Блоки питания особо высокой мощности (от 1000 Вт) приобретают, как правило, для специфических задач — для майнинговых ферм, для специализированных тестовых систем, для высоконагруженных компьютеров для рендеринга, расчетов, а также для разгона. Впрочем, иногда такие источники питания приобретают, просто желая создать ощутимый запас по мощности для существующей системы или в расчете на будущий апгрейд. Стоимость подобных решений может сильно отличаться, что ставит покупателя перед непростой задачей выбора модели с нужным соотношением цены и потребительских качеств. Сегодня мы рассмотрим одно из доступных на рынке решений.
Розничные предложения |
---|
XPG CyberCore 1000 Platinum имеет сертификат 80+ Platinum и укомплектован исключительно японскими конденсаторами. Система охлаждения работает в гибридном режиме, то есть при некоторых условиях вентилятор не вращается.
Дизайн блока питания радует минимализмом. Несмотря на «игровое» происхождение бренда, никакой подсветки нет. Вентиляционная решетка проволочная, а не штампованная, что также можно считать достоинством.
Длина корпуса БП составляет около 160 мм, дополнительно понадобится 15-20 мм для подвода проводов, поэтому при монтаже стоит рассчитывать на установочный размер порядка 180 мм. Для блоков питания подобной мощности эти размеры можно считать довольно компактными, однако новые модели мощностью около 1000 Вт сейчас иногда встречаются в корпусах стандартного размера длиной 140 мм, а не в увеличенных, как это было ранее.
Упаковка представляет собой картонную коробку достаточной прочности с матовой полиграфией и иллюстрацией, на которой изображен сам блок питания. В оформлении преобладают оттенки черного и красного цветов.
Характеристики
Все необходимые параметры указаны на корпусе блока питания в полном объеме, для мощности шины +12VDC заявлено значение 1000 Вт. Соотношение мощности по шине +12VDC и полной мощности составляет 1, что, разумеется, является отличным показателем.
Провода и разъемы
Наименование разъема | Количество разъемов | Примечания |
---|---|---|
24 pin Main Power Connector | 1 | разборный |
4 pin 12V Power Connector | — | |
8 pin SSI Processor Connector | 2 | 1 разборный |
6 pin PCI-E 1.0 VGA Power Connector | — | |
8 pin PCI-E 2.0 VGA Power Connector | 6 | на 4 шнурах |
4 pin Peripheral Connector | 4 | эргономичные, на одном шнуре |
15 pin Serial ATA Connector | 12 | на 3 шнурах |
4 pin Floppy Drive Connector | 1 | переходник |
Длина проводов до разъемов питания
Все без исключения провода являются модульными, то есть их можно снять, оставив лишь те, которые необходимы для конкретной системы.
- до основного разъема АТХ — 63 см
- до процессорного разъема 8 pin SSI — 75 см
- до процессорного разъема 8 pin SSI — 75 см
- до разъема питания видеокарты PCI-E 2.0 VGA Power Connector — 75 см
- до разъема питания видеокарты PCI-E 2.0 VGA Power Connector — 75 см
- до первого разъема питания видеокарты PCI-E 2.0 VGA Power Connector — 75 см, плюс еще 15 см до второго такого же разъема
- до первого разъема питания видеокарты PCI-E 2.0 VGA Power Connector — 75 см, плюс еще 15 см до второго такого же разъема
- до первого разъема SATA Power Connector — 60 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема
- до первого разъема SATA Power Connector — 60 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема
- до первого разъема SATA Power Connector — 60 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема
- до первого разъема Peripheral Connector («молекс») — 60 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема
Длина проводов является достаточной для комфортного использования в корпусах типоразмера full tower и более габаритных с верхним расположением блока питания. В корпусах высотой до 55 см с нижнерасположенным блоком питания длина проводов также должна быть достаточной: до разъемов питания процессора — по 75 сантиметров. Таким образом, с большинством современных корпусов проблем быть не должно.
Нужно отметить, что в данном случае можно подключить четыре шнура PCI-E одновременно только с одним шнуром питания процессора, если же последних нужно подключить два, то придется пожертвовать одним из шнуров PCI-E.
Разъемов SATA Power достаточное количество, и размещены они на трех шнурах питания. Единственное замечание к ним: все разъемы угловые, а использование таких разъемов не слишком удобно в случае накопителей, размещаемых с тыльной стороны основания для системной платы.
С положительной стороны стоит отметить использование ленточных проводов — правда, только до периферийных разъемов. До основного разъема ATX, разъемов питания процессора и видеокарт используются стандартные шнуры в нейлоновой оплетке, которые менее удобны в эксплуатации, так как оплетка отлично собирает пыль, но существенно хуже от нее очищается.
