скажет, за исключением того, что более высокий КПД вроде как говорит о большей экономичности БП и более высоком его качестве. Зато КПД стал отличным маркетинговым якорем, особенно в комбинацией с сертификатом 80Plus. Однако с практической точки зрения КПД не оказывает заметного влияния на функционирование системного блока: он не увеличивает производительность, не снижает шум или температуру внутри системного блока. Это просто технический параметр, уровень которого в основном определяется развитием промышленности в текущий момент времени и себестоимостью продукта. Для пользователя же максимизация КПД выливается в увеличение розничной цены.

С другой стороны, иногда нужно объективно оценить экономичность компьютерного блока питания. Под экономичностью мы тут подразумеваем потерю мощности при преобразовании электроэнергии и ее передаче к конечным потребителям. И для оценки этого КПД не нужен, так как можно использовать не отношение двух величин, а абсолютные значения: рассеиваемую мощность (разницу между значениями на входе и выходе блока питания), а также потребление энергии источником питания за определенное время (день, месяц, год и т. д.) при работе с постоянной нагрузкой (мощностью). Это позволяет легко увидеть реальную разницу в потреблении электроэнергии конкретными моделями БП и при необходимости рассчитать экономическую выгоду от использования более дорогих источников питания.

Таким образом, на выходе мы получаем понятный для всех параметр — рассеиваемую мощность, которая легко преобразуется в киловатт-часы (кВт·ч), которые и регистрирует счетчик электрической энергии. Умножив полученное значение на стоимость киловатт-часа, получим стоимость электрической энергии при условии эксплуатации системного блока круглосуточно в течение года. Подобный вариант, конечно, чисто гипотетический, но он позволяет оценить разницу между стоимостью эксплуатации компьютера с различными источниками питания в течение длительного периода времени и сделать выводы об экономической целесообразности приобретения конкретной модели БП. В реальных условиях высчитанное значение может достигаться за более долгий период — например, от 3 лет и более. При необходимости каждый желающий может разделить полученное значение на нужный коэффициент в зависимости от количества часов в сутках, в течение которых системный блок эксплуатируется в указанном режиме, чтобы получить расход электроэнергии за год.

Мы решили выделить несколько типовых вариантов по мощности и соотнести их с количеством разъемов, которое соответствует данным вариантам, то есть максимально приблизить методику измерения экономичности к условиям, которые достигаются в реальном системном блоке. Вместе с тем, это позволит оценивать экономичность разных блоков питания в полностью одинаковых условиях.

Нагрузка через разъемы 12VDC, Вт 5VDC, Вт 3.3VDC, Вт Общая мощность, Вт
основной ATX, процессорный (12 В), SATA 5 5 5 15
основной ATX, процессорный (12 В), SATA 80 15 5 100
основной ATX, процессорный (12 В), SATA 180 15 5 200
основной ATX, процессорный (12 В), 6-контактный PCIe, SATA 380 15 5 400
основной ATX, процессорный (12 В), 6-контактные PCIe (1 шнур с 2 разъемами), SATA 480 15 5 500
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 1 разъему), SATA 480 15 5 500
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 2 разъема), SATA 730 15 5 750

Полученные результаты выглядят следующим образом:

Рассеиваемая мощность, Вт 15 Вт 100 Вт 200 Вт 400 Вт 500 Вт
(1 шнур)
500 Вт
(2 шнура)
750 Вт
Enhance ENP-1780 21,2 23,8 26,1 35,3 42,7 40,9 66,6
Super Flower Leadex II Gold 850W 12,1 14,1 19,2 34,5 45 43,7 76,7
Super Flower Leadex Silver 650W 10,9 15,1 22,8 45 62,5 59,2  
High Power Super GD 850W 11,3 13,1 19,2 32 41,6 37,3 66,7
Corsair RM650 (RPS0118) 7 12,5 17,7 34,5 44,3 42,5  
EVGA Supernova 850 G5 12,6 14 17,9 29 36,7 35 62,4
EVGA 650 N1 13,4 19 25,5 55,3 75,6    
EVGA 650 BQ 14,3 18,6 27,1 47,2 61,9 60,5  
Chieftronic PowerPlay GPU-750FC 11,7 14,6 19,9 33,1 41 39,6 67

Экономичность данной модели находится на сравнительно высоком уровне и не уступает решениям с аналогичным уровнем сертификата.

