Получение нестандартных тактовых частот на Pentuim II материнских платах с тактовым генератором ICS9148


Предупреждение: автор не несет никакой ответственности за возможные поломки или сбои аппаратуры, вызванные действиями, описанными в данном тексте. Вы действуете на свой страх и риск! Необходимо иметь в виду, что данные действия влекут за собой потерю гарантии продавца или производителя на Ваше оборудование. Так как данная методика предполагает непосредственное вмешательство в электронную схему материнской платы при помощи паяльного оборудования, то необходимо помнить о возможном повреждении тонкой электроники электростатическими разрядами и принять соответствующие меры предосторожности.

А теперь непосредственно к делу. Как известно, по спецификации Intel выбор частоты системной шины производится при помощи сигнала BSEL# (контакт B21 на разъеме процессора), причем при низком уровне на нем частота шины выбирается равной 66 МГц, а при высоком уровне - 100 МГц. Другого вроде как и не дано. Некоторые производители дают пользователям сделать выбор из более широкого диапазона частот, чем несказанно радуют любителей поразгонять свою систему. К сожалению, мне попалась плата Acorp 6BX67 с автоматическим определением частоты.

Но отчаиваться рано. Путем небольшой переделки, имея на плате тактовый генератор ICS9148, можно получить полный набор необходимых частот системной шины. Правда этот генератор применяется не столь повсеместно, но тем не менее многим владельцам системных плат эта информация окажется полезной.

А стоит ли вообще этим заниматься?

  • нет, если вы задаете себе такие вопросы
  • нет, если не умеете держать в руках паяльник и паять им SMD-деталюшки
  • нет, если хочется просто жить спокойно, а не думать о том, что вы лишились гарантии на плату

Все нижеследующее проверялось на системной плате Acorp 6BX67. Но думаю, на других платах с аналогичным тактовым генератором переделка производится так же.

Первым делом стоит найти на плате тактовый генератор ICS9148-26. Это планарная микросхема в корпусе SSOP с 48-ю выводами.

ICS 9148-26

На ее корпусе — логотип фирмы ICS (ни с чем не спутаешь), название чипа, дата выпуска. -26 в названии чипа говорит о номере прошивки ее внутреннего ПЗУ. Вероятно, что функциональное назначение интересующих нас ножек во всех чипах ICS9148 одинаковое. За частоту шины отвечают ножки 26, 25, 46 — FS0, FS1, FS2 соответственно. В зависимости от логических уровней на этих ножках во время ресета этого чипа (при включении питания), устанавливается та или иная частота:

FS2FS1FS0Часота системной шиныЧастота шины PCI
111100.233.3 (CPU/3)
110133.333.3 (CPU/4)
101112.037.3 (CPU/3)
10010334.3 (CPU/3)
01166.833.4 (CPU/2)
01083.341.65 (CPU/2)
0017537.5(CPU/2)
0005025 (CPU/2)

Как видно из этой таблицы, стандартные частоты 100 и 66 МГц получаются переключением уровня на FS2 при высоком уровне на FS1 и FS0. В моей плате сигнал FS2 резистором подтягивается к высокому уровню и одновременно подается на контакт B21 Slot1 — сигнал 100/66#. При установке Celeron FS2 оказывается жестко засаженным на корпус и выбирается частота 66 МГц. При заклеивании B21 скотчем на FS2 оказывается высокий уровень и частота устанавливается равной 100MHz. Это общеизвестно и давно применяется в практике разгона. Но не всегда удобен скачок с 66 сразу на 100: может быть, вас процессор не потянет такой разгон или не заработает память. Поэтому, приятно было бы задействовать также и промежуточные частоты 75 и 83 MHz. Или иметь возможность при заклееном B21 получить 112 и 133 MГц. Вся переделка сводится к добавлении на плату трехконтактного джампера, который мог бы попеременно устанавливать низкий уровень на сигналах FS1 и FS0. Комбинации, при которых оба этих контакта должны быть равны нулю, не столь принципиальны, но требуют уже двух джамперов. Как видно из распиновки чипа ICS9148, ножки 26, 25, 46 используются не только как входы, но и как выходы. После установки частоты эти ножки работают как выходы: 25 (FS1) - выход 24 МГц для SuperIO, 26(FS0) — 48 МГц для USB, 46(FS2) — выход опорной частоты 14.318 МГц. Так как выход FS2 напрямую сажается на корпус при подключении Celeron'а, то он, по видимому, как выход не используется. Исследование платы показало, что выводы FS1 и FS0 явно куда-то уходят и, возможно, используются по прямому назначению. Поэтому напрямую замыкать их на землю не стоит. Фирма ICS советует сделать так, как показано на рисунке.

