Обзор блока питания Galax Hall of Fame GH1300

Блоки питания особо высокой мощности (от 1000 Вт) приобретают, как правило, для специфических задач — для майнинговых ферм, для специализированных тестовых систем, для высоконагруженных компьютеров для рендеринга, расчетов, а также для разгона. Впрочем, иногда такие источники питания приобретают, просто желая создать ощутимый запас по мощности для существующей системы или в расчете на будущий апгрейд. Стоимость подобных решений может сильно отличаться, что ставит покупателя перед непростой задачей выбора модели с нужным соотношением цены и потребительских качеств. Сегодня мы рассмотрим одно из доступных на рынке решений.

Блок питания Galax Hall of Fame GH1300 попал к нам редакцию напрямую из Китая, где был приобретен. Данная модель, согласно официальным данным, имеет сертификат 80+ Platinum и укомплектована исключительно японскими конденсаторами. Система охлаждения может работать в двух режимах: в гибридном, когда вентилятор при некоторых условиях не вращается, и в обычном — с постоянно вращающимся вентилятором. Переключаются режимы двухпозиционной кнопкой на внешней панели корпуса БП (отжатое положение соответствует гибридному режиму).

Длина корпуса блока питания стандартная и составляет около 140 мм, дополнительно понадобится 15-20 мм для подвода проводов, поэтому при монтаже стоит рассчитывать на установочный размер порядка 160 мм. Для источника питания подобной мощности это очень компактный вариант, так как в большинстве случаев современные модели мощностью свыше 1000 Вт имеют длину корпуса от 160 мм. Решетка штампованная, но аэродинамическое сопротивление она имеет не очень высокое.

Поставляется блок питания в коробке с цветной полиграфией белого цвета. Коробка имеет довольно интересную конструкцию: крышка откидывает при помощи специального механизма.

Характеристики

Все необходимые параметры указаны на корпусе блока питания в полном объеме, для мощности шины +12VDC заявлено значение 1296 Вт. Соотношение мощности по шине +12VDC и полной мощности составляет 0,997, что, разумеется, является отличным показателем.

Провода и разъемы

Наименование разъема Количество разъемов Примечания
24 pin Main Power Connector 1 разборный
4 pin 12V Power Connector  
8 pin SSI Processor Connector 2 разборные
6 pin PCIe 1.0 VGA Power Connector  
8 pin PCIe 2.0 VGA Power Connector 3 на 3 шнурах
16 pin PCIe 5.0 VGA Power Connector 2 на 2 шнурах
4 pin Peripheral Connector 4 на одном шнуре
15 pin Serial ATA Connector 12 на 3 шнурах
4 pin Floppy Drive Connector  

Длина проводов до разъемов питания

Все без исключения провода являются модульными, то есть их можно снять, оставив лишь те, которые необходимы для конкретной системы.

  • до основного разъема АТХ — 60 см
  • до процессорного разъема 8 pin SSI — 65 см
  • до процессорного разъема 8 pin SSI — 65 см
  • до разъема питания видеокарты PCIe 2.0 VGA Power Connector — 60 см
  • до разъема питания видеокарты PCIe 2.0 VGA Power Connector — 60 см
  • до разъема питания видеокарты PCIe 2.0 VGA Power Connector — 60 см
  • до разъема питания видеокарты PCIe 5.0 VGA Power Connector — 72 см
  • до разъема питания видеокарты PCIe 5.0 VGA Power Connector — 72 см
  • до первого разъема SATA Power Connector — 45 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема
  • до первого разъема SATA Power Connector — 45 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема
  • до первого разъема SATA Power Connector — 45 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема
  • до разъема Peripheral Connector («молекс») — 45 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема

Длина проводов средняя, она является достаточной для комфортного использования в корпусах типоразмера full tower и более габаритных с верхним расположением блока питания. В корпусах высотой до 55 см с нижнерасположенным блоком питания длина проводов также должна быть достаточной: до разъемов питания процессора — по 65 см. Таким образом, с большинством современных корпусов проблем быть не должно. Правда, с учетом конструкции современных корпусов, имеющих развитые системы скрытой прокладки проводов, один из шнуров вполне можно было бы сделать и более длинным: скажем, 75-80 см, чтобы обеспечить максимальное удобство работы при сборке системы.

