Nvidia Geforce GTX 780 Ti:

описание видеокарты и результаты синтетических тестов


Содержание

В этой части мы изучим видеокарту, а также познакомимся с результатами синтетических тестов. В нашей лаборатории побывала референсная карта Nvidia.

Платa

Nvidia Geforce GTX 780 Ti 3072 МБ 384-битной GDDR5 PCI-E
  • GPU: Geforce Titan (GK110)
  • Интерфейс: PCI Express x16
  • Частота работы GPU (ROPs): 875—1020 МГц (номинал — 875—1020 МГц)
  • Частота работы памяти (физическая (эффективная)): 1750 (7000) МГц (номинал — 1750 (7000) МГц)
  • Ширина шины обмена с памятью: 384 бит
  • Число вычислительных блоков в GPU/частота работы блоков: 15/875—1020 МГц (номинал — 15/875—1020 МГц)
  • Число операций (ALU) в блоке: 192
  • Суммарное число операций (ALU): 2880
  • Число блоков текстурирования: 240 (BLF/TLF/ANIS)
  • Число блоков растеризации (ROP): 48
  • Размеры: 270×100×37 мм (карта занимает 2 слота в системном блоке)
  • Цвет текстолита: черный
  • Энергопотребление (пиковое в 3D/в режиме 2D/в режиме «сна»): 264/86/70 Вт
  • Выходные гнезда: 1×DVI (Dual-Link/HDMI), 1×DVI (Single-Link/VGA), 1×HDMI 1.4a, 1×DisplayPort 1.2
  • Поддержка многопроцессорной работы: SLI (Hardware)

Nvidia Geforce GTX 780 Ti 3072 МБ 384-битной GDDR5 PCI-E
Карта имеет 3072 МБ памяти GDDR5 SDRAM, размещенной в 12 микросхемах на лицевой стороне PCB.

Микросхемы памяти Hynix (GDDR5). Микросхемы рассчитаны на максимальную частоту работы в 1785 (7140) МГц.

Сравнение с эталонным дизайном, вид спереди
Nvidia Geforce GTX 780 Ti 3072 МБ 384-битной GDDR5 PCI-E Reference card Nvidia Geforce GTX 780

Сравнение с эталонным дизайном, вид сзади
Nvidia Geforce GTX 780 Ti 3072 МБ 384-битной GDDR5 PCI-E Reference card Nvidia Geforce GTX 780

Очевидно, что PCB у GTX 780 Ti почти полностью базируется на PCB от GTX 780, что весьма логично. Усилен лишь блок питания: при том же количестве фаз питания (6) увеличилось число преобразователей напряжения и конденсаторов. Разумеется, ведь ядро имеет почти все включенные блоки по сравнению с оригинальным GK110, потребление и требования к более ювелирному изменению вольтажей выросли. Собственно, вот и вся разница, в остальном карта — копия GTX 780.

В целом размеры карты не выходят за рамки принятых стандартов для топовых ускорителей: 270×100 мм. Да и занимает она традиционные 2 слота (хотя по идее трехслотовые ускорители должны войти уже в некий стандарт, касающийся топовых продуктов).

Ускоритель имеет следующий набор гнезд вывода: 2 DVI (один из которых Single-Link и совместим с выводом на VGA) и по одному DisplayPort и HDMI (второе гнездо DVI обладает возможностью через адаптер передавать сигнал на HDMI, поэтому суммарно можно подключить 2 приемника с HDMI). Напомним, что ускорители Nvidia достаточно давно обладают собственными звуковыми кодеками, поэтому передача на HDMI-монитор будет полноценной, со звуком. Также уместно напомнить, что возможность одновременного вывода картинки максимально на 4 монитора (каждый до разрешения Full HD), полученная еще GTX 6xx серией, реализована и на GK110, где она наиболее полно востребована, учитывая мощность и возможности данного ускорителя.

Максимальные разрешения и частоты в 3D: 2560×1600@60 Гц — по цифровому интерфейсу (для DVI-гнезд с Dual-Link/HDMI). Также декларирована поддержка разрешения 4К, однако работоспособность на такого рода мониторах нами еще не проверялась.

Что касается возможностей по ускорению декодирования видео, в 2007 году мы проводили такое исследование, с ним можно ознакомиться здесь.

Карта требует дополнительного питания в виде двух разъемов: 8- и 6-контактного.

О системе охлаждения.

Nvidia Geforce GTX 780 Ti 3072 МБ 384-битной GDDR5 PCI-E
Система охлаждения полностью повторяет эталонный кулер от GTX Titan. Кулер имеет традиционную закрытую форму с цилиндрическим вентилятором на конце. Радиатор, прижимающийся к ядру, основан на испарительной камере, внутри которой находится особая легкоиспаряемая жидкость. Нижняя пластина камеры прижимается к ядру, тепло передается жидкости, которая испаряется и уносит тепло к верхней пластине (имеющей ребра охлаждения), где пары конденсируются и т. д. Мы уже не раз рассказывали о такой схеме современного охлаждения топовых ускорителей.

Вентилятор гонит воздух через вышеупомянутый радиатор и имеет особую форму крыльчатки, дающую пониженный уровень шума. Должны сказать, что при максимальной нагрузке шум все же слегка ощущается, ведь максимальная частота вращения — выше 2200 оборотов в минуту.

Микросхемы памяти охлаждаются центральным радиатором (у кулера есть специальная пластина, прижимающаяся к микросхемам памяти и транзисторам силового блока).

Мы провели исследование температурного режима с помощью новой версии 4.2.1 утилиты EVGA PrecisionX (автор А. Николайчук AKA Unwinder) и получили следующие результаты.

Nvidia Geforce GTX 780 Ti 3072 МБ 384-битной GDDR5 PCI-E (Uber Mode/Режим полной мощности)

После 6 часов прогона карты под максимальной игровой нагрузкой максимальная температура ядра составила 84 градуса, что для такого мощного ускорителя более чем нормально.

Комплектация. Референс-карта прибыла к нам в ОЕМ-упаковке, поэтому комплекта нет.

Установка и драйверы

Конфигурация тестового стенда:

  • Компьютеры на базе процессора Intel Core i7-3960X (Socket 2011):
    • 2 процессора Intel Core i7-3960X (o/c 4 ГГц);
    • СО Hydro SeriesT H100i Extreme Performance CPU Cooler;
    • СО Intel Thermal Solution RTS2011LC;
    • системная плата Asus Sabertooth X79 на чипсете Intel X79;
    • системная плата MSI X79A-GD45(8D) на чипсете Intel X79;
    • оперативная память 16 ГБ DDR3 Corsair Vengeance CMZ16GX3M4A1600C9 1600 МГц;
    • жесткий диск Seagate Barracuda 7200.14 3 ТБ SATA2;
    • жесткий диск WD Caviar Blue WD10EZEX 1 TБ SATA2;
    • 2 SSD Corsair Neutron SSD CSSD-N120GB3-BK;
    • 2 блока питания Corsair CMPSU-1200AXEU (1200 Вт);
    • корпус Corsair Obsidian 800D Full Tower.
  • операционная система Windows 7 64-битная; DirectX 11;
  • монитор Dell UltraSharp U3011 (30″);
  • монитор Asus ProArt PA249Q (24″);
  • драйверы AMD версии Catalyst 13.11beta8; Nvidia версии 331.70(для GTX 780 Ti) / 331/58 (для остальных Geforce)

VSync отключен.

Синтетические тесты

Используемые нами пакеты синтетических тестов можно скачать здесь:

Для работы RightMark3D 2.0 требуется установленный пакет MS Visual Studio 2005 runtime, а также последнее обновление DirectX runtime.

В качестве синтетических тестов DirectX 11 мы использовали примеры из пакетов SDK компаний Microsoft и AMD, а также демонстрационную программу Nvidia. Во-первых, это HDRToneMappingCS11.exe и NBodyGravityCS11.exe из комплекта DirectX SDK (February 2010). Мы взяли и приложения обоих производителей видеочипов: Nvidia и AMD. Из ATI Radeon SDK были взяты примеры DetailTessellation11 и PNTriangles11 (они также есть и в DirectX SDK). Дополнительно использовалась демонстрационная программа компании Nvidia — Realistic Water Terrain, также известная как Island11.

Синтетические тесты проводились на следующих видеокартах:

  • Geforce GTX 780 Ti со стандартными параметрами (далее GTX 780 Ti)
  • Geforce GTX Titan со стандартными параметрами (далее GTX Titan)
  • Geforce GTX 780 со стандартными параметрами (далее GTX 780)
  • Radeon R9 290X со стандартными параметрами в режиме «Uber Mode» (далее R9 290X)
  • Radeon HD 7990 со стандартными параметрами (далее HD 7990)

Для анализа результатов новой видеокарты высшего класса Geforce GTX 780 Ti были выбраны именно эти решения по следующим причинам. Geforce GTX Titan является эксклюзивной моделью на базе того же чипа GK110, обладает большим объемом видеопамяти и продается намного дороже. Titan — прежде мощнейшее одночиповое решение компании Nvidia, и будет интересно посмотреть, насколько быстрее получилась новинка. Сравнение с Geforce GTX 780 будет интересно потому, что это менее дорогая видеокарта компании, основанная на таком же чипе, но имеющем на четверть меньше активных исполнительных блоков.

От конкурирующей компании AMD для нашего сравнения были выбраны две видеоплаты, основанные на разных графических процессорах и даже разном их количестве. Radeon R9 290X на время выхода новинки Nvidia является ее ближайшим конкурентом по цене, а заодно и самой производительной видеоплатой компании AMD. А Radeon HD 7990 имеет сразу два видеочипа Tahiti и не является конкурентом для GTX 780 Ti, но нам будет интересно посмотреть, как скорость такого мощного двухчипового решения соотносится с лучшим одночиповым в исполнении Nvidia.

Direct3D 9: тесты Pixel Shaders

Тесты текстурирования и заполнения (филлрейта) из пакета 3DMark Vantage мы рассмотрим чуть позже, а первая группа пиксельных шейдеров, которую мы используем, включает в себя различные версии пиксельных программ сравнительно низкой сложности: 1.1, 1.4 и 2.0, встречающихся разве что в старых играх, очень простых для современных видеочипов.

С простейшими тестами современные GPU справляются с легкостью, скорость мощных решений в них всегда упирается в различные ограничители, что особенно относится к Geforce. Эти тесты не способны показать возможности современных видеочипов и интересны лишь с точки зрения устаревших игровых приложений. Производительность современных видеокарт в них зачастую ограничена скоростью текстурирования или филлрейта, а видеокарты Nvidia давно перестали оптимизироваться для таких задач, что отлично показывают результаты сегодняшнего сравнения.

Посмотрите, все платы Geforce слабо отличаются по скорости друг от друга, разница между GTX 780 Ti и Titan составляет лишь 1—4% при гораздо большей теоретической. Вышедшая сегодня новая модель видеокарты в этом сравнении хоть и оказывается лучшей среди плат Nvidia, но явно уступает главному конкуренту в лице Radeon R9 290X, которая всегда оказывается заметно впереди. Посмотрим на результаты более сложных пиксельных программ промежуточных версий:

Тест Cook-Torrance более интенсивен вычислительно, и скорость в нем больше зависит от количества ALU и их частоты, но также и от скорости TMU. Этот тест исторически лучше подходит для графических решений компании AMD, хотя новые топовые платы Geforce на базе архитектуры Kepler в нем также показывают сильные результаты, что мы и видим по неплохим в целом цифрам новой Geforce GTX 780 Ti.

Самая мощная плата из семейства Geforce GTX 700 оказалась быстрее эксклюзивной GTX Titan на 5—6%, что также меньше, чем теоретическая разница, и может быть объяснено разве что упором в производительность блоков ROP. Своего главного конкурента новинка компании Nvidia в одном из тестов слегка обходит — в тесте Water, где важнее скорость текстурирования, я не математическая производительность, по которой у плат AMD есть некоторое преимущество. Поэтому во втором тесте результаты Geforce GTX 780 Ti немного ниже, чем у Radeon R9 290X. В среднем же в этих тестах явный паритет.

Direct3D 9: тесты пиксельных шейдеров Pixel Shaders 2.0

Эти тесты пиксельных шейдеров DirectX 9 сложнее предыдущих, они близки к тому, что мы сейчас видим в мультиплатформенных играх, и делятся на две категории. Начнем с более простых шейдеров версии 2.0:

  • Parallax Mapping — знакомый по большинству современных игр метод наложения текстур, подробно описанный в статье «Современная терминология 3D-графики».
  • Frozen Glass — сложная процедурная текстура замороженного стекла с управляемыми параметрами.

Существует два варианта этих шейдеров: с ориентацией на математические вычисления и с предпочтением выборки значений из текстур. Рассмотрим математически интенсивные варианты, более перспективные с точки зрения будущих приложений:

Это универсальные тесты, производительность в которых зависит и от скорости блоков ALU, и от скорости текстурирования, также в них важен общий баланс чипа и эффективность исполнения вычислительных программ. Прошлые наши исследования показывают, что в этих конкретных задачах архитектура GCN от AMD выступает значительно лучше графической архитектуры Nvidia Kepler, так получилось и в этот раз.