Трехконтактный джампер

Для такого подключения вам понадобится 2 двухпозиционных джампера (таких, как на рисунке). Крайние их выводы подключаются один на +3.3V или +5V, а другой — на землю. Средний же вывод подключают к ножке через резистор. На плате нет переключателя, а резисторы для ножек 25 и 26 подключены на положительный источник питания и подтягивают входы к высокому уровню. Их необходимо отпаять и установить вертикально: одним выводом на старую площадку, к которой подключена ножка микросхемы, а оставшийся свободным вывод — тонким проводом подключить к среднему выводу соответствующего джампера. (один джампер для FS1 и другой для FS0). Теперь, если замкнуть колпачком средний вывод джампера с его плюсовым выводом, то на соответствующем выводе (FS0 или FS1) установится высокий уровень, при замыкании среднего вывода на землю — низкий. Как расположить и закрепить джампер — дело ваше. Например, можно взять сдвоенный джампер (с какой-нибудь старой мультяшки или еще какой карточки), подогнуть средние выводы и подпаять к ним провода.

Обозначим его так:

123
456

Крайние выводы нужно соединить между собой (1 с 4 и 3 с 6) и попытаться впаять эту конструкцию на место отсутствующего на плате джампера. Перед включением обязательно проверьте, не замкнуты ли между собой крайние выводы (1 и 3 или 4 и 6) — это маловероятно, но вдруг какая-нибудь "сопля" при пайке или еще что, но в случае замыкания может иметь место "пшик" и ищи потом, сколько дорожек пержгло :( Короче, все, что делаете, проверять и перепроверять! Выводы 2 и 5 тонкими изолированными проводами подключите к верхним концам предварительно поставленных вертикально резисторов (см. выше). Все. Теперь вы имеете рядом с переключателями множителя переключатели частоты шины. Для выбора частот выше 100 МГц либо заклеивайте B21, либо устанавливаете P350-P400 :)

Другой метод — получение не шести, а четырех дополнительных частот (без 50 и 103 МГц, которые и так не нужны). Этот метод проще — нужен только один джампер —

123

Вывод 2 впаивается в любое близкорасположенное к чипу генератора отверстие, подключенное к земле. Я использовал минусовой вывод не установленного на плате крупного электролита. Крайние выводы 1 и 3 через резисторы около 10-20-30 Ом подключаете к выводам 25 и 26 чипа генератора. Больше ничего не изменяется. Когда джампер открыт — ничего не изменено, частота 66/100 (B21 по-прежнему заклеивается для частот >= 100 МГц). При закрытии 1 и 2 выводов одна из ножек 25 или 26 подтягивается к земле и дает частоту 75/112 или 83/133. Аналогично при замыкании выводов 2 и 3. Возможные побочные явления — теоретически может перестанет работать USB или SuperIO. Если это произойдет (у меня не было), возьмите резистор побольше. На этом все. Развивать тут я ничего больше не буду, разве что могу рассказать про неустановленный джампер JP1 — это селектор 100/66, к нему подведен через резистор сигнал FS2, но он не работает, так как этот самый резистор тоже не установлен (около переключателей множителя).

Надобность в установке JP1 весьма спорна, так как в случае процессора, в котором B21 засажен на землю (Celeron, например), это не избавит то заклеивания B21.




22 сентября 1998 Г.

Тактовый генератор ICS9148. Получение нестандартных частот

Получение нестандартных тактовых частот на Pentuim II материнских платах с тактовым генератором ICS9148

Предупреждение: автор не несет никакой ответственности за возможные поломки или сбои аппаратуры, вызванные действиями, описанными в данном тексте. Вы действуете на свой страх и риск! Необходимо иметь в виду, что данные действия влекут за собой потерю гарантии продавца или производителя на Ваше оборудование. Так как данная методика предполагает непосредственное вмешательство в электронную схему материнской платы при помощи паяльного оборудования, то необходимо помнить о возможном повреждении тонкой электроники электростатическими разрядами и принять соответствующие меры предосторожности.

А теперь непосредственно к делу. Как известно, по спецификации Intel выбор частоты системной шины производится при помощи сигнала BSEL# (контакт B21 на разъеме процессора), причем при низком уровне на нем частота шины выбирается равной 66 МГц, а при высоком уровне - 100 МГц. Другого вроде как и не дано. Некоторые производители дают пользователям сделать выбор из более широкого диапазона частот, чем несказанно радуют любителей поразгонять свою систему. К сожалению, мне попалась плата Acorp 6BX67 с автоматическим определением частоты.

Но отчаиваться рано. Путем небольшой переделки, имея на плате тактовый генератор ICS9148, можно получить полный набор необходимых частот системной шины. Правда этот генератор применяется не столь повсеместно, но тем не менее многим владельцам системных плат эта информация окажется полезной.

А стоит ли вообще этим заниматься?

  • нет, если вы задаете себе такие вопросы
  • нет, если не умеете держать в руках паяльник и паять им SMD-деталюшки
  • нет, если хочется просто жить спокойно, а не думать о том, что вы лишились гарантии на плату

Все нижеследующее проверялось на системной плате Acorp 6BX67. Но думаю, на других платах с аналогичным тактовым генератором переделка производится так же.

Первым делом стоит найти на плате тактовый генератор ICS9148-26. Это планарная микросхема в корпусе SSOP с 48-ю выводами.

ICS 9148-26

На ее корпусе — логотип фирмы ICS (ни с чем не спутаешь), название чипа, дата выпуска. -26 в названии чипа говорит о номере прошивки ее внутреннего ПЗУ. Вероятно, что функциональное назначение интересующих нас ножек во всех чипах ICS9148 одинаковое. За частоту шины отвечают ножки 26, 25, 46 — FS0, FS1, FS2 соответственно. В зависимости от логических уровней на этих ножках во время ресета этого чипа (при включении питания), устанавливается та или иная частота:

FS2 FS1 FS0 Часота системной шины Частота шины PCI
1 1 1 100.2 33.3 (CPU/3)
1 1 0 133.3 33.3 (CPU/4)
1 0 1 112.0 37.3 (CPU/3)
1 0 0 103 34.3 (CPU/3)
0 1 1 66.8 33.4 (CPU/2)
0 1 0 83.3 41.65 (CPU/2)
0 0 1 75 37.5(CPU/2)
0 0 0 50 25 (CPU/2)

Как видно из этой таблицы, стандартные частоты 100 и 66 МГц получаются переключением уровня на FS2 при высоком уровне на FS1 и FS0. В моей плате сигнал FS2 резистором подтягивается к высокому уровню и одновременно подается на контакт B21 Slot1 — сигнал 100/66#. При установке Celeron FS2 оказывается жестко засаженным на корпус и выбирается частота 66 МГц. При заклеивании B21 скотчем на FS2 оказывается высокий уровень и частота устанавливается равной 100MHz. Это общеизвестно и давно применяется в практике разгона. Но не всегда удобен скачок с 66 сразу на 100: может быть, вас процессор не потянет такой разгон или не заработает память. Поэтому, приятно было бы задействовать также и промежуточные частоты 75 и 83 MHz. Или иметь возможность при заклееном B21 получить 112 и 133 MГц. Вся переделка сводится к добавлении на плату трехконтактного джампера, который мог бы попеременно устанавливать низкий уровень на сигналах FS1 и FS0. Комбинации, при которых оба этих контакта должны быть равны нулю, не столь принципиальны, но требуют уже двух джамперов. Как видно из распиновки чипа ICS9148, ножки 26, 25, 46 используются не только как входы, но и как выходы. После установки частоты эти ножки работают как выходы: 25 (FS1) - выход 24 МГц для SuperIO, 26(FS0) — 48 МГц для USB, 46(FS2) — выход опорной частоты 14.318 МГц. Так как выход FS2 напрямую сажается на корпус при подключении Celeron'а, то он, по видимому, как выход не используется. Исследование платы показало, что выводы FS1 и FS0 явно куда-то уходят и, возможно, используются по прямому назначению. Поэтому напрямую замыкать их на землю не стоит. Фирма ICS советует сделать так, как показано на рисунке.