Распределение разъемов SATA Power по шнурам питания довольно удачное, позволяющее полноценно обеспечить питанием комплектующие в нескольких зонах даже при большом количестве установленных устройств. Тем более маловероятны сложности в случае типовой системы. Все разъемы SATA Power прямые, использование таких разъемов наиболее удобно в случае накопителей, размещаемых с тыльной стороны основания для системной платы.

Покрытие проводов выполнено из ткани, скорее всего это нейлон. Насколько быстро на таком покрытии будет собираться пыль, мы без длительных экспериментов сказать не можем, но скорее всего пыль собираться будет, и довольно активно.

Сами провода мягкие и хорошо изгибаются, что косвенно свидетельствует о высоком содержании меди.

Схемотехника и охлаждение

Блок питания оснащен активным корректором коэффициента мощности и имеет довольно широкий диапазон питающих напряжений от 100 до 240 вольт. Это обеспечивает устойчивость к понижению напряжения в электросети ниже нормативных значений.

Конструкция блока питания вполне соответствует современным тенденциям: активный корректор коэффициента мощности, синхронный выпрямитель для канала +12VDC, независимые импульсные преобразователи постоянного тока для линий +3.3VDC и +5VDC.

Полупроводниковые элементы высоковольтных цепей размещены на двух радиаторах, входной выпрямитель расположен на отдельном теплоотводе. Элементы синхронного выпрямителя установлены с оборотной стороны основной печатной платы, с лицевой стороны платы над ними имеется теплоотвод.

Независимые источники +3.3VDC и 5VDC установлены на дочерней печатной плате и, по традиции, дополнительных теплоотводов не имеют — это вполне типично для блоков питания с активным охлаждением.

В низковольтных цепях установлены конденсаторы только с полимерным электролитом.

Конденсаторы на входе имеют японское происхождение (Nippon Chemi-Con).

В блоке питания установлен вентилятор D12SH-12, основанный на самом простом подшипнике скольжения, он изготовлен компанией Yate Loon Electronics. Подключение вентилятора — разъемное, двухпроводное. Из достоинств подобного решения — возможность простой замены вентилятора на аналоги, а из недостатков — не очень долгий срок службы (около 3 лет при постоянной эксплуатации).

Измерение электрических характеристик

Далее мы переходим к инструментальному исследованию электрических характеристик источника питания при помощи многофункционального стенда и другого оборудования.

Величина отклонения выходных напряжений от номинала кодируется цветом следующим образом:

Цвет Диапазон отклонения Качественная оценка
  более 5% неудовлетворительно
  +5% плохо
  +4% удовлетворительно
  +3% хорошо
  +2% очень хорошо
  1% и менее отлично
  −2% очень хорошо
  −3% хорошо
  −4% удовлетворительно
  −5% плохо
  более 5% неудовлетворительно

Работа на максимальной мощности

Первым этапом испытаний является эксплуатация блока питания на максимальной мощности продолжительное время. Такой тест с уверенностью позволяет удостовериться в работоспособности БП.

Кросс-нагрузочная характеристика

Следующим этапом инструментального тестирования является построение кросснагрузочной характеристики (КНХ) и представление ее на четвертьплоскости, ограниченной максимальной мощностью по шине 3,3&5 В с одной стороны (по оси ординат) и максимальной мощностью по шине 12 В с другой (по оси абсцисс). В каждой точке измеренное значение напряжения обозначается цветовым маркером в зависимости от отклонения от номинального значения.

КНХ позволяет нам определить, какой уровень нагрузки можно считать допустимым, особенно по каналу +12VDC, для тестируемого экземпляра. В данном случае отклонения действующих значений напряжения от номинала по каналу +12VDC не превышают 1% во всем диапазоне мощности, что является отличным результатом. При типичном распределении мощности по каналам отклонения от номинала не превышают 1% по каналу +3.3VDC, 2% по каналу +5VDC и 1% по каналу +12VDC.

Данная модель БП хорошо подходит для мощных современных систем из-за высокой практической нагрузочной способности канала +12VDC.

Нагрузочная способность

Следующий тест призван определить максимальную мощность, которую можно подать через соответствующие разъемы при нормированном отклонении значения напряжения в размере 3 или 5 процентов от номинала.

В случае видеокарты с единственным разъемом питания максимальная мощность по каналу +12VDC составляет не менее 150 Вт при отклонении в пределах 3%.

В случае видеокарты с двумя разъемами питания при использовании двух шнуров питания максимальная мощность по каналу +12VDC составляет не менее 350 Вт при отклонении в пределах 3%, что позволяет использовать очень мощные видеокарты.

Также мы провели тестирование на нестандартном значении мощности нагрузки 525 Вт с использованием всех трех имеющихся разъемов.

Никаких заметных отклонений выявлено не было, поэтому мы провели тестирование и при нагрузке 650 Вт.

И тут всё прошло без нареканий. Таким образом, при нагрузке через три разъема PCIe 2.0 максимальная мощность по каналу +12VDC составляет не менее 650 Вт при отклонении в пределах 3%.

При нагрузке через разъем питания процессора максимальная мощность по каналу +12VDC составляет не менее 250 Вт при отклонении в пределах 3%. Этого вполне достаточно для типовых систем, у которых на системной плате есть только один разъем для питания процессора.

При нагрузке через два разъема питания процессора максимальная мощность по каналу +12VDC составляет чуть менее 500 Вт при отклонении в пределах 3%.

В случае системной платы максимальная мощность по каналу +12VDC составляет свыше 150 Вт при отклонении 3%. Так как сама плата потребляет по данному каналу в пределах 10 Вт, высокая мощность может потребоваться для питания карт расширения — например, для видеокарт без дополнительного разъема питания, которые обычно имеют потребление в пределах 75 Вт.

Экономичность и эффективность

При оценке эффективности компьютерного блока питания можно идти двумя путями. Первый путь заключается в оценке компьютерного блока питания как отдельного преобразователя электрической энергии с дальнейшей попыткой минимизировать сопротивление линии передачи электрической энергии от БП к нагрузке (где и измеряется ток и напряжение на выходе БП). Для этого блок питания обычно подключается всеми имеющимися разъемами, что ставит разные блоки питания в неравные условия, так как набор разъемов и количество токоведущих проводов зачастую разное даже у блоков питания одинаковой мощности. Таким образом, хотя результаты получаются корректными для каждого конкретного источника питания, в реальных условиях полученные данные малоприменимы, поскольку в реальных условиях блок питания подключается ограниченным количеством разъемов, а не всеми сразу. Поэтому логичным представляется вариант определения эффективности (экономичности) компьютерного блока питания не только на фиксированных значениях мощности, включая распределение мощности по каналам, но и с фиксированным набором разъемов для каждого значения мощности.

Представление эффективности компьютерного блока питания в виде значения КПД (коэффициента полезного действия) имеет свои традиции. Прежде всего, КПД — это коэффициент, определяемый соотношением мощностей на выходе и на входе блока питания, то есть КПД показывает эффективность преобразования электрической энергии. Обычному же пользователю данный параметр почти ничего не скажет, за исключением того, что более высокий КПД вроде как говорит о большей экономичности БП и более высоком его качестве. Зато КПД стал отличным маркетинговым якорем, особенно в комбинацией с сертификатом 80Plus. Однако с практической точки зрения КПД не оказывает заметного влияния на функционирование системного блока: он не увеличивает производительность, не снижает шум или температуру внутри системного блока. Это просто технический параметр, уровень которого в основном определяется развитием промышленности в текущий момент времени и себестоимостью продукта. Для пользователя же максимизация КПД выливается в увеличение розничной цены.

С другой стороны, иногда нужно объективно оценить экономичность компьютерного блока питания. Под экономичностью мы подразумеваем потерю мощности при преобразовании электроэнергии и ее передаче к конечным потребителям. И для оценки этого КПД не нужен, так как можно использовать не отношение двух величин, а абсолютные значения: рассеиваемую мощность (разницу между значениями на входе и выходе блока питания), а также потребление энергии источником питания за определенное время (день, месяц, год и т. д.) при работе с постоянной нагрузкой (мощностью). Это позволяет легко увидеть реальную разницу в потреблении электроэнергии конкретными моделями БП и при необходимости рассчитать экономическую выгоду от использования более дорогих источников питания.

Таким образом, на выходе мы получаем понятный для всех параметр — рассеиваемую мощность, которая легко преобразуется в киловатт-часы (кВт·ч), которые и регистрирует счетчик электрической энергии. Умножив полученное значение на стоимость киловатт-часа, получим стоимость электрической энергии при условии эксплуатации системного блока круглосуточно в течение года. Подобный вариант, конечно, чисто гипотетический, но он позволяет оценить разницу между стоимостью эксплуатации компьютера с различными источниками питания в течение длительного периода времени и сделать выводы об экономической целесообразности приобретения конкретной модели БП. В реальных условиях высчитанное значение может достигаться за более долгий период — например, от 3 лет и более. При необходимости каждый желающий может разделить полученное значение на нужный коэффициент в зависимости от количества часов в сутках, в течение которых системный блок эксплуатируется в указанном режиме, чтобы получить расход электроэнергии за год.

Мы решили выделить несколько типовых вариантов по мощности и соотнести их с количеством разъемов, которое соответствует данным вариантам, то есть максимально приблизить методику измерения экономичности к условиям, которые достигаются в реальном системном блоке. Вместе с тем, это позволит оценивать экономичность разных блоков питания в полностью одинаковых условиях.

Нагрузка через разъемы 12VDC, Вт 5VDC, Вт 3.3VDC, Вт Общая мощность, Вт
основной ATX, процессорный (12 В), SATA 5 5 5 15
основной ATX, процессорный (12 В), SATA 80 15 5 100
основной ATX, процессорный (12 В), SATA 180 15 5 200
основной ATX, процессорный (12 В), 6-контактный PCIe, SATA 380 15 5 400
основной ATX, процессорный (12 В), 6-контактные PCIe (1 шнур с 2 разъемами), SATA 480 15 5 500
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 1 разъему), SATA 480 15 5 500
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 2 разъема), SATA 730 15 5 750

Полученные результаты выглядят следующим образом:

Рассеиваемая мощность, Вт 15 Вт 100 Вт 200 Вт 400 Вт 500 Вт
(1 шнур)
500 Вт
(2 шнура)
750 Вт
Cooler Master MWE Bronze 750W V2 15,9 22,7 25,9 43,0 58,5 56,2 102,0
Cougar BXM 700 12,0 18,2 26,0 42,8 57,4 57,1  
Cooler Master Elite 600 V4 11,4 17,8 30,1 65,7 93,0    
Cougar GEX 850 11,8 14,5 20,6 32,6 41,0 40,5 72,5
Cooler Master V1000 Platinum (2020) 19,8 21,0 25,5 38,0 43,5 41,0 55,3
Cooler Master V650 SFX 7,8 13,8 19,6 33,0 42,4 41,4  
Chieftec BDF-650C 13,0 19,0 27,6 35,5 69,8 67,3  
XPG Core Reactor 750 8,0 14,3 18,5 30,7 41,8 40,4 72,5
Deepcool DQ650-M-V2L 11,0 13,8 19,5 34,7 44,0    
Deepcool DA600-M 13,6 19,8 30,0 61,3 86,0    
Fractal Design Ion Gold 850 14,9 17,5 21,5 37,2 47,4 45,2 80,2
XPG Pylon 750 11,1 15,4 21,7 41,0 57,0 56,7 111,0
Thermaltake TF1 1550 13,8 15,1 17,0 24,2   30,0 42,0
Chieftronic PowerUp GPX-850FC 12,8 15,9 21,4 33,2 39,4 38,2 69,3
Thermaltake GF1 1000 15,2 18,1 21,5 31,5 38,0 37,3 65,0
MSI MPG A750GF 11,5 15,7 21,0 30,6 39,2 38,0 69,0
Chieftronic PowerPlay GPU-850FC 12,0 15,9 19,7 28,1 34,0 33,3 56,0
Cooler Master MWE Gold 750W V2 12,2 16,0 21,0 34,6 42,0 41,6 76,4
XPG Pylon 450 12,6 18,5 28,4 63,0      
Chieftronic PowerUp GPX-550FC 12,2 15,4 21,6 35,7   47,1  
Chieftec BBS-500S 13,3 16,3 22,2 38,6      
Cougar VTE X2 600 13,3 18,3 28,0 49,3 64,2    
Thermaltake GX1 500 12,8 14,1 19,5 34,8 47,6    
Thermaltake BM2 450 12,2 16,7 26,3 57,9      
Chieftec PPS-1050FC 10,8 13,0 17,4 29,1 35,1 34,6 58,0
Super Flower SF-750P14XE 14,0 16,5 23,0 35,0 42,0 44,0 76,0
XPG Core Reactor 850 9,8 14,9 18,1 29,0 38,4 37,0 63,0
Asus TUF Gaming 750B 11,1 13,8 20,7 38,6 50,7 49,3 93,0
Deepcool PQ1000M 10,4 12,6 16,7 28,1   34,4  
Chieftronic BDK-650FC 12,6 14,3 20,4 41,1 53,5 50,6  
Cooler Master XG Plus 750 Platinum 13,8 14,2 18,9 36,5 43,0 40,0 61,1
Chieftec GPC-700S 15,6 21,4 30,9 63,5 84,0    
Gigabyte UD1000GM PG5 11,0 14,4 19,9 31,4 40,1 37,8 66,6
Zalman ZM700-TXIIv2 12,5 19,5 30,8 62,0 83,0 80,0  
Cooler Master V850 Platinum 17,8 20,1 24,6 34,5 38,3 37,8 58,5
Thermaltake PF1 1200 Platinum 12,8 18,3 24,0 35,0 43,0 39,5 67,2
XPG CyberCore 1000 Platinum 10,1 19,6 21,6 33,9 37,4 36,7 57,7
Chieftec CSN-650C 10,7 12,5 17,5 32,0   43,5  
Asus ROG Loki SFX-L 1000W Platinum 13,7 14,5 17,6 24,9   38,7  
Thermaltake GF3 1000 8,8 17 21,7 35,5 44,8 41,6 70,5
Chieftronic PowerPlay GPU-1200FC 13,8 17,9 22,2 31,6 36 33,2 55,5
Galax Hall of Fame GH1300 12,7 14,2 18,2 24,7   29,9  

Данная модель имеет достаточно высокую экономичность во всех протестированных режимах, это вполне типичный представитель источников питания с уровнем сертификата 80Plus Platinum.