Схемотехника и охлаждение
Блок питания оснащен активным корректором коэффициента мощности и имеет довольно широкий диапазон питающих напряжений от 100 до 240 вольт. Это обеспечивает устойчивость к понижению напряжения в электросети ниже нормативных значений.
Конструкция блока питания вполне соответствует современным тенденциям: активный корректор коэффициента мощности, синхронный выпрямитель для канала +12VDC, независимые импульсные преобразователи постоянного тока для линий +3.3VDC и +5VDC.
Полупроводниковые элементы высоковольтных цепей размещены на двух радиаторах средних размеров, входной выпрямитель расположен на отдельном теплоотводе. Элементы синхронного выпрямителя размещены на дочерней плате, там же есть небольшие теплорассеивающие элементы в виде тонких пластин. Плата синхронного выпрямителя установлена вертикально, что улучшает охлаждение по сравнению с вариантом размещения элементов синхронного выпрямителя на основной плате методом поверхностного монтажа.
Независимые источники +3.3VDC и 5VDC установлены на дочерней печатной плате и, по традиции, дополнительных теплоотводов не имеют — это вполне типично для блоков питания с активным охлаждением.
Конденсаторы в блоке питания имеют японское происхождение. В основной массе это продукция под торговыми марками Nippon Chemi-Con и Nichicon. Установлено и большое количество полимерных конденсаторов. Подобная комбинация обычно соответствует устройствам высокого уровня.
В блоке питания установлен вентилятор XPG Vento Pro 120 PWM, в роли которого выступает модель Nidec (B1225C12B6ZPAC7) типоразмера 120 мм. Подключение 4-проводное, через разъем, что указывает на встроенный в вентилятор ШИМ-контроллер. Произведен вентилятор во Вьетнаме. Он основан на подшипнике качения, что подразумевает очень долгий срок службы.
Измерение электрических характеристик
Далее мы переходим к инструментальному исследованию электрических характеристик источника питания при помощи многофункционального стенда и другого оборудования.
Величина отклонения выходных напряжений от номинала кодируется цветом следующим образом:
Цвет | Диапазон отклонения | Качественная оценка |
---|---|---|
более 5% | неудовлетворительно | |
+5% | плохо | |
+4% | удовлетворительно | |
+3% | хорошо | |
+2% | очень хорошо | |
1% и менее | отлично | |
−2% | очень хорошо | |
−3% | хорошо | |
−4% | удовлетворительно | |
−5% | плохо | |
более 5% | неудовлетворительно |
Работа на максимальной мощности
Первым этапом испытаний является эксплуатация блока питания на максимальной мощности продолжительное время. Такой тест с уверенностью позволяет удостовериться в работоспособности БП.

Кросс-нагрузочная характеристика
Следующим этапом инструментального тестирования является построение кросснагрузочной характеристики (КНХ) и представление ее на четвертьплоскости, ограниченной максимальной мощностью по шине 3,3&5 В с одной стороны (по оси ординат) и максимальной мощностью по шине 12 В с другой (по оси абсцисс). В каждой точке измеренное значение напряжения обозначается цветовым маркером в зависимости от отклонения от номинального значения.



КНХ позволяет нам определить, какой уровень нагрузки можно считать допустимым, особенно по каналу +12VDC, для тестируемого экземпляра. В данном случае отклонения действующих значений напряжения от номинала по каналу +12VDC не превышают 1% во всем диапазоне мощности, что является отличным результатом.
При типичном распределении мощности по каналам отклонения от номинала не превышают 1% по каналу +3.3VDC, 2% по каналу +5VDC и 1% по каналу +12VDC.
Данная модель БП хорошо подходит для мощных современных систем из-за высокой практической нагрузочной способности канала +12VDC.
Нагрузочная способность
Следующий тест призван определить максимальную мощность, которую можно подать через соответствующие разъемы при нормированном отклонении значения напряжения в размере 3 или 5 процентов от номинала.

В случае видеокарты с единственным разъемом питания максимальная мощность по каналу +12VDC составляет не менее 150 Вт при отклонении в пределах 3%.

В случае видеокарты с двумя разъемами питания при использовании одного шнура питания максимальная мощность по каналу +12VDC составляет не менее 250 Вт при отклонении в пределах 3%.

В случае видеокарты с двумя разъемами питания при использовании двух шнуров питания максимальная мощность по каналу +12VDC составляет не менее 350 Вт при отклонении в пределах 3%, что позволяет использовать очень мощные видеокарты.

При нагрузке через четыре разъема PCI-E максимальная мощность по каналу +12VDC составляет не менее 650 Вт при отклонении менее 3%, что позволяет использовать две очень мощные видеокарты.

При нагрузке через шесть разъемов PCI-E максимальная мощность по каналу +12VDC составляет не менее 1000 Вт при отклонении менее 3%, что позволяет использовать три очень мощные видеокарты.