В тесте «Frozen Glass» скорость больше зависит от математической производительности, и в случае всех плат Geforce всегда есть некая преграда, из-за которой платы Nvidia проигрывают почти вдвое почти лучшей одночиповой Radeon. Модель Geforce GTX 780 Ti оказывается лишь на 1% быстрее GTX Titan, что лишь подтверждает странный упор производительности для всех Geforce.

А вот во втором тесте «Parallax Mapping» новая видеокарта Geforce GTX 780 Ti показала производительность на 15% выше, чем у GTX Titan, что уже очень близко к теории. Что касается сравнения с конкурентом, то сопоставление новинки с соперничающей моделью Radeon HD R9 290X не самое радужное — плата AMD быстрее и в этом тесте — почти на треть. Рассмотрим эти же тесты в модификации с предпочтением выборок из текстур математическим вычислениям:

В этих условиях положение видеоплат производства компании Nvidia несколько улучшилось, ведь они традиционно справляются с текстурными выборками лучше, чем с математическими вычислениями. Но Radeon R9 290X все равно опережает сегодняшнюю новинку с хорошим запасом, особенно в тесте Frozen Glass, где разница остается неприличной. Новинка на 4—12% быстрее, чем GTX Titan, что более-менее соотносится с теорией. Что касается сравнения с R9 290X, то GTX 780 Ti близка к ней только в тесте Parallax Mapping, да и то разница превышает 20%.

Впрочем, это были давно устаревшие задачи, с упором в текстурирование, чего почти не встречается в играх. Дальше мы рассмотрим результаты еще двух тестов пиксельных шейдеров, но уже версии 3.0, самых сложных из наших тестов пиксельных шейдеров для Direct3D 9. Они более показательны с точки зрения современных игр на ПК, среди которых много мультиплатформенных. Тесты отличаются тем, что сильно нагружают и ALU, и текстурные модули, обе шейдерные программы сложны и длинны и включают большое количество ветвлений:

  • Steep Parallax Mapping — значительно более «тяжелая» разновидность техники parallax mapping, также описанная в статье «Современная терминология 3D-графики».
  • Fur — процедурный шейдер, визуализирующий мех.

Эти тесты уже совсем не ограничены производительностью только текстурных выборок или филлрейтом, и скорость в них более всего зависит от эффективности исполнения сложного шейдерного кода. В самых тяжелых DX9-тестах из первой версии пакета RightMark видеокарты производства Nvidia в предыдущие годы были несколько сильнее, но архитектура GCN помогла видеокартам AMD вырваться вперед как минимум в тесте сложного параллакс-маппинга, особенно после тщательной доводки драйверов Catalyst.

Топовая новинка компании Nvidia показывает в этих задачах очень хороший результат, опережая лучшую из предшественниц на базе того же чипа GK110 на 11%, что близко к теоретическим цифрам разницы в математической производительности. Что касается сравнения с самой мощной топовой видеокартой на базе чипа Hawaii от конкурента, то GTX 780 Ti отстает от нее лишь в тесте параллакс-маппинга. А вот в тесте Fur новая плата Radeon R9 290X всё же проиграла Geforce GTX 780 Ti, хотя и не так уж сильно. В общем, в этих тестах ситуация неоднозначна.

Direct3D 10: тесты пиксельных шейдеров PS 4.0 (текстурирование, циклы)

Во вторую версию RightMark3D вошли два уже знакомых нам теста PS 3.0 под Direct3D 9, которые были переписаны под DirectX 10, а также еще два новых теста. В первую пару добавились возможности включения самозатенения и шейдерного суперсэмплинга, что дополнительно увеличивает нагрузку на видеочипы.

Данные тесты измеряют производительность выполнения пиксельных шейдеров с циклами при большом количестве текстурных выборок (в самом тяжелом режиме до нескольких сотен выборок на пиксель) и сравнительно небольшой загрузке ALU. Иными словами, в них измеряется скорость текстурных выборок и эффективность ветвлений в пиксельном шейдере.

Первым тестом пиксельных шейдеров будет Fur. При самых низких настройках в нем используется от 15 до 30 текстурных выборок из карты высот и две выборки из основной текстуры. Режим Effect detail — «High» увеличивает количество выборок до 40—80, включение «шейдерного» суперсэмплинга — до 60—120 выборок, а режим «High» совместно с SSAA отличается максимальной «тяжестью» — от 160 до 320 выборок из карты высот.

Проверим сначала режимы без включенного суперсэмплинга, они относительно просты, и соотношение результатов в режимах «Low» и «High» должно быть примерно одинаковым.

Производительность в этом тесте зависит от количества и эффективности блоков TMU, влияет и эффективность выполнения сложных программ. А в варианте без суперсэмплинга дополнительное влияние на производительность оказывает еще и эффективный филлрейт и пропускная способность памяти. Результаты при детализации уровня «High» получаются до полутора раза ниже, чем при «Low».

В задачах процедурной визуализации меха с большим количеством текстурных выборок за пару поколений графических архитектур компания AMD сократила разницу с платами Nvidia, а с выпуском видеочипов на базе архитектуры GCN и вовсе вырвалась вперед, и теперь именно платы Radeon являются лидерами в этих сравнениях, что говорит о высокой эффективности выполнения ими данных программ.

Новая топовая плата Geforce GTX 780 Ti опережает эксклюзивную модель GTX Titan на 11—12%, обходя остальные решения Nvidia, что соответствует теории. Но, с учетом того, что в этом тесте даже платы AMD предыдущего поколения быстрее новинок серии Geforce GTX 780, рассматривать сравнение R9 290X и GTX 780 Ti нет смысла — модель компании AMD показывает слишком высокий результат, не говоря уже о двухчиповой карте предыдущего поколения, которая стала тут быстрейшей.

Посмотрим на результат этого же теста, но с включенным «шейдерным» суперсэмплингом, увеличивающим работу в четыре раза: возможно, в такой ситуации что-то изменится, и ПСП с филлрейтом будут влиять меньше:

Ситуация похожа на ту, что мы видели на предыдущей диаграмме, но видеокарты Nvidia уступают своим соперникам от AMD даже еще чуть больше. Новинка Geforce GTX 780 Ti оказывается быстрее модели GTX Titan также до 11%, что близко к теоретической разнице по математической производительности. К сожалению, проигрыш прямому конкуренту в виде Radeon R9 290X весьма впечатляющий. Снова подтверждается то, что преимущество в подобных вычислениях явно у чипов компании AMD, предпочитающих попиксельные вычисления.

Следующий DX10-тест измеряет производительность исполнения сложных пиксельных шейдеров с циклами при большом количестве текстурных выборок и называется Steep Parallax Mapping. При низких настройках он использует от 10 до 50 текстурных выборок из карты высот и три выборки из основных текстур. При включении тяжелого режима с самозатенением число выборок возрастает в два раза, а суперсэмплинг увеличивает это число в четыре раза. Наиболее сложный тестовый режим с суперсэмплингом и самозатенением выбирает от 80 до 400 текстурных значений, то есть в восемь раз больше по сравнению с простым режимом. Проверяем сначала простые варианты без суперсэмплинга:

Второй пиксель-шейдерный тест Direct3D 10 интереснее с практической точки зрения, так как разновидности parallax mapping широко применяются в играх, а тяжелые варианты, вроде steep parallax mapping, давно используются во многих проектах, например в играх серий Crysis и Lost Planet. Кроме того, в нашем тесте, помимо суперсэмплинга, можно включить самозатенение, увеличивающее нагрузку на видеочип еще примерно в два раза — такой режим называется «High».

Диаграмма в целом похожа на предыдущую, также без включения SSAA, и в этот раз Geforce GTX 780 Ti опережает модель GTX Titan аж на 16—18%, что даже больше теоретической разницы в скорости ALU. Скорее всего, скорость тут зависит еще и от ПСП видеопамяти. Но так как видеоплаты Nvidia в этом тесте всегда справляются с работой хуже конкурирующих решений от AMD, то модель Geforce GTX 780 Ti в обновленном D3D10-варианте теста без суперсэмплинга снова показывает результат хуже, чем Radeon R9 290X, не говоря уже о двухчиповой HD 7990. Посмотрим, что изменит включение суперсэмплинга:

Всё снова примерно так же, как и в «Fur» — при включении суперсэмплинга и самозатенения, задача получается еще более тяжелой, совместное включение сразу двух опций увеличивает нагрузку на карты почти в восемь раз, вызывая серьезное падение производительности. Разница между скоростными показателями протестированных видеокарт изменилась лишь немного, включение суперсэмплинга сказывается меньше, чем в предыдущем случае.

Мы снова видим, что графические решения Radeon в наших D3D10-тестах пиксельных шейдеров работают более эффективно, по сравнению с конкурирующими Geforce, и старшая топовая плата на чипе Hawaii обгоняет анонсированную сегодня Geforce GTX 780 Ti с огромным преимуществом. По сравнению с другими платами Nvidia, новинка показывает лучшую производительность, опережая модель GTX Titan на 10—11%, насколько примерно должна и по теории. Понятно, что GTX 780 отстала еще больше. Посмотрим, что будет в чисто вычислительных задачах.

Direct3D 10: тесты пиксельных шейдеров PS 4.0 (вычисления)

Следующая пара тестов пиксельных шейдеров содержит минимальное количество текстурных выборок для снижения влияния производительности блоков TMU. В них используется большое количество арифметических операций, и измеряют они именно математическую производительность видеочипов, скорость выполнения арифметических инструкций в пиксельном шейдере.

Первый математический тест — Mineral. Это тест сложного процедурного текстурирования, в котором используются лишь две выборки из текстурных данных и 65 инструкций типа sin и cos.

Результаты предельных математических тестов обычно лишь примерно соответствуют разнице в частотах и количестве вычислительных блоков, на них влияет разная эффективность их использования в конкретных решениях, также важна и оптимизация драйверов. В случае теста Mineral, новая модель Geforce GTX 780 Ti всего лишь на 8% обгоняет GTX Titan, что явно ниже теоретической разницы по математической производительности между ними. Вероятно, сказывается какое-то ограничение, потому что разницей в характеристиках этого не объяснить.

Как мы уже знаем, архитектуры AMD в таких тестах всегда имели значительное преимущество перед конкурирующими решениями Nvidia, но в архитектуре Kepler калифорнийской компании удалось увеличить число потоковых процессоров, и пиковая математическая производительность моделей Geforce, начиная с GTX 680, серьезно возросла. Это мы видим по результатам нашего первого математического теста, где лучшая видеокарта Geforce хотя всё еще и уступает плате на основе чипа Hawaii, но конкурент GTX 780 Ti опережает ее уже лишь на 9%. Впрочем, судя по ценам, видеокарта Nvidia должна быть впереди, так что есть еще над чем поработать.

Рассмотрим второй тест шейдерных вычислений, который носит название Fire. Он тяжелее для ALU, и текстурная выборка в нем только одна, а количество инструкций типа sin и cos увеличено вдвое, до 130. Посмотрим, что изменилось при увеличении нагрузки:

А вот во втором математическом тесте мы видим совсем другие результаты видеокарт относительно друг друга. Разница между GTX Titan и сегодняшней новинкой в этом тесте стала даже чуть больше теоретической — 19%. Это гораздо больше походит на истинную разницу в математической производительности.

К сожалению, даже при таком сильном результате, новый одночиповый топ Nvidia серии Geforce GTX 700 не может справиться со своим конкурентом от AMD, еще и имеющим меньшую цену. Geforce GTX 780 Ti не может ничего противопоставить свежей плате компании AMD, которая оказывается быстрее нее во втором математическом тесте на 12%. Радует лишь то, что GTX 780 Ti явно быстрее GTX 780 и Titan.

Direct3D 10: тесты геометрических шейдеров

В пакете RightMark3D 2.0 есть два теста скорости геометрических шейдеров, первый вариант носит название «Galaxy», техника аналогична «point sprites» из предыдущих версий Direct3D. В нем анимируется система частиц на GPU, геометрический шейдер из каждой точки создает четыре вершины, образующие частицу. Аналогичные алгоритмы должны получить широкое использование в будущих играх под DirectX 10.

Изменение балансировки в тестах геометрических шейдеров не влияет на конечный результат рендеринга, итоговая картинка всегда абсолютно одинакова, изменяются лишь способы обработки сцены. Параметр «GS load» определяет, в каком из шейдеров производятся вычисления — в вершинном или геометрическом. Количество вычислений всегда одинаково.

Рассмотрим первый вариант теста «Galaxy», с вычислениями в вершинном шейдере, для трех уровней геометрической сложности:

Соотношение скоростей при разной геометрической сложности сцен примерно одинаково для всех решений, производительность соответствует количеству точек, с каждым шагом падение FPS близко к двукратному. Задача эта для современных видеокарт не слишком сложная, и производительность в ней ограничена скоростью обработки геометрии, а иногда — пропускной способностью памяти.

Есть некоторая разница между результатами видеокарт на чипах Nvidia и AMD, обусловленная отличиями в геометрических конвейерах чипов этих компаний. Если в предыдущих тестах с пиксельными шейдерами платы AMD были заметно эффективнее и быстрее, то тесты геометрии показывают, что в таких задачах платы Nvidia оказываются производительнее, даже несмотря на увеличение количества геометрических блоков в Hawaii.

Но разница между AMD и Nvidia уже не так велика, как это было раньше. У решений Nvidia с геометрической производительностью дела всегда были лучше, и поэтому они оказываются быстрее. Сегодняшняя новинка Geforce GTX 780 Ti оказывается примерно равной по производительности более раннему решению в виде GTX Titan, что говорит о тестировании производительности именно геометрического конвейера. Посмотрим, как изменится ситуация при переносе части вычислений в геометрический шейдер:

При изменении нагрузки в этом тесте цифры слегка улучшились и для плат AMD, и для решений Nvidia. Видеокарты в этом тесте геометрических шейдеров слабо реагируют на изменение параметра GS load, отвечающего за перенос части вычислений в геометрический шейдер, поэтому и все выводы остаются прежними. Новая модель Geforce GTX 780 Ti всё так же показывает производительность на одном уровне с другими платами на базе чипа GK110. А конкурирующий Radeon R9 290X всё так же отстает от них, так что в выводах ничего не меняется.

«Hyperlight» — это второй тест геометрических шейдеров, демонстрирующий использование сразу нескольких техник: instancing, stream output, buffer load. В нем используется динамическое создание геометрии при помощи отрисовки в два буфера, а также новая возможность Direct3D 10 — stream output. Первый шейдер генерирует направление лучей, скорость и направление их роста, эти данные помещаются в буфер, который используется вторым шейдером для отрисовки. По каждой точке луча строятся 14 вершин по кругу, всего до миллиона выходных точек.

Новый тип шейдерных программ используется для генерации «лучей», а с параметром «GS load», выставленным в «Heavy» — еще и для их отрисовки. Иначе говоря, в режиме «Balanced» геометрические шейдеры используются только для создания и «роста» лучей, вывод осуществляется при помощи «instancing», а в режиме «Heavy» выводом также занимается геометрический шейдер.

К сожалению, но «Hyperlight» просто не работает на всех современных видеокартах компании AMD, включая и топовую Radeon R9 290X. В какой-то момент очередное обновление драйверов привело к тому, что данный тест просто не запускается на платах этой компании. И поэтому самый интересный геометрический тест нашего пакета, который предполагает большую нагрузку именно на геометрические шейдеры, ничего не может сказать о сравнении плат AMD и Nvidia.

Но мы хотя бы можем посмотреть, что изменилось в случае решений Nvidia. Относительные результаты решений в разных режимах примерно соответствуют изменению нагрузки: во всех случаях производительность неплохо масштабируется и близка к теоретическим параметрам, по которым каждый следующий уровень «Polygon count» должен быть чуть менее чем в два раза медленней.

Скорость рендеринга в этом тесте ограничена в основном геометрической производительностью, но в случае сбалансированной загрузки геометрических шейдеров все результаты близки. Geforce GTX 780 Ti показала скорость на 6—8% выше уровня Titan, что говорит о том, что дело явно не только в геометрической производительности. Впрочем, цифры могут серьезно измениться на следующей диаграмме, в тесте с более активным использованием геометрических шейдеров. Также будет интересно сравнить друг с другом результаты, полученные в режимах «Balanced» и «Heavy».

В этом тесте наиболее важным параметром является скорость обработки геометрии, с которой дела у Nvidia обстоят прекрасно, особенно у полностью разблокированного чипа GK110, на котором основана рассматриваемая модель Geforce GTX 780 Ti. Из-за большего количества геометрических блоков Geforce GTX 780 Ti превосходит плату GTX Titan на 14—19%, а последняя, в свою очередь, ощутимо быстрее младшей платы на базе чипа GK110 — GTX 780.

Direct3D 10: скорость выборки текстур из вершинных шейдеров

В тестах «Vertex Texture Fetch» измеряется скорость большого количества текстурных выборок из вершинного шейдера. Тесты схожи, по сути, так что соотношение между результатами карт в тестах «Earth» и «Waves» должно быть примерно одинаковым. В обоих тестах используется displacement mapping на основании данных текстурных выборок, единственное существенное отличие состоит в том, что в тесте «Waves» используются условные переходы, а в «Earth» — нет.

Рассмотрим первый тест «Earth», сначала в режиме «Effect detail Low»:

Предыдущие исследования показали, что на результаты этого теста может влиять и филлрейт, и пропускная способность памяти, что особенно заметно в легком режиме. Результаты видеокарт Nvidia зачастую ограничены чем-то странным, о чем говорят схожие результаты всех видеокарт, основанных на графическом процессоре GK110.

Самой быстрой среди одночиповых решений в сравнении ожидаемо стала топовая Radeon R9 290X, а представленная сегодня новинка Geforce GTX 780 Ti проигрывает ей во всех режимах, даже в тяжелом, где разница меньше всего. Новая топовая плата Nvidia превзошла по скорости GTX Titan в этом тесте на 10—13%, что близко к теории. Посмотрим на производительность в этом же тесте с увеличенным количеством текстурных выборок:

Ситуация на диаграмме серьезно изменилась — результаты решений компании AMD в тяжелых режимах ухудшились, а для Geforce — остались почти на тех же позициях. Теперь Radeon R9 290X показывает результат заметно выше скорости новинки Nvidia только в самом простом режиме, а в среднем и тяжелом анонсированная сегодня Geforce GTX 780 Ti ее опережает. Разница между GTX 780 Ti и GTX Titan составляет 9—12%, что соответствует теории.

Рассмотрим результаты второго теста текстурных выборок из вершинных шейдеров. Тест «Waves» отличается меньшим количеством выборок, зато в нем используются условные переходы. Количество билинейных текстурных выборок в данном случае до 14 («Effect detail Low») или до 24 («Effect detail High») на каждую вершину. Сложность геометрии изменяется аналогично предыдущему тесту.

Результаты во втором тесте вершинного текстурирования «Waves» в целом схожи с теми, что мы видели на предыдущих диаграммах. По каким-то причинам показатели всех плат Geforce на базе GK110 в легком режиме остаются сильно заниженными, и они чуть ли не вдвое хуже скорости двухчиповой Radeon HD 7990. Скорость же новой топовой платы Geforce GTX 780 Ti относительно своих собратьев в этом тесте неплоха, новый одночиповый топ на базе GK110 оказался быстрее GTX Titan на 8—10%. Рассмотрим второй вариант этого же теста:

Во втором тесте текстурных выборок с усложнением задачи скорость всех решений стала ниже, и особенно серьезно пострадали видеокарты Geforce в легких режимах. Результаты сегодняшней новинки в лице Geforce GTX 780 Ti от Nvidia оказались лишь на 5% лучше, чем у GTX Titan на базе того же чипа, что говорит о том, что основным лимитом производительности в этом тесте для видеокарт Nvidia является производительность блоков ROP, скорее всего.

3DMark Vantage: тесты Feature

Синтетические тесты из пакета 3DMark Vantage покажут нам то, что мы ранее упустили. Feature тесты из этого тестового пакета обладают поддержкой DirectX 10 и интересны тем, что отличаются от наших и до сих пор актуальны. Вероятно, при анализе результатов новой видеокарты Geforce GTX 780 Ti в этом пакете мы сделаем какие-то новые полезные выводы, ускользнувшие от нас в тестах из пакетов семейства RightMark.

Feature Test 1: Texture Fill

Первый тест измеряет производительность блоков текстурных выборок. Используется заполнение прямоугольника значениями, считываемыми из маленькой текстуры с использованием многочисленных текстурных координат, которые изменяются каждый кадр.

Эффективность видеокарт AMD и Nvidia в текстурном тесте компании Futuremark достаточно высока и сравнительные цифры моделей близки к соответствующим теоретическим параметрам. Старшая топовая модель Geforce GTX 780 Ti, которая вышла сегодня, в этом тесте лишь на 2% быстрее бывшей недавно наиболее производительной видеокартой GTX Titan, что не слишком близко к теории, надо признать.

Естественно, что GTX 780 отстает от пары самых дорогих решений Nvidia по скорости текстурирования еще больше. Что касается сравнения платы Geforce GTX 780 Ti с решением конкурента Radeon R9 290X, то новинка Nvidia по текстурной скорости чуть быстрее платы, основанной на графическом процессоре Hawaii. Что было ожидаемо, исходя из теоретических показателей.

Feature Test 2: Color Fill

Вторая задача — тест скорости заполнения. В нем используется очень простой пиксельный шейдер, не ограничивающий производительность. Интерполированное значение цвета записывается во внеэкранный буфер (render target) с использованием альфа-блендинга. Используется 16-битный внеэкранный буфер формата FP16, наиболее часто используемый в играх, применяющих HDR-рендеринг, поэтому такой тест является вполне своевременным.

В данном случае измеряется не пиковая скорость блоков ROP, цифры из подтеста 3DMark Vantage показывают производительность блоков ROP с учетом величины пропускной способности видеопамяти (т. н. «эффективный филлрейт»), и тест измеряет именно пропускную способность, а не производительность ROP.

Поэтому результат анонсированной платы Nvidia в тесте производительности блоков ROP получился на 10% лучшим, по сравнению с GTX Titan, так как теоретическая разница по ПСП между ними есть. То же самое касается и опережения конкурента в лице Radeon R9 290X — на деле скорость именно блоков ROP у платы AMD выше, но из-за меньшей ПСП она проигрывает новинке Geforce GTX 780 Ti.

Feature Test 3: Parallax Occlusion Mapping

Один из самых интересных feature-тестов, так как подобная техника уже используется в играх. В нем рисуется один четырехугольник (точнее, два треугольника) с применением специальной техники Parallax Occlusion Mapping, имитирующей сложную геометрию. Используются довольно ресурсоемкие операции по трассировке лучей и карта глубины большого разрешения. Также эта поверхность затеняется при помощи тяжелого алгоритма Strauss. Это тест очень сложного и тяжелого для видеочипа пиксельного шейдера, содержащего многочисленные текстурные выборки при трассировке лучей, динамические ветвления и сложные расчеты освещения по Strauss.

Этот тест пакета 3DMark Vantage отличается от проведенных нами ранее тем, что результаты в нем зависят не исключительно от скорости математических вычислений, эффективности исполнения ветвлений или скорости текстурных выборок, а от нескольких параметров одновременно. Для достижения высокой скорости в этой задаче важен верный баланс GPU, а также эффективность выполнения сложных шейдеров.

В данном случае важны и математическая, и текстурная производительность, а возможно и скорость ROP, так как в этой «синтетике» из 3DMark Vantage новая плата Geforce GTX 780 Ti опережает более дорогую плату Nvidia лишь на 5%, что не совсем соответствует теоретической разнице в скорости текстурирования и вычислительной производительности.

Если сравнивать новинку с решением конкурента, то в этом тесте GTX 780 Ti не может противостоять Radeon R9 290X, не говоря о двухчиповой HD 7990, так как GPU производства AMD являются более эффективными в этой конкретной задаче. Увы, но отставание GTX 780 от ближайшего по цене конкурента составляет 20%, что довольно много.

Feature Test 4: GPU Cloth

Четвертый тест интересен тем, что рассчитывает физические взаимодействия (имитация ткани) при помощи видеочипа. Используется вершинная симуляция, при помощи комбинированной работы вершинного и геометрического шейдеров, с несколькими проходами. Используется stream out для переноса вершин из одного прохода симуляции к другому. Таким образом, тестируется производительность исполнения вершинных и геометрических шейдеров и скорость stream out.

Скорость рендеринга в этом тесте также должна зависеть сразу от нескольких параметров и основными факторами влияния должна являться производительность обработки геометрии и эффективность выполнения геометрических шейдеров. Но картина на диаграмме получилась весьма странная, обе видеокарты Radeon показывают частоту кадров около 130 FPS, а результаты трех Geforce также уперлись в предел, но уже на уровне около 95—100 FPS, как мы видели и ранее.

И всё же, новинка опередила дорогущую GTX Titan на 7%, как ни странно. Новая модель топового семейства от Nvidia показывает скорость на треть хуже, чем старшая плата конкурента — Radeon R9 290X. И всё это несмотря на то, что геометрическая производительность видеокарт Nvidia должна быть выше, чем у решений конкурента, так как они имеют большее количество соответствующих исполнительных блоков. Мы еще перепроверим геометрическую производительность в тестах DirectX 11.

Feature Test 5: GPU Particles

Тест физической симуляции эффектов на базе систем частиц, рассчитываемых при помощи видеочипа. Также используется вершинная симуляция, каждая вершина представляет одиночную частицу. Stream out используется с той же целью, что и в предыдущем тесте. Рассчитывается несколько сотен тысяч частиц, все анимируются отдельно, также рассчитываются их столкновения с картой высот.

Аналогично одному из тестов нашего RightMark3D 2.0, частицы отрисовываются при помощи геометрического шейдера, который из каждой точки создает четыре вершины, образующие частицу. Но тест больше всего загружает шейдерные блоки вершинными расчетами, также тестируется stream out.

Во втором геометрическом тесте из 3DMark Vantage ситуация изменилась, и в этот раз явным лидером является двухчиповая Radeon HD 7990, которая идет у нас сегодня вне зачета. Новинка компании Nvidia смогла всего лишь на 1% превзойти плату GTX Titan на базе того же чипа GK110, что говорит об упоре именно в геометрическую производительность, по крайней мере для плат Nvidia.

Если сравнивать скорость новинки Geforce с единственным конкурентом от AMD, то новая плата весьма близка к своему сопернику — они обе показывают схожий результат в данной задаче. И это хороший результат скорее для Radeon, ведь он и стоит дешевле, да и раньше синтетические тесты имитации тканей и частиц из тестового пакета 3DMark Vantage, в которых активно используются геометрические шейдеры, показывали, что платы Nvidia значительно опережают конкурирующие модели компании AMD, а теперь всё не так очевидно.

Feature Test 6: Perlin Noise

Последний feature-тест пакета Vantage является математически-интенсивным тестом видеочипа, он рассчитывает несколько октав алгоритма Perlin noise в пиксельном шейдере. Каждый цветовой канал использует собственную функцию шума для большей нагрузки на видеочип. Perlin noise — это стандартный алгоритм, часто применяемый в процедурном текстурировании, он использует много математических расчетов.

В чисто математическом тесте из пакета компании Futuremark, показывающем пиковую производительность видеочипов в предельных задачах, мы видим отличающееся распределение результатов, по сравнению с аналогичными тестами из нашего тестового пакета. В этом случае производительность решений не совсем соответствует теории и расходится с тем, что мы видели ранее в математических тестах из пакета RightMark 2.0.

Видеокарты Radeon компании AMD, созданные на базе чипов архитектуры GCN, очень хорошо справляются с подобными задачами и показывают лучшие результаты в случаях, когда выполняется интенсивная «математика». Это не относится разве что к двухчиповой плате Radeon HD 7990, которая явно неэффективно отработала в этом случае. Однако если сравнивать анонсированную сегодня Geforce GTX 780 Ti с Radeon R9 290X, то последняя обходит плату Nvidia на 18%.

Вышедшая сегодня на рынок видеокарта GTX 780 Ti показала скорость даже чуть медленнее модели GTX Titan того же производителя и основанную на таком же чипе, что абсолютно не соответствует теории. Сегодняшняя новинка всё-таки превзошла GTX 780 на 11%, хотя должна бы победить с куда большим перевесом. Вероятно, сказалось какое-то ограничение GPU Boost, снизившей частоту GK110 в составе GTX 780 Ti во время выполнения последнего синтетического теста пакета.

Direct3D 11: Вычислительные шейдеры

Чтобы протестировать новое решение компании Nvidia в задачах, использующих такие возможности DirectX 11, как тесселяция и вычислительные шейдеры, мы воспользовались примерами из пакетов для разработчиков (SDK) и демонстрационными программами компаний Microsoft, Nvidia и AMD.

Сначала мы рассмотрим тесты, использующие вычислительные (Compute) шейдеры. Их появление — одно из наиболее важных нововведений в последних версиях DX API, они уже используются в современных играх для выполнения различных задач: постобработки, симуляций и т. п. В первом тесте показан пример HDR-рендеринга с tone mapping из DirectX SDK, с постобработкой, использующей пиксельные и вычислительные шейдеры.

Скорость расчетов в вычислительном и пиксельном шейдерах для всех плат AMD и Nvidia примерно одинаковая, хотя у видеокарт с GPU предыдущих архитектур были различия (любопытно, что у видеоплаты на Hawaii она снова проявилась, хоть и небольшая). Судя по нашим предыдущим тестам, результаты в задаче явно зависят не только от математической мощи и эффективности вычислений, но и от других факторов, вроде пропускной способности памяти и производительности ROP.

В данном случае скорость видеокарт упирается в ПСП. Новая топовая плата компании Nvidia в этом тесте оказалась на 12% быстрее предшествующей модели GTX Titan. Если сравнивать новинку с платой AMD, то Geforce GTX 780 Ti и прямой конкурент Radeon R9 290X примерно равны, хотя плата Nvidia стоит несколько дороже.

Второй тест вычислительных шейдеров также взят из Microsoft DirectX SDK, в нем показана расчетная задача гравитации N тел (N-body) — симуляция динамической системы частиц, на которую воздействуют физические силы, такие как гравитация.

В случае этого теста расклад сил между решениями разных компаний получился совершенно иной. У видеоплат Nvidia есть явное преимущество в подобных расчетных задачах, а видеокарты Radeon не очень хорошо справляются с ними. Поэтому было бы логично, если бы в этом тесте победила мощнейшая из плат Nvidia — представленная сегодня карта модели Geforce GTX 780 Ti, имеющая больше активных вычислительных блоков и работающая на высокой частоте.

Но нет, GTX 780 Ti в вычислительной задаче снова уступила пару процентов более дорогой GTX Titan. Скорее всего, в расчетных задачах частота графического процессора GK110 в случае игровой видеокарты опускается ниже уровня, устанавливаемого в случае «вычислительного» варианта — GTX Titan. Что же касается конкурента, то Radeon R9 290X остался далеко позади, почти вдвое уступив новинке Nvidia.

Direct3D 11: Производительность тесселяции

Вычислительные шейдеры очень важны, но еще одним интересным нововведением в Direct3D 11 считается аппаратная тесселяция. Мы очень подробно рассматривали ее в своей теоретической статье про Nvidia GF100. Тесселяцию уже довольно давно начали использовать в DX11-играх, таких как STALKER: Зов Припяти, DiRT 2, Aliens vs Predator, Metro Last Light, Civilization V, Crysis 3, Battlefield 3 и других. В некоторых из них тесселяция используется для моделей персонажей, в других — для имитации реалистичной водной поверхности или ландшафта.

Существует несколько различных схем разбиения графических примитивов (тесселяции). Например, phong tessellation, PN triangles, Catmull-Clark subdivision. Так, схема разбиения PN Triangles используется в STALKER: Зов Припяти, а в Metro 2033 — Phong tessellation. Эти методы сравнительно быстро и просто внедряются в процесс разработки игр и существующие движки, поэтому и стали популярными.

Первым тестом тесселяции будет пример Detail Tessellation из ATI Radeon SDK. В нем реализована не только тесселяция, но и две разные техники попиксельной обработки: простое наложение карт нормалей и parallax occlusion mapping. Что ж, сравним DX11-решения AMD и Nvidia в различных условиях:

В тесте простого бампмаппинга скорость чаще всего упирается в ПСП или производительность ROP, и результат новой видеокарты Geforce GTX 780 Ti подтверждает это — он почти идентичен скорости GTX Titan в этом тесте. Все Geforce в этом подтесте далеко позади Radeon R9 290X, но уже не из-за ПСП, а из-за скорости блоков ROP.

Во втором подтесте с заметно более сложными попиксельными расчетами все несколько интереснее. Эффективность выполнения таких математических вычислений в пиксельных шейдерах у чипов архитектуры GCN выше, чем у Kepler, поэтому неудивительно, что все платы Nvidia снова проиграли новому решению на базе чипа Hawaii. Radeon R9 290X на базе нового графического процессора заметно быстрее в том числе и новинки Geforce GTX 780 Ti, которая, в свою очередь, обогнала GTX Titan на впечатляющие 18%, что примерно соответствует теории по скорости математических вычислений.

