Платформа Google TPU 3.0 для задач машинного обучения превысила планку производительности в 100 PFLOPS

Теперь для охлаждения ASIC используется жидкостная СО

ПредыдущаяСледующая

На прошедшем вчера мероприятии Google I/O поисковый гигант вскользь упомянул TPU 3.0 — новую платформу для ускорения машинного обучения. Напомним, о первом поколении этого решения мы узнали два года назад. Тогда Google рассказала, что использует такие модули уже более года.

В прошлом году представили TPU 2.0 с производительностью в 180 TFLOPS. Теперь же пришёл черёд третьего поколения. Напомним, в основе платформы лежат специальные ASIC. И если в первом поколении один вычислительный блок включал одну ASIC, то во втором на единой плате размещалось уже по четыре микросхемы. Google же использовала модули, каждый из которых содержал по 16 плат, то есть по 64 ASIC. Таким образом, суммарная производительность модуля достигала 11,5 PFLOPS!

Платформа Google TPU 3.0 для задач машинного обучения превысила планку производительности в 100 PFLOPS

О новом поколении этой платформы пока известно очень мало. Но Google утверждает, что производительность выросла более чем в восемь раз, достигнув более чем 100 PFLOPS! На изображении, которое Google показала во время конференции, можно было видеть плату с четырьмя водоблоками, то есть одна плата, как и ранее, содержит четыре ASIC.

Платформа Google TPU 3.0 для задач машинного обучения превысила планку производительности в 100 PFLOPS

Но мы не знаем, сколько таких плат в вычислительном модуле. Если 16, как и ранее, то выходит, что восьмикратно выросла производительность каждой микросхемы. Учитывая, что Google пришлось перейти на жидкостное охлаждение, в это вполне можно поверить.  

9 мая 2018 Г.

12:31

Ctrl
ПредыдущаяСледующая

Все новости за сегодня

Календарь

май
Пн
Вт
Ср
Чт
Пт
Сб
Вс
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31