Суммарная величина рассеиваемой мощности на средней и низкой нагрузке (до 400 Вт)
  Вт
Deepcool PQ1000M 68
Galax Hall of Fame GH1300 70
Thermaltake TF1 1550 70
Chieftec PPS-1050FC 70
Asus ROG Loki SFX-L 1000W Platinum 71
XPG Core Reactor 750 72
XPG Core Reactor 850 72
Chieftec CSN-650C 73
Cooler Master V650 SFX 74
Chieftronic PowerPlay GPU-850FC 76
Gigabyte UD1000GM PG5 77
MSI MPG A750GF 79
Deepcool DQ650-M-V2L 79
Cougar GEX 850 80
Thermaltake GX1 500 81
Thermaltake GF3 1000 83
Chieftronic PowerUp GPX-850FC 83
Cooler Master XG Plus 750 Platinum 83
Cooler Master MWE Gold 750W V2 84
Asus TUF Gaming 750B 84
Chieftronic PowerUp GPX-550FC 85
XPG CyberCore 1000 Platinum 85
Chieftronic PowerPlay GPU-1200FC 86
Thermaltake GF1 1000 86
Chieftronic BDK-650FC 88
Super Flower SF-750P14XE 89
XPG Pylon 750 89
Thermaltake PF1 1200 Platinum 90
Chieftec BBS-500S 90
Fractal Design Ion Gold 850 91
Chieftec BDF-650C 95
Cooler Master V850 Platinum 97
Cougar BXM 700 99
Cooler Master V1000 Platinum (2020) 104
Cooler Master MWE 700 Bronze V2 108
Cougar VTE X2 600 109
Thermaltake BM2 450 113
XPG Pylon 450 123
Deepcool DA600-M 125
Zalman ZM700-TXIIv2 125
Cooler Master Elite 600 V4 125
Chieftec GPC-700S 131

По суммарной экономичности на низкой и средней мощности данная модель заняла второе место в нашем списке протестированных за последние годы БП.

Потребление энергии компьютером за год, кВт·ч 15 Вт 100 Вт 200 Вт 400 Вт 500 Вт
(1 шнур)
500 Вт
(2 шнура)
750 Вт
Cooler Master MWE Bronze 750W V2 271 1075 1979 3881 4893 4872 7464
Cougar BXM 700 237 1035 1980 3879 4883 4880  
Cooler Master Elite 600 V4 231 1032 2016 4080 5195    
Cougar GEX 850 235 1003 1933 3790 4739 4735 7205
Cooler Master V1000 Platinum (2020) 305 1060 1975 3837 4761 4739 7054
Cooler Master V650 SFX 200 997 1924 3793 4751 4743  
Chieftec BDF-650C 245 1042 1994 3815 4991 4970  
XPG Core Reactor 750 202 1001 1914 3773 4746 4734 7205
Deepcool DQ650-M-V2L 228 997 1923 3808 4765    
Deepcool DA600-M 251 1049 2015 4041 5133    
Fractal Design Ion Gold 850 262 1029 1940 3830 4795 4776 7273
XPG Pylon 750 229 1011 1942 3863 4879 4877 7542
Thermaltake TF1 1550 252 1008 1901 3716   4643 6938
Chieftronic PowerUp GPX-850FC 244 1015 1940 3795 4725 4715 7177
Thermaltake GF1 1000 265 1035 1940 3780 4713 4707 7139
MSI MPG A750GF 232 1014 1936 3772 4723 4713 7174
Chieftronic PowerPlay GPU-850FC 237 1015 1925 3750 4678 4672 7061
Cooler Master MWE Gold 750W V2 238 1016 1936 3807 4748 4744 7239
XPG Pylon 450 242 1038 2001 4056      
Chieftronic PowerUp GPX-550FC 238 1011 1941 3817   4793  
Chieftec BBS-500S 248 1019 1947 3842      
Cougar VTE X2 600 248 1036 1997 3936 4942    
Thermaltake GX1 500 244 1000 1923 3809 4797    
Thermaltake BM2 450 238 1022 1982 4011      
Chieftec PPS-1050FC 226 990 1904 3759 4688 4683 7078
Super Flower SF-750P14XE 254 1021 1954 3811 4748 4765 7236
XPG Core Reactor 850 217 1007 1911 3758 4716 4704 7122
Asus TUF Gaming 750B 229 997 1933 3842 4824 4812 7385
Deepcool PQ1000M 223 986 1898 3750   4681  
Chieftronic BDK-650FC 242 1001 1931 3864 4849 4823  
Cooler Master XG Plus 750 Platinum 252 1000 1918 3824 4757 4730 7105
Chieftec GPC-700S 268 1064 2023 4060 5116    
Gigabyte UD1000GM PG5 228 1002 1926 3779 4731 4711 7153
Zalman ZM700-TXIIv2 241 1047 2022 4047 5107 5081  
Cooler Master V850 Platinum 287 1052 1968 3806 4716 4711 7083
Thermaltake PF1 1200 Platinum 244 1036 1962 3811 4757 4726 7159
XPG CyberCore 1000 Platinum 220 1048 1941 3801 4708 4702 7076
Chieftec CSN-650C 225 986 1905 3784   4761  
Asus ROG Loki SFX-L 1000W Platinum 251 1003 1906 3722   4719  
Thermaltake GF3 1000 209 1025 1942 3815 4772 4744 7188
Chieftronic PowerPlay GPU-1200FC 252 1033 1947 3781 4695 4671 7056
Galax Hall of Fame GH1300 243 1000 1911 3720   4642  