В тесте с тесселяцией результат новинки примерно такой же, что и в первом подтесте. Модель GTX 780 Ti показала почти одинаковую с GTX Titan скорость, проиграв прямому сопернику в лице Radeon R9 290X. Так получилось потому, что в этом тесте тесселяции разбиение треугольников умеренное и скорость в нем не упирается в производительность блоков обработки геометрии, поэтому скорости обработки треугольников у плат компании AMD хватает для того, чтобы показать высокие результаты.

Вторым тестом производительности тесселяции будет еще один пример для 3D-разработчиков из ATI Radeon SDK — PN Triangles. Собственно, оба примера входят также и в состав DX SDK, так что мы уверены, что на их основе создают свой код игровые разработчики. Этот пример мы протестировали с различным коэффициентом разбиения (tessellation factor), чтобы понять, как сильно влияет его изменение на общую производительность.

А в этом примере применяется уже более сложная геометрия, поэтому и сравнение геометрической мощи различных решений по этому тесту приносит и другие выводы. Все представленные в материале современные решения хорошо справляются с легкой и средней геометрической нагрузкой, показывая высокую скорость, но в тяжелых условиях графические процессоры Nvidia всё же намного производительнее.

Анонсированная сегодня модель Geforce GTX 780 Ti показала аномально низкий результат, по сравнению с GTX Titan на таком же чипе GK110. И отставание в 15—20% при трех самых простых уровнях тесселяции ничем не объяснить, ведь GTX 780 Ti по всем теоретическим параметрам (кроме объема видеопамяти) быстрее Titan. Вероятно, мы видим результат программной ошибки в виде неоптимизированных драйверов. И только при самой сложной тесселяции новинка вырывается вперед, как и должна.

И сравнение с конкурентом в тяжелых условиях для новинки положительное, ведь у нее больше геометрических блоков, по сравнению с Hawaii. Поэтому GTX 780 Ti гораздо быстрее карты AMD нового поколения, но только в тяжелых условиях, когда скорость Radeon серьезно снижается, в то время как у новой платы Nvidia она остается достаточно высокой.

Рассмотрим результаты еще одного теста — демонстрационной программы Nvidia Realistic Water Terrain, также известной как Island. В этой демке используется тесселяция и карты смещения (displacement mapping) для рендеринга реалистично выглядящей поверхности океана и ландшафта.

Тест Island не является чисто синтетическим тестом для измерения исключительно геометрической производительности GPU, так как он содержит и сложные пиксельные и вычислительные шейдеры в том числе, и такая нагрузка ближе к реальным играм, в которых используются все блоки GPU, а не только геометрические, как в предыдущих тестах геометрии. Впрочем, основной все равно остается именно нагрузка на блоки обработки геометрии.

Мы протестировали решения при четырех разных коэффициентах тесселяции — в данном случае настройка называется Dynamic Tessellation LOD. Если при самом первом коэффициенте разбиения треугольников, когда скорость не ограничена производительностью геометрических блоков, новая топовая видеокарта от компании AMD показывает достаточно высокий результат, стараясь конкурировать с Geforce, но до уровня GTX 780 Ti она не дотягивается даже в этом случае. А при увеличении геометрической работы, новинка Nvidia вырывается вперед еще дальше.

Видеокарты Nvidia в этом тесте весьма быстры, новая Geforce GTX 780 Ti оказалась на 5-10% производительнее более дорогой GTX Titan, как и должно быть по теории, в отличие от предыдущего теста. Конкуренту же для соперничества с картами Nvidia скорости всё еще не хватает, хотя в реальных играх нагрузка на геометрические блоки гораздо меньше, и там всё будет совсем иначе.

Выводы по синтетическим тестам

Результаты синтетических тестов видеокарты Geforce GTX 780 Ti, которая стала мощнейшей платой топовой серии компании Nvidia, а также результаты других моделей видеокарт производства обоих производителей дискретных видеочипов показали, что новая плата является одним из самых мощных решений на рынке, и она должна успешно конкурировать с другими топовыми платами, несмотря на довольно высокую цену.

Главное, что мы определили — новинка явно быстрее Geforce GTX Titan в большинстве тестов, и это при ощутимой разнице в цене в пользу GTX 780 Ti. Неудивительно, что для игр новая плата Nvidia становится одним из наиболее мощных предложений в самом верхнем ценовом диапазоне. За исключением некоторых задач, анонсированная сегодня модель Nvidia неплохо выступила и по сравнению с мощнейшим Radeon R9 290X. Наш набор синтетических тестов показал, что по производительности они будут соперничать друг с другом и в играх, тем более что решения Nvidia там традиционно выступают лучше, чем в «синтетике».

Новая модель Geforce GTX 780 Ti явно нацелена на тех энтузиастов, которые не готовы на компромиссы и планируют играть в современные и будущие игры при максимальных настройках в самых высоких разрешениях, и готовы заплатить за это немного больше денег, чем стоит конкурирующая Radeon R9 290X. Больше всего обрадуются те, кто уже хотел покупать Geforce GTX Titan для игр, а меньше всего — те, кто ее недавно купил. Ведь новая модель Nvidia стоит дешевле, но в играх будет даже производительнее. Давайте как раз и перейдем к оценке реальной производительности GTX 780 Ti в играх в следующей части статьи.

Nvidia Geforce GTX 780 Ti — Часть 3: производительность в игровых тестах →

2 блока питания Corsair CMPSU-1200AXEU для тестового стенда предоставлены компанией Corsair

Корпус Corsair Obsidian 800D Full Tower для тестового стенда предоставлен компанией Corsair

Модули памяти Corsair Vengeance CMZ16GX3M4X1600C9 для тестового стенда предоставлены компанией Corsair

Corsair Hydro SeriesT H100i CPU Cooler для тестового стенда предоставлен компанией Corsair

Монитор Dell UltraSharp U3011 для тестовых стендов предоставлен компанией Юлмарт

Системная плата Asus Sabertooth X79 для тестового стенда предоставлена компанией AsusTeK

Системная плата MSI X79A-GD45(8D) для тестового стенда предоставлена компанией MSI

Жесткий диск Seagate Barracuda 7200.14 3 ТБ для тестового стенда предоставлен компанией Seagate

Накопитель SSD OCZ Octane 512 ГБ для тестового стенда предоставлен компанией OCZ Russia

2 накопителя SSD Corsair Neutron SeriesT 120 ГБ для тестового стенда предоставлены компанией Corsair

Монитор Asus ProArt PA249Q для рабочего компьютера предоставлен компанией AsusTeK




Дополнительно

400 Bad Request

Bad Request

Your browser sent a request that this server could not understand.