При нагрузке через разъем питания процессора максимальная мощность по каналу +12VDC составляет не менее 250 Вт при отклонении в пределах 3%. Этого вполне достаточно для типовых систем, у которых на системной плате есть только один разъем для питания процессора.

При нагрузке через два разъема питания процессора максимальная мощность по каналу +12VDC составляет не менее 500 Вт при отклонении в пределах 3%. Это позволяет использовать десктопные платформы любого уровня, имея ощутимый запас, в том числе на разгон.

В случае системной платы максимальная мощность по каналу +12VDC составляет свыше 150 Вт при отклонении 3%. Так как сама плата потребляет по данному каналу в пределах 10 Вт, высокая мощность может потребоваться для питания карт расширения — например, для видеокарт без дополнительного разъема питания, которые обычно имеют потребление в пределах 75 Вт.
Экономичность и эффективность
При оценке эффективности компьютерного блока питания можно идти двумя путями. Первый путь заключается в оценке компьютерного блока питания как отдельного преобразователя электрической энергии с дальнейшей попыткой минимизировать сопротивление линии передачи электрической энергии от БП к нагрузке (где и измеряется ток и напряжение на выходе БП). Для этого блок питания обычно подключается всеми имеющимися разъемами, что ставит разные блоки питания в неравные условия, так как набор разъемов и количество токоведущих проводов зачастую разное даже у блоков питания одинаковой мощности. Таким образом, хотя результаты получаются корректными для каждого конкретного источника питания, в реальных условиях полученные данные малоприменимы, поскольку в реальных условиях блок питания подключается ограниченным количеством разъемов, а не всеми сразу. Поэтому логичным представляется вариант определения эффективности (экономичности) компьютерного блока питания не только на фиксированных значениях мощности, включая распределение мощности по каналам, но и с фиксированным набором разъемов для каждого значения мощности.
Представление эффективности компьютерного блока питания в виде значения КПД (коэффициента полезного действия) имеет свои традиции. Прежде всего, КПД — это коэффициент, определяемый соотношением мощностей на выходе и на входе блока питания, то есть КПД показывает эффективность преобразования электрической энергии. Обычному же пользователю данный параметр почти ничего не скажет, за исключением того, что более высокий КПД вроде как говорит о большей экономичности БП и более высоком его качестве. Зато КПД стал отличным маркетинговым якорем, особенно в комбинации с сертификатом 80Plus. Однако с практической точки зрения КПД не оказывает заметного влияния на функционирование системного блока: он не увеличивает производительность, не снижает шум или температуру внутри системного блока. Это просто технический параметр, уровень которого в основном определяется развитием промышленности в текущий момент времени и себестоимостью продукта. Для пользователя же максимизация КПД выливается в увеличение розничной цены.
С другой стороны, иногда нужно объективно оценить экономичность компьютерного блока питания. Под экономичностью мы подразумеваем потерю мощности при преобразовании электроэнергии и ее передаче к конечным потребителям. И для оценки этого КПД не нужен, так как можно использовать не отношение двух величин, а абсолютные значения: рассеиваемую мощность (разницу между значениями на входе и выходе блока питания), а также потребление энергии источником питания за определенное время (день, месяц, год и т. д.) при работе с постоянной нагрузкой (мощностью). Это позволяет легко увидеть реальную разницу в потреблении электроэнергии конкретными моделями БП и при необходимости рассчитать экономическую выгоду от использования более дорогих источников питания.
Таким образом, на выходе мы получаем понятный для всех параметр — рассеиваемую мощность, которая легко преобразуется в киловатт-часы (кВт·ч), которые и регистрирует счетчик электрической энергии. Умножив полученное значение на стоимость киловатт-часа, получим стоимость электрической энергии при условии эксплуатации системного блока круглосуточно в течение года. Подобный вариант, конечно, чисто гипотетический, но он позволяет оценить разницу между стоимостью эксплуатации компьютера с различными источниками питания в течение длительного периода времени и сделать выводы об экономической целесообразности приобретения конкретной модели БП. В реальных условиях высчитанное значение может достигаться за более долгий период — например, от 3 лет и более. При необходимости каждый желающий может разделить полученное значение на нужный коэффициент в зависимости от количества часов в сутках, в течение которых системный блок эксплуатируется в указанном режиме, чтобы получить расход электроэнергии за год.
Мы решили выделить несколько типовых вариантов по мощности и соотнести их с количеством разъемов, которое соответствует данным вариантам, то есть максимально приблизить методику измерения экономичности к условиям, которые достигаются в реальном системном блоке. Вместе с тем, это позволит оценивать экономичность разных блоков питания в полностью одинаковых условиях.