Трехконтактный джампер

Для такого подключения вам понадобится 2 двухпозиционных джампера (таких, как на рисунке). Крайние их выводы подключаются один на +3.3V или +5V, а другой — на землю. Средний же вывод подключают к ножке через резистор. На плате нет переключателя, а резисторы для ножек 25 и 26 подключены на положительный источник питания и подтягивают входы к высокому уровню. Их необходимо отпаять и установить вертикально: одним выводом на старую площадку, к которой подключена ножка микросхемы, а оставшийся свободным вывод — тонким проводом подключить к среднему выводу соответствующего джампера. (один джампер для FS1 и другой для FS0). Теперь, если замкнуть колпачком средний вывод джампера с его плюсовым выводом, то на соответствующем выводе (FS0 или FS1) установится высокий уровень, при замыкании среднего вывода на землю — низкий. Как расположить и закрепить джампер — дело ваше. Например, можно взять сдвоенный джампер (с какой-нибудь старой мультяшки или еще какой карточки), подогнуть средние выводы и подпаять к ним провода.

Обозначим его так:

123
456

Крайние выводы нужно соединить между собой (1 с 4 и 3 с 6) и попытаться впаять эту конструкцию на место отсутствующего на плате джампера. Перед включением обязательно проверьте, не замкнуты ли между собой крайние выводы (1 и 3 или 4 и 6) — это маловероятно, но вдруг какая-нибудь "сопля" при пайке или еще что, но в случае замыкания может иметь место "пшик" и ищи потом, сколько дорожек пержгло :( Короче, все, что делаете, проверять и перепроверять! Выводы 2 и 5 тонкими изолированными проводами подключите к верхним концам предварительно поставленных вертикально резисторов (см. выше). Все. Теперь вы имеете рядом с переключателями множителя переключатели частоты шины. Для выбора частот выше 100 МГц либо заклеивайте B21, либо устанавливаете P350-P400 :)

Другой метод — получение не шести, а четырех дополнительных частот (без 50 и 103 МГц, которые и так не нужны). Этот метод проще — нужен только один джампер —

123

Вывод 2 впаивается в любое близкорасположенное к чипу генератора отверстие, подключенное к земле. Я использовал минусовой вывод не установленного на плате крупного электролита. Крайние выводы 1 и 3 через резисторы около 10-20-30 Ом подключаете к выводам 25 и 26 чипа генератора. Больше ничего не изменяется. Когда джампер открыт — ничего не изменено, частота 66/100 (B21 по-прежнему заклеивается для частот >= 100 МГц). При закрытии 1 и 2 выводов одна из ножек 25 или 26 подтягивается к земле и дает частоту 75/112 или 83/133. Аналогично при замыкании выводов 2 и 3. Возможные побочные явления — теоретически может перестанет работать USB или SuperIO. Если это произойдет (у меня не было), возьмите резистор побольше. На этом все. Развивать тут я ничего больше не буду, разве что могу рассказать про неустановленный джампер JP1 — это селектор 100/66, к нему подведен через резистор сигнал FS2, но он не работает, так как этот самый резистор тоже не установлен (около переключателей множителя).

Надобность в установке JP1 весьма спорна, так как в случае процессора, в котором B21 засажен на землю (Celeron, например), это не избавит то заклеивания B21.