В данном случае мы также приводим и измерения традиционного КПД. Результаты регистрировались при постоянной нагрузке на каналы +3.3VDC (5 Вт) и +5VDC (15 Вт) и изменяемой мощности по каналу +12VDC.

Всего таким образом мы измерили параметры блока питания в 11 точках. В результате максимальный КПД в нашем случае составил 94,9% при выходной мощности 400 Вт. Максимальная рассеиваемая мощность составила 100 Вт при выходной мощности 1300 Вт, что совсем немного для блока питания подобной мощности.

Температурный режим

Все основные тесты проводились в режиме с постоянно вращающимся вентилятором, но отдельно мы исследовали функционирование в гибридном режиме. Термонагруженность конденсаторов при работе на мощности вплоть до максимальной находится на невысоком уровне.

При использовании гибридного режима вентилятор в блоке питания включается только при достижении пороговой температуры (около 45 градусов). Отключение вентилятора также происходит только при снижении температуры ниже порогового значения (около 38 градусов), что приводит к периодическим циклам включения-выключения вентилятора в диапазоне мощности от 200 до 500 Вт.

Скачкообразного роста уровня шума при запуске вентилятора отмечено не было. Долговременно в безвентиляторном режиме блок питания способен работать при мощности нагрузки 100 Вт и менее. Также стоит учитывать, что в случае работы с остановленным вентилятором температура компонентов внутри БП сильно зависит от температуры окружающего воздуха.

В целом гибридный режим реализован не слишком удачно, так как длительное время вентилятор не вращается только при низкой нагрузке — по сути, только в простое.

Акустическая эргономика

При подготовке данного материала мы использовали следующую методику измерения уровня шума блоков питания. Блок питания располагается на ровной поверхности вентилятором вверх, над ним на расстоянии 0,35 метра размещается измерительный микрофон шумомера Октава 110А-Эко, которым и производится измерение уровня шума. Нагрузка блока питания осуществляется при помощи специального стенда, имеющего бесшумный режим работы. В ходе измерения уровня шума осуществляется эксплуатация блока питания на постоянной мощности в течение 20 минут, после чего производится замер уровня шума.

Подобное расстояние до объекта измерения является наиболее приближенным для настольного размещения системного блока с установленным блоком питания. Данный метод позволяет оценить уровень шума блока питания в жестких условиях с точки зрения небольшого расстояния от источника шума до пользователя. При увеличении расстояния до источника шума и появлении дополнительных преград, имеющих хорошую звукоотражающую способность, уровень шума в контрольной точке также будет снижаться, что приведет к улучшению акустической эргономики в целом.