Нагрузка через разъемы | 12VDC, Вт | 5VDC, Вт | 3.3VDC, Вт | Общая мощность, Вт |
---|---|---|---|---|
основной ATX, процессорный (12 В), SATA | 5 | 5 | 5 | 15 |
основной ATX, процессорный (12 В), SATA | 80 | 15 | 5 | 100 |
основной ATX, процессорный (12 В), SATA | 180 | 15 | 5 | 200 |
основной ATX, процессорный (12 В), 6-контактный PCIe, SATA | 380 | 15 | 5 | 400 |
основной ATX, процессорный (12 В), 6-контактные PCIe (1 шнур с 2 разъемами), SATA | 480 | 15 | 5 | 500 |
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 1 разъему), SATA | 480 | 15 | 5 | 500 |
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 2 разъема), SATA | 730 | 15 | 5 | 750 |
Полученные результаты выглядят следующим образом:
Рассеиваемая мощность, Вт | 15 Вт | 100 Вт | 200 Вт | 400 Вт | 500 Вт (1 шнур) |
500 Вт (2 шнура) |
750 Вт |
---|---|---|---|---|---|---|---|
Enhance ENP-1780 | 21,2 | 23,8 | 26,1 | 35,3 | 42,7 | 40,9 | 66,6 |
Super Flower Leadex II Gold 850W | 12,1 | 14,1 | 19,2 | 34,5 | 45 | 43,7 | 76,7 |
Super Flower Leadex Silver 650W | 10,9 | 15,1 | 22,8 | 45 | 62,5 | 59,2 | |
High Power Super GD 850W | 11,3 | 13,1 | 19,2 | 32 | 41,6 | 37,3 | 66,7 |
Corsair RM650 (RPS0118) | 7 | 12,5 | 17,7 | 34,5 | 44,3 | 42,5 | |
EVGA Supernova 850 G5 | 12,6 | 14 | 17,9 | 29 | 36,7 | 35 | 62,4 |
EVGA 650 N1 | 13,4 | 19 | 25,5 | 55,3 | 75,6 | ||
EVGA 650 BQ | 14,3 | 18,6 | 27,1 | 47,2 | 61,9 | 60,5 | |
Chieftronic PowerPlay GPU-750FC | 11,7 | 14,6 | 19,9 | 33,1 | 41 | 39,6 | 67 |
Deepcool DQ850-M-V2L | 12,5 | 16,8 | 21,6 | 33 | 40,4 | 38,8 | 71 |
Chieftec PPS-650FC | 11 | 13,7 | 18,5 | 32,4 | 41,6 | 40 | |
Super Flower Leadex Platinum 2000W | 15,8 | 19 | 21,8 | 29,8 | 34,5 | 34 | 49,8 |
Chieftec CTG-750C-RGB | 13 | 17 | 22 | 42,5 | 56,3 | 55,8 | 110 |
Chieftec BBS-600S | 14,1 | 15,7 | 21,7 | 39,7 | 54,3 | ||
Cooler Master MWE Bronze 750W V2 | 15,9 | 22,7 | 25,9 | 43 | 58,5 | 56,2 | 102 |
Cougar BXM 700 | 12 | 18,2 | 26 | 42,8 | 57,4 | 57,1 | |
Cooler Master Elite 600 V4 | 11,4 | 17,8 | 30,1 | 65,7 | 93 | ||
Cougar GEX 850 | 11,8 | 14,5 | 20,6 | 32,6 | 41 | 40,5 | 72,5 |
Cooler Master V1000 Platinum (2020) | 19,8 | 21 | 25,5 | 38 | 43,5 | 41 | 55,3 |
Cooler Master V650 SFX | 7,8 | 13,8 | 19,6 | 33 | 42,4 | 41,4 | |
Chieftec BDF-650C | 13 | 19 | 27,6 | 35,5 | 69,8 | 67,3 | |
XPG Core Reactor 750 | 8 | 14,3 | 18,5 | 30,7 | 41,8 | 40,4 | 72,5 |
Deepcool DQ650-M-V2L | 11 | 13,8 | 19,5 | 34,7 | 44 | ||
Deepcool DA600-M | 13,6 | 19,8 | 30 | 61,3 | 86 | ||
Fractal Design Ion Gold 850 | 14,9 | 17,5 | 21,5 | 37,2 | 47,4 | 45,2 | 80,2 |
XPG Pylon 750 | 11,1 | 15,4 | 21,7 | 41 | 57 | 56,7 | 111 |
Thermaltake TF1 1550 | 13,8 | 15,1 | 17 | 24,2 | 30 | 42 | |
Chieftronic PowerUp GPX-850FC | 12,8 | 15,9 | 21,4 | 33,2 | 39,4 | 38,2 | 69,3 |
Thermaltake GF1 1000 | 15,2 | 18,1 | 21,5 | 31,5 | 38 | 37,3 | 65 |
MSI MPG A750GF | 11,5 | 15,7 | 21 | 30,6 | 39,2 | 38 | 69 |
Chieftronic PowerPlay GPU-850FC | 12 | 15,9 | 19,7 | 28,1 | 34 | 33,3 | 56 |
Cooler Master MWE Gold 750W V2 | 12,2 | 16 | 21 | 34,6 | 42 | 41,6 | 76,4 |
XPG Pylon 450 | 12,6 | 18,5 | 28,4 | 63 | |||
Chieftronic PowerUp GPX-550FC | 12,2 | 15,4 | 21,6 | 35,7 | 47,1 | ||
Chieftec BBS-500S | 13,3 | 16,3 | 22,2 | 38,6 | |||
Cougar VTE X2 600 | 13,3 | 18,3 | 28 | 49,3 | 64,2 | ||
Thermaltake GX1 500 | 12,8 | 14,1 | 19,5 | 34,8 | 47,6 | ||
Thermaltake BM2 450 | 12,2 | 16,7 | 26,3 | 57,9 | |||
Chieftec PPS-1050FC | 10,8 | 13 | 17,4 | 29,1 | 35,1 | 34,6 | 58 |
Super Flower SF-750P14XE | 14 | 16,5 | 23 | 35 | 42 | 44 | 76 |
XPG Core Reactor 850 | 9,8 | 14,9 | 18,1 | 29 | 38,4 | 37 | 63 |
Asus TUF Gaming 750B | 11,1 | 13,8 | 20,7 | 38,6 | 50,7 | 49,3 | 93 |
Deepcool PQ1000M | 10,4 | 12,6 | 16,7 | 28,1 | 34,4 | ||
Chieftronic BDK-650FC | 12,6 | 14,3 | 20,4 | 41,1 | 53,5 | 50,6 | |
Cooler Master XG Plus 750 Platinum | 13,8 | 14,2 | 18,9 | 36,5 | 43 | 40 | 61,1 |
Chieftec GPC-700S | 15,6 | 21,4 | 30,9 | 63,5 | 84 | ||
Gigabyte UD1000GM PG5 | 11 | 14,4 | 19,9 | 31,4 | 40,1 | 37,8 | 66,6 |
Zalman ZM700-TXIIv2 | 12,5 | 19,5 | 30,8 | 62 | 83 | 80 | |
Cooler Master V850 Platinum | 17,8 | 20,1 | 24,6 | 34,5 | 38,3 | 37,8 | 58,5 |
Thermaltake PF1 1200 Platinum | 12,8 | 18,3 | 24 | 35 | 43 | 39,5 | 67,2 |
XPG CyberCore 1000 Platinum | 10,1 | 19,6 | 21,6 | 33,9 | 37,4 | 36,7 | 57,7 |
В целом данная модель имеет достаточно высокую экономичность во всех протестированных режимах.
Вт | |
---|---|
Enhance ENP-1780 | 106,4 |
Super Flower Leadex II Gold 850W | 79,9 |
Super Flower Leadex Silver 650W | 93,8 |
High Power Super GD 850W | 75,6 |
Corsair RM650 (RPS0118) | 71,7 |
EVGA Supernova 850 G5 | 73,5 |
EVGA 650 N1 | 113,2 |
EVGA 650 BQ | 107,2 |
Chieftronic PowerPlay GPU-750FC | 79,3 |
Deepcool DQ850-M-V2L | 83,9 |
Chieftec PPS-650FC | 75,6 |
Super Flower Leadex Platinum 2000W | 86,4 |
Chieftec CTG-750C-RGB | 94,5 |
Chieftec BBS-600S | 91,2 |
Cooler Master MWE Bronze 750W V2 | 107,5 |
Cougar BXM 700 | 99 |
Cooler Master Elite 600 V4 | 125 |
Cougar GEX 850 | 79,5 |
Cooler Master V1000 Platinum (2020) | 104,3 |
Cooler Master V650 SFX | 74,2 |
Chieftec BDF-650C | 95,1 |
XPG Core Reactor 750 | 71,5 |
Deepcool DQ650-M-V2L | 79 |
Deepcool DA600-M | 124,7 |
Fractal Design Ion Gold 850 | 91,1 |
XPG Pylon 750 | 89,2 |
Thermaltake TF1 1550 | 70,1 |
Chieftronic PowerUp GPX-850FC | 83,3 |
Thermaltake GF1 1000 | 86,3 |
MSI MPG A750GF | 78,8 |
Chieftronic PowerPlay GPU-850FC | 75,7 |
Cooler Master MWE Gold 750W V2 | 83,8 |
XPG Pylon 450 | 122,5 |
Chieftronic PowerUp GPX-550FC | 84,9 |
Chieftec BBS-500S | 90,4 |
Cougar VTE X2 600 | 108,9 |
Thermaltake GX1 500 | 81,2 |
Thermaltake BM2 450 | 113,1 |
Chieftec PPS-1050FC | 70,3 |
Super Flower SF-750P14XE | 88,5 |
XPG Core Reactor 850 | 71,8 |
Asus TUF Gaming 750B | 84,2 |
Deepcool PQ1000M | 67,8 |
Chieftronic BDK-650FC | 88,4 |
Cooler Master XG Plus 750 Platinum | 83,4 |
Chieftec GPC-700S | 131,4 |
Gigabyte UD1000GM PG5 | 76,7 |
Zalman ZM700-TXIIv2 | 124,8 |
Cooler Master V850 Platinum | 97 |
Thermaltake PF1 1200 Platinum | 90,1 |
XPG CyberCore 1000 Platinum | 85,2 |
По суммарной экономичности на низкой и средней мощности данная модель занимает промежуточное место в нашем списке на момент тестирования.
Потребление энергии компьютером за год, кВт·ч | 15 Вт | 100 Вт | 200 Вт | 400 Вт | 500 Вт (1 шнур) |
500 Вт (2 шнура) |
750 Вт |
---|---|---|---|---|---|---|---|
Enhance ENP-1780 | 317 | 1085 | 1981 | 3813 | 4754 | 4738 | 7153 |
Super Flower Leadex II Gold 850W | 237 | 1000 | 1920 | 3806 | 4774 | 4763 | 7242 |
Super Flower Leadex Silver 650W | 227 | 1008 | 1952 | 3898 | 4928 | 4899 | |
High Power Super GD 850W | 230 | 991 | 1920 | 3784 | 4744 | 4707 | 7154 |
Corsair RM650 (RPS0118) | 193 | 986 | 1907 | 3806 | 4768 | 4752 | |
EVGA Supernova 850 G5 | 242 | 999 | 1909 | 3758 | 4702 | 4687 | 7117 |
EVGA 650 N1 | 249 | 1042 | 1975 | 3988 | 5042 | ||
EVGA 650 BQ | 257 | 1039 | 1989 | 3918 | 4922 | 4910 | |
Chieftronic PowerPlay GPU-750FC | 234 | 1004 | 1926 | 3794 | 4739 | 4727 | 7157 |
Deepcool DQ850-M-V2L | 241 | 1023 | 1941 | 3793 | 4734 | 4720 | 7192 |
Chieftec PPS-650FC | 228 | 996 | 1914 | 3788 | 4744 | 4730 | |
Super Flower Leadex Platinum 2000W | 270 | 1042 | 1943 | 3765 | 4682 | 4678 | 7006 |
Chieftec CTG-750C-RGB | 245 | 1025 | 1945 | 3876 | 4873 | 4869 | 7534 |
Chieftec BBS-600S | 255 | 1014 | 1942 | 3852 | 4856 | ||
Cooler Master MWE Bronze 750W V2 | 271 | 1075 | 1979 | 3881 | 4893 | 4872 | 7464 |
Cougar BXM 700 | 237 | 1035 | 1980 | 3879 | 4883 | 4880 | |
Cooler Master Elite 600 V4 | 231 | 1032 | 2016 | 4080 | 5195 | ||
Cougar GEX 850 | 235 | 1003 | 1933 | 3790 | 4739 | 4735 | 7205 |
Cooler Master V1000 Platinum (2020) | 305 | 1060 | 1975 | 3837 | 4761 | 4739 | 7054 |
Cooler Master V650 SFX | 200 | 997 | 1924 | 3793 | 4751 | 4743 | |
Chieftec BDF-650C | 245 | 1042 | 1994 | 3815 | 4991 | 4970 | |
XPG Core Reactor 750 | 202 | 1001 | 1914 | 3773 | 4746 | 4734 | 7205 |
Deepcool DQ650-M-V2L | 228 | 997 | 1923 | 3808 | 4765 | ||
Deepcool DA600-M | 251 | 1049 | 2015 | 4041 | 5133 | ||
Fractal Design Ion Gold 850 | 262 | 1029 | 1940 | 3830 | 4795 | 4776 | 7273 |
XPG Pylon 750 | 229 | 1011 | 1942 | 3863 | 4879 | 4877 | 7542 |
Thermaltake TF1 1550 | 252 | 1008 | 1901 | 3716 | 4643 | 6938 | |
Chieftronic PowerUp GPX-850FC | 244 | 1015 | 1940 | 3795 | 4725 | 4715 | 7177 |
Thermaltake GF1 1000 | 265 | 1035 | 1940 | 3780 | 4713 | 4707 | 7139 |
MSI MPG A750GF | 232 | 1014 | 1936 | 3772 | 4723 | 4713 | 7174 |
Chieftronic PowerPlay GPU-850FC | 237 | 1015 | 1925 | 3750 | 4678 | 4672 | 7061 |
Cooler Master MWE Gold 750W V2 | 238 | 1016 | 1936 | 3807 | 4748 | 4744 | 7239 |
XPG Pylon 450 | 242 | 1038 | 2001 | 4056 | |||
Chieftronic PowerUp GPX-550FC | 238 | 1011 | 1941 | 3817 | 4793 | ||
Chieftec BBS-500S | 248 | 1019 | 1947 | 3842 | |||
Cougar VTE X2 600 | 248 | 1036 | 1997 | 3936 | 4942 | ||
Thermaltake GX1 500 | 244 | 1000 | 1923 | 3809 | 4797 | ||
Thermaltake BM2 450 | 238 | 1022 | 1982 | 4011 | |||
Chieftec PPS-1050FC | 226 | 990 | 1904 | 3759 | 4688 | 4683 | 7078 |
Super Flower SF-750P14XE | 254 | 1021 | 1954 | 3811 | 4748 | 4765 | 7236 |
XPG Core Reactor 850 | 217 | 1007 | 1911 | 3758 | 4716 | 4704 | 7122 |
Asus TUF Gaming 750B | 229 | 997 | 1933 | 3842 | 4824 | 4812 | 7385 |
Deepcool PQ1000M | 223 | 986 | 1898 | 3750 | 4681 | ||
Chieftronic BDK-650FC | 242 | 1001 | 1931 | 3864 | 4849 | 4823 | |
Cooler Master XG Plus 750 Platinum | 252 | 1000 | 1918 | 3824 | 4757 | 4730 | 7105 |
Chieftec GPC-700S | 268 | 1064 | 2023 | 4060 | 5116 | ||
Gigabyte UD1000GM PG5 | 228 | 1002 | 1926 | 3779 | 4731 | 4711 | 7153 |
Zalman ZM700-TXIIv2 | 241 | 1047 | 2022 | 4047 | 5107 | 5081 | |
Cooler Master V850 Platinum | 287 | 1052 | 1968 | 3806 | 4716 | 4711 | 7083 |
Thermaltake PF1 1200 Platinum | 244 | 1036 | 1962 | 3811 | 4757 | 4726 | 7159 |
XPG CyberCore 1000 Platinum | 220 | 1048 | 1941 | 3801 | 4708 | 4702 | 7076 |
В данном случае мы также приводим и измерения традиционного КПД. Результаты регистрировались при постоянной нагрузке на каналы +3.3VDC (5 Вт) и +5VDC (15 Вт) и изменяемой мощности по каналу +12VDC.

Всего таким образом мы измерили параметры блока питания в 9 точках. В результате максимальный КПД в нашем случае составил 92,85% при выходной мощности 1000 Вт. Максимальная рассеиваемая мощность составила 77 Вт при выходной мощности 1000 Вт, что относительно немного для блока питания подобной мощности.
Температурный режим

Мы изучили функционирование блока питания в единственном доступном — гибридном режиме работы системы охлаждения. В результате было установлено, что вентилятор в блоке питания включается как при достижении пороговой температуры на термодатчике (около 75 °C), так и при достижении выходной мощности около 520 Вт. Отключение вентилятора происходит только при снижении температуры на термодатчике до определенного порога (около 67 °C).
Таким образом, при работе на мощности менее 400 Вт блок питания может длительное время функционировать с остановленным вентилятором.
При работе на мощности 400—500 Вт вентилятор запускается через довольно продолжительное время (свыше полутора часов). Вместе с тем, при работе в данных режимах температура некоторых компонентов превышает 70 градусов в течение длительного времени, что теоретически заметно снижает срок их службы, прежде всего конденсаторов, какие бы качественные и японские они ни были. Конечно, маловероятно, что блок питания будет постоянно или долговременно работать на мощности именно от 400 до 500 Вт при эксплуатации в реальном системном блоке, но все равно данную особенность стоило бы устранить, видоизменив режим включения вентилятора при достижения пороговой мощности: скажем, разумно было бы снизить ее до 350 Вт, что обеспечило бы более щадящий режим для компонентов внутри БП.
Скачкообразного роста уровня шума при запуске вентилятора отмечено не было.
Также стоит учитывать, что в случае работы с остановленным вентилятором температура компонентов внутри БП сильно зависит от окружающей температуры воздуха, и если та установится на уровне 40-45 °C, это приведет к более раннему включению вентилятора.
Акустическая эргономика
При подготовке данного материала мы использовали следующую методику измерения уровня шума блоков питания. Блок питания располагается на ровной поверхности вентилятором вверх, над ним на расстоянии 0,35 метра размещается измерительный микрофон шумомера Октава 110А-Эко, которым и производится измерение уровня шума. Нагрузка блока питания осуществляется при помощи специального стенда, имеющего бесшумный режим работы. В ходе измерения уровня шума осуществляется эксплуатация блока питания на постоянной мощности в течение 20 минут, после чего производится замер уровня шума.
Подобное расстояние до объекта измерения является наиболее приближенным для настольного размещения системного блока с установленным блоком питания. Данный метод позволяет оценить уровень шума блока питания в жестких условиях с точки зрения небольшого расстояния от источника шума до пользователя. При увеличении расстояния до источника шума и появлении дополнительных преград, имеющих хорошую звукоотражающую способность, уровень шума в контрольной точке также будет снижаться, что приведет к улучшению акустической эргономики в целом.
Данная модель имеет гибридную систему охлаждения, что означает возможность функционирования БП не только при активном, но и при пассивном охлаждении. Управление запуском вентилятора производится в зависимости от достижения температуры на встроенном термодатчике. При работе в гибридном режиме на мощности до 300 Вт включительно работу блока питания можно считать условно бесшумной, так как вентилятор в обычных условиях не вращается в течение продолжительного времени.

При работе с постоянно вращающимся вентилятором шум блока питания на мощности 500 Вт находится на уровне около 25 дБА с расстояния 0,35 метра. Подобный уровень шума можно считать действительно низким.
При дальнейшем увеличении выходной мощности уровень шума заметно повышается.
При работе на мощности 750 Вт шум блока питания находится на уровне около 40 дБА с расстояния 0,35 метра. Подобный уровень шума можно считать повышенным для жилого помещения в дневное время суток.
При работе на мощности 850 Вт уровень шума данной модели заметно превышает 40 дБА, подобный уровень шума можно считать высоким для жилого помещения в дневное время суток.
На мощности 1000 Вт уровень шума составил 48,5 дБА. Это высокий уровень шума не только для жилого, но и для офисного помещения, но, как правило, нагрузка с таким потреблением бесшумной также не является.
Таким образом, с точки зрения акустической эргономики данная модель обеспечивает комфорт при выходной мощности в пределах 750 Вт, причем в диапазоне до 500 Вт включительно шум находится на действительно низком уровне.
Также мы оцениваем уровень шума электроники блока питания, поскольку в некоторых случаях она является источником нежелательных призвуков. Данный этап тестирования осуществляется путем определения разницы между уровнем шума в нашей лаборатории с включенным блоком питания и с выключенным. В случае, если полученное значение находится в пределах 5 дБА, никаких отклонений в акустических свойствах БП нет. При разнице более 10 дБА, как правило, есть определенные дефекты, которые можно услышать с расстояния около полуметра. На данном этапе измерений микрофон шумомера располагается на расстоянии около 40 мм от верхней плоскости БП, так как на бо́льших расстояниях измерение шума электроники весьма затруднительно. Измерение производится в двух режимах: дежурном режиме (STB, или Stand by) и при работающем на нагрузку БП, но с принудительно остановленным вентилятором.
В режиме ожидания шум электроники почти полностью отсутствует. В целом шум электроники можно считать относительно низким: превышение фонового шума составило не более 6,5 дБА.
Потребительские качества
Потребительские качества XPG CyberCore 1000 Platinum находятся на очень высоком уровне, если рассматривать применение данной модели в домашней системе, в которой используются типовые компоненты. Акустическая эргономика БП до 500 Вт включительно очень хорошая. Отметим высокую нагрузочную способность платформы по каналу +12VDC, а также высокое качество питания отдельных компонентов, большое количество разъемов и высокую экономичность. Существенных недостатков наше тестирование не выявило. Правда, стоит отметить высокий нагрев на мощности 400—500 Вт.
С положительной стороны отметим комплектацию блока питания японскими конденсаторами, а также вентилятором с подшипником качения. Длина проводов у БП достаточная для большинства современных корпусов, к тому же провода полностью съемные.
Гибридный режим реализован довольно неплохо, но можно было бы немного по другому настроить порог запуска вентилятора при достижении пороговой мощности.
Итоги
XPG CyberCore 1000 Platinum — это качественный и очень недешевый продукт. Этот БП хорошо приспособлен для работы в домашних системах различной мощности, в том числе в системах с двумя топовыми видеокартами.
Технико-эксплуатационные характеристики XPG CyberCore 1000 Platinum находятся на отличном уровне, чему способствуют высокая нагрузочная способность канала +12VDC, высокая экономичность, высококачественный вентилятор Nidec на подшипнике качения, а также конденсаторы японских производителей. Можно прогнозировать достаточно долгий срок службы данной модели даже при высоких нагрузках и активной эксплуатации. Блок питания позволяет длительно работать с остановленным вентилятором на мощности до 400 Вт.
Для тех, кому не требуется столь высокая мощность, у XPG в ассортименте есть очень удачные модели из серии Core Reactor, которые мы также обозревали: 750 Вт, 850 Вт.
В заключение предлагаем посмотреть наш видеообзор БП XPG CyberCore 1000 Platinum: