И все-таки он светится!



Честно говоря, известие о том, что какая-то английская фирма изобрела какую-то новую технологию производства дисплеев, я спокойно пропустил мимо ушей: мало ли кто чего изобретает — пошумят с недельку и забудут навсегда. Пересмотреть отношение к технологии "светоизлучающего пластика" (Light Emission Plastics, или LEP), разаботанной компанией Cambridge Display Technology(CDT), меня заставило заявление компании Seiko-Epson о начале совместной программы разработки LEP-дисплеев. Поэтому, несмотря на то, что об этой технологии написали уже почти все, на мой взгляд, этот обзор может оказаться достаточно любопытным.

Технология

В течении последних 30 лет внимание многих ученых было приковано к полимерным материалам (проще говоря — пластикам), обладающим свойствами проводимости и полупроводимости. Тем, кого интересует, как и почему они этим свойством обладают, крайне рекомендую посетить сайт компании CDT — там это описано на хорошем научном уровне. Для нормального человека достаточно знать, что такие полимеры, во-первых, существуют, а во-вторых, обладают рядом преимуществ по сравнению с традиционными материалами. Главными преимуществами являются простота и дешевизна производства, а также возможность синтеза новых материалов с заданными свойствами. Главными недостатками — непродолжительный срок службы и низкая мобильность зарядов вследствие аморфной структуры пластика. Однако, в последнее время недостатки постепенно удается преодолеть, в частности, за счет применения многослойных материалов.

Применение

Достаточно логично, что первым коммерческим применением проводящего пластика стали проводники. На данный момент такие пластики по проводимости приближаются к меди и имеют срок службы порядка 10 лет. Они применяются (в частности, компанией Matsushita) для изготовления электродов в батареях, проводящего покрытия электростатических динамиков, антистатических покрытий, и, что особенно важно, для нанесения проводящих дорожек на печатных платах. Глобальной целью в этом направлении компания CDT считает ни много, ни мало — вытеснение меди в качестве материала для изготовления проводящих дорожек печатных плат. Правда, для этого необходимо еще увеличить срок службы и повысить проводимость пластика.

Однако наиболее интересным применением пластиковых полупроводников на данный момент является создание разного рода устройств отображения информации на их базе. О том, что полупроводящий пластик под действием электрического тока может испускать фотоны (то есть, светиться), знали давно. Но крайне низкая (0.01%) квантовая эффективность этого процесса (отношение числа испущенных фотонов к числу пропущенных через пластик зарядов) делала практическое применение этого эффекта невозможным. За последние 5 лет компания CDT совершила прорыв в этом направлении, доведя квантовую эффективность двуслойного пластика до 5% при излучении желтого света, что сравнимо с эффективностью современных неорганических светодиодов (LED). Помимо повышения эффективности удалось расширить и спектр излучения. Теперь пластик может испускать свет в диапазоне от синего до ближнего инфракрасного с эффективностью порядка 1%.

По заявлению технического директора CDT Ltd. Пола Мея (Paul May), компании удалось достичь срока службы более 7000 часов при 20Со и около 1100 часов при 80Со без ухудшения характеристик для устройств, произведенных и эксплуатирующихся в нормальных атмосферных условиях, и срока хранения устройств при воздействии яркого света и повышенной температуры без потери работоспособности (shell-life) более 18 месяцев. С использованием "инкапсуляции", то есть помещения устройств в специальный защитный корпус, "срок хранения" возрастает до 5 лет, что на данный момент является фактическим стандартом. При этом компания продолжает работы в этом направлении, стремясь довести срок жизни LEP-устройств хотя бы до 20000 часов, что, по мнению инженеров компании, достаточно для большинства применений.

О том, что промышленный мир серьезно относится к LEP-технологии, свидетельствует покупка компанией Philips Components B.V. лицензии на использование этой технологии и инвестиции Intel в компанию CDT. Итак, что же есть у компании на сегодняшний день.

LEP-дисплеи: день сегодняшний

На сегодняшний день компания может представить монохромные (желтого свечения) LEP-дисплеи, приближающиеся по эффективности к жидкокристаллическим дисплеям LCD (Liquid Crystal Display), уступающие им по сроку службы, но имеющие ряд существенных преимуществ.

  • Поскольку многие стадии процесса производства LEP- дисплеев совпадают с аналогичными стадиями производства LCD, производство легко переоборудовать. Кроме того, технология LEP позволяет наносить пластик на гибкую подложку большой площади, что невозможно для неорганического светодиода (там приходится использовать матрицу диодов).

    гибкость LEP


  • Поскольку пластик сам излучает свет, не нужна подсветка и прочие хитрости, необходимые для получения цветного изображения на LCD-мониторе. Больше того, LEP-монитор обеспечивает 180-градусный угол обзора.

    Видно под любым углом


  • Поскольку устройство дисплея предельно просто: вертикальные электроды с одной стороны пластика, горизонтальные — с другой, изменением числа электродов на единицу протяженности по горизонтали или вертикали можно добиваться любого необходимого разрешения, а также, при необходимости, различной формы пиксела.
  • Поскольку LEP-дисплей работает при низком напряжении питания (менее 3 V) и имеет малый вес, его можно использовать в портативных устройствах, питающихся от батарей.
  • Поскольку LEP-дисплей обладает крайне малым временем переключения (менее 1 микросекунды), его можно использовать для воспроизведения видеоинформации.
  • Поскольку слой пластика очень тонок, можно использовать специальные поляризующие покрытия для достижения высокой контрастности изображения даже при сильной внешней засветке.
Эти преимущества плюс дешевизна привели к возникновению у LEP-технологии достаточно радужных перспектив.

LEP-дисплеи: день завтрашний

День 16 февраля 1998 года стал историческим для LEP-технологии: компании CDT и Seiko-Epson продемонстрировали первый в мире пластиковый телевизионный экран.

первый монитор, сделанный по технологии LEP

Правда, он пока черно-белый (точнее — черно-желтый) и размером всего 50 мм2, но толщина в 2 мм впечатляет. Уже сейчас такие дисплеи могут найти применение в видеокамерах и цифровых фотоаппаратах, а к концу года компании планируют представить полноразмерный цветной дисплей (не уточняя, правда, что такое "полный размер").

Причины, по которым Seiko-Epson приняла участие в этом проекте, по словам Генерального менеджера по базовым исследованиям (General Manager of basic research) компании доктора Шимоды (Dr. Shimoda), заключаются в том, что сочетание LEP-технологии с многослойной TFT (Thin Film Transistor) технологией и технологией струйной печати, в которых Seiko-Epson является мировым лидером, а также возможность использования для производства LEP-дисплеев большей части уже имеющегося оборудования позволит достичь быстрого прогресса в данной программе. "LEP-дисплеи, — считает доктор Шимода, — станут конкурентоспособными не только по сравнению с LCD, но и по сравнению с обычными дисплеями на базе CRT (Catod Ray Tube, или электронно-лучевая трубка) как по качеству, так и по цене.

Заявление громкое, мне же не остается ничего другого, кроме как сказать в заключение свою любимую фразу: поживем — увидим.

По материалам компании CDT Ltd




Дополнительно

LEP Technology

И все-таки он светится!


Честно говоря, известие о том, что какая-то английская фирма изобрела какую-то новую технологию производства дисплеев, я спокойно пропустил мимо ушей: мало ли кто чего изобретает — пошумят с недельку и забудут навсегда. Пересмотреть отношение к технологии "светоизлучающего пластика" (Light Emission Plastics, или LEP), разаботанной компанией Cambridge Display Technology(CDT), меня заставило заявление компании Seiko-Epson о начале совместной программы разработки LEP-дисплеев. Поэтому, несмотря на то, что об этой технологии написали уже почти все, на мой взгляд, этот обзор может оказаться достаточно любопытным.

Технология

В течении последних 30 лет внимание многих ученых было приковано к полимерным материалам (проще говоря — пластикам), обладающим свойствами проводимости и полупроводимости. Тем, кого интересует, как и почему они этим свойством обладают, крайне рекомендую посетить сайт компании CDT — там это описано на хорошем научном уровне. Для нормального человека достаточно знать, что такие полимеры, во-первых, существуют, а во-вторых, обладают рядом преимуществ по сравнению с традиционными материалами. Главными преимуществами являются простота и дешевизна производства, а также возможность синтеза новых материалов с заданными свойствами. Главными недостатками — непродолжительный срок службы и низкая мобильность зарядов вследствие аморфной структуры пластика. Однако, в последнее время недостатки постепенно удается преодолеть, в частности, за счет применения многослойных материалов.

Применение

Достаточно логично, что первым коммерческим применением проводящего пластика стали проводники. На данный момент такие пластики по проводимости приближаются к меди и имеют срок службы порядка 10 лет. Они применяются (в частности, компанией Matsushita) для изготовления электродов в батареях, проводящего покрытия электростатических динамиков, антистатических покрытий, и, что особенно важно, для нанесения проводящих дорожек на печатных платах. Глобальной целью в этом направлении компания CDT считает ни много, ни мало — вытеснение меди в качестве материала для изготовления проводящих дорожек печатных плат. Правда, для этого необходимо еще увеличить срок службы и повысить проводимость пластика.

Однако наиболее интересным применением пластиковых полупроводников на данный момент является создание разного рода устройств отображения информации на их базе. О том, что полупроводящий пластик под действием электрического тока может испускать фотоны (то есть, светиться), знали давно. Но крайне низкая (0.01%) квантовая эффективность этого процесса (отношение числа испущенных фотонов к числу пропущенных через пластик зарядов) делала практическое применение этого эффекта невозможным. За последние 5 лет компания CDT совершила прорыв в этом направлении, доведя квантовую эффективность двуслойного пластика до 5% при излучении желтого света, что сравнимо с эффективностью современных неорганических светодиодов (LED). Помимо повышения эффективности удалось расширить и спектр излучения. Теперь пластик может испускать свет в диапазоне от синего до ближнего инфракрасного с эффективностью порядка 1%.

По заявлению технического директора CDT Ltd. Пола Мея (Paul May), компании удалось достичь срока службы более 7000 часов при 20Со и около 1100 часов при 80Со без ухудшения характеристик для устройств, произведенных и эксплуатирующихся в нормальных атмосферных условиях, и срока хранения устройств при воздействии яркого света и повышенной температуры без потери работоспособности (shell-life) более 18 месяцев. С использованием "инкапсуляции", то есть помещения устройств в специальный защитный корпус, "срок хранения" возрастает до 5 лет, что на данный момент является фактическим стандартом. При этом компания продолжает работы в этом направлении, стремясь довести срок жизни LEP-устройств хотя бы до 20000 часов, что, по мнению инженеров компании, достаточно для большинства применений.

О том, что промышленный мир серьезно относится к LEP-технологии, свидетельствует покупка компанией Philips