Суммарная величина рассеиваемой мощности на средней и низкой нагрузке (до 400 Вт)
  Вт
Enhance ENP-1780 106,4
Super Flower Leadex II Gold 850W 79,9
Super Flower Leadex Silver 650W 93,8
High Power Super GD 850W 75,6
Corsair RM650 (RPS0118) 71,7
EVGA Supernova 850 G5 73,5
EVGA 650 N1 113,2
EVGA 650 BQ 107,2
Chieftronic PowerPlay GPU-750FC 79,3

Блок питания имеет низкое потребление, особенно на низкой и средней мощности нагрузки.

Потребление энергии компьютером за год, кВт·ч 15 Вт 100 Вт 200 Вт 400 Вт 500 Вт
(1 шнур)
500 Вт
(2 шнура)
750 Вт
Enhance ENP-1780 317 1085 1981 3813 4754 4738 7153
Super Flower Leadex II Gold 850W 237 1000 1920 3806 4774 4763 7242
Super Flower Leadex Silver 650W 227 1008 1952 3898 4928 4899  
High Power Super GD 850W 230 991 1920 3784 4744 4707 7154
Corsair RM650 (RPS0118) 193 986 1907 3806 4768 4752  
EVGA Supernova 850 G5 242 999 1909 3758 4702 4687 7117
EVGA 650 N1 249 1042 1975 3988 5042    
EVGA 650 BQ 257 1039 1989 3918 4922 4910  
Chieftronic PowerPlay GPU-750FC 234 1004 1926 3794 4739 4727 7157

Температурный режим

Мы изучили функционирование блока питания в гибридном режиме работы системы охлаждения. В результате было установлено, что вентилятор в блоке питания включается как при достижении пороговой температуры на термодатчике (около 60 °C), так и при достижении выходной мощности около 250 Вт. Отключение вентилятора происходит только при снижении температуры на термодатчике до определенного порога (около 35 °C). Температурный диапазон широкий, и при работе на мощности 100—200 Вт циклы старт/стоп почти отсутствуют, так как если БП включил вентилятор, то выключает он его через достаточно продолжительное время (около часа). На мощности 50 Вт и менее блок питания может долговременно работать с остановленным вентилятором. Скачкообразного роста уровня шума при запуске вентилятора отмечено не было.

Термонагруженность конденсаторов и в пассивном режиме охлаждения, и при работе на максимальной мощности находится на сравнительно невысоком уровне. Но надо учитывать, что в случае работы с остановленным вентилятором температура компонентов внутри БП сильно зависит от окружающей температуры воздуха, и если та установится на уровне 40-45 °C, это приведет к более раннему включению вентилятора.

Акустическая эргономика

При подготовке данного материала мы использовали следующую методику измерения уровня шума блоков питания. Блок питания располагается на ровной поверхности вентилятором вверх, над ним на расстоянии 0,35 метра размещается измерительный микрофон шумомера Октава 110А-Эко, которым и производится измерение уровня шума. Нагрузка блока питания осуществляется при помощи специального стенда, имеющего бесшумный режим работы. В ходе измерения уровня шума осуществляется эксплуатация блока питания на постоянной мощности в течение 20 минут, после чего производится замер уровня шума.

Подобное расстояние до объекта измерения является наиболее приближенным для настольного размещения системного блока с установленным блоком питания. Данный метод позволяет оценить уровень шума блока питания в жестких условиях с точки зрения небольшого расстояния от источника шума до пользователя. При увеличении расстояния до источника шума и появлении дополнительных преград, имеющих хорошую звукоотражающую способность, уровень шума в контрольной точке также будет снижаться, что приведет к улучшению акустической эргономики в целом.

Corsair RM650 имеет гибридную систему охлаждения, что означает возможность функционирования БП не только при активном, но и при пассивном охлаждении.

При работе на мощности до 200 Вт включительно работу блока питания можно считать условно бесшумной, уровень шума находится в пределах 23 дБА.

При работе в диапазоне мощности от 300 до 500 Вт включительно шум блока питания находится на низком уровне — менее 25 дБА с расстояния 0,35 метра.

При дальнейшем увеличении выходной мощности уровень шума повышается, но даже на максимуме он достигает лишь 28 дБА, оставаясь ниже среднетипичного уровня. Такой шум будет малозаметен на фоне типичного фонового шума в помещении в дневное время суток, особенно при эксплуатации данного блока питания в системах, не имеющих какой-либо звукошумовой оптимизации. В типичных бытовых условиях большинство пользователей оценивает устройства с подобной акустической эргономикой как относительно тихие.

Таким образом, с точки зрения акустической эргономики данная модель обеспечивает комфорт при выходной мощности в пределах всех 650 Вт, причем в диапазоне до 500 Вт шум находится на минимально заметном уровне.

Также мы оцениваем уровень шума электроники блока питания, поскольку в некоторых случаях она является источником нежелательных призвуков. Данный этап тестирования осуществляется путем определения разницы между уровнем шума в нашей лаборатории с включенным блоком питания и с выключенным. В случае, если полученное значение находится в пределах 5 дБА, никаких отклонений в акустических свойствах БП нет. При разнице более 10 дБА, как правило, есть определенные дефекты, которые можно услышать с расстояния около полуметра. На данном этапе измерений микрофон шумомера располагается на расстоянии около 40 мм от верхней плоскости БП, так как на бо́льших расстояниях измерение шума электроники весьма затруднительно. Измерение производится в двух режимах: дежурном режиме (STB, или Stand by) и при работающем на нагрузку БП, но с принудительно остановленным вентилятором.

В режиме ожидания шум электроники почти полностью отсутствует. В целом шум электроники можно считать удовлетворительным: превышение фонового шума составило не более 11,5 дБА на мощности 100 Вт.

Потребительские качества

Потребительские качества Corsair RM650 находятся на очень высоком уровне, если рассматривать применение данной модели в домашней системе, в которой используются типовые компоненты. Например, этот блок питания позволяет собрать тихую игровую систему на топовой современной настольной платформе с одной видеокартой.

Акустическая эргономика БП до 500 Вт включительно очень хорошая. Отметим высокую нагрузочную способность платформы по каналу +12VDC, а также большое количество разъемов и хорошую экономичность. Существенных недостатков наше тестирование не выявило.

Итоги

Модель Corsair RM650 получилась весьма сбалансированной, без явных недостатков. Можно констатировать, что этот БП хорошо приспособлен для работы в домашних системах различной мощности, в том числе в системах с двумя видеокартами на базе десктопных платформ.

Технико-эксплуатационные характеристики Corsair RM650 находятся на среднем уровне, чему способствуют высокая нагрузочная способность канала +12VDC, относительно высокий КПД, невысокая термонагруженность. Но вот использование китайских конденсаторов может повлиять на выбор покупателей: у японских «репутация» в народе лучше. Да и по поводу вентилятора вопросы остались. С другой стороны, это все-таки бюджетный продукт, и экономить при его создании хоть на чем-нибудь просто необходимо — как минимум, для разделения собственных продуктов Corsair на рынке. Можно заметить, что серия RM приближается к серии CX, однако отличается при этом полностью модульной системой кабелей, гибридной системой охлаждения, схемотехникой и 10-летней гарантией (против 5-летней у CX).

Справочник по ценам

11 июня 2020 Г.