Данная модель имеет гибридную систему охлаждения, что означает возможность функционирования БП не только при активном, но и при пассивном охлаждении. Управление запуском вентилятора на практике производится в зависимости от достижения пороговой температуры. При работе в гибридном режиме на мощности до 100 Вт включительно работу блока питания можно считать условно бесшумной, так как вентилятор в обычных условиях не вращается в течение продолжительного времени.

При работе с постоянно вращающимся вентилятором в диапазоне мощности до 500 Вт включительно шум блока питания находится на среднем уровне для жилого помещения в дневное время суток.

При дальнейшем увеличении выходной мощности уровень шума заметно повышается. При работе на мощности 750 Вт уровень шума данной модели уже превышает 40 дБА, его можно оценить как высокий для жилого помещения в дневное время суток.

При работе на мощности 1200 Вт шум очень высокий не только для жилого, но и для офисного помещения — более 50 дБА.

Таким образом, с точки зрения акустической эргономики данная модель обеспечивает комфорт при выходной мощности в пределах 500 Вт.

Также мы оцениваем уровень шума электроники блока питания, поскольку в некоторых случаях она является источником нежелательных призвуков. Данный этап тестирования осуществляется путем определения разницы между уровнем шума в нашей лаборатории с включенным блоком питания и с выключенным. В случае, если полученное значение находится в пределах 5 дБА, никаких отклонений в акустических свойствах БП нет. При разнице более 10 дБА, как правило, есть определенные дефекты, которые можно услышать с расстояния около полуметра. На данном этапе измерений микрофон шумомера располагается на расстоянии около 40 мм от верхней плоскости БП, так как на бо́льших расстояниях измерение шума электроники весьма затруднительно. Измерение производится в двух режимах: дежурном режиме (STB, или Stand by) и при работающем на нагрузку БП, но с принудительно остановленным вентилятором.

В режиме ожидания шум электроники почти полностью отсутствует. В целом шум электроники можно считать относительно низким: превышение фонового шума составило не более 2 дБА.

Потребительские качества

Нагрузочная способность канала +12VDC высокая, что позволяет использовать данный БП в мощных системах с несколькими видеокартами, в том числе с самыми современными топовыми (благо БП имеет специальные разъемы питания, не требующие переходников). Акустическая эргономика, мягко говоря, не выдающаяся, но при нагрузке в пределах 500 Вт шум умеренный. Этот источник питания может длительное время работать с остановленным вентилятором на мощности 100 Вт. Длина проводов достаточная для большинства современных корпусов, расположение разъемов на шнурах и их количество можно считать вполне удачными.

На мощности 750 Вт шум становится заметным и неприятным, но в реальных условиях компоненты, имеющие подобное потребление, сами по себе будут производить значительный шум. Длина проводов у БП достаточная для большинства современных корпусов, к тому же провода использованы мягкие и полностью съемные, что повышает удобство при сборке и дальнейшей эксплуатации.

Итоги

Технико-эксплуатационные характеристики Galax Hall of Fame GH1300 находятся на хорошем уровне, чему способствуют высокая нагрузочная способность канала +12VDC, высокая экономичность, невысокая термонагруженность. Правда, использован вентилятор на обычном подшипнике скольжения, что с высокой долей вероятности приведет к необходимости замены вентилятора через несколько лет. Блок питания позволяет включить гибридный режим охлаждения, на малой мощности он может длительно работать с остановленным вентилятором. Также отметим возможность подключения сразу двух видеокарт посредством разъемов питания PCIe 5.0.

В итоге получился источник питания преимущественно для мощной игровой системы с одной или двумя топовыми видеокартами, владельца которой не очень волнует уровень шума при работе. Впрочем, возможность использовать данную модель БП в мощных рабочих системах также никто не отменял.

5 мая 2023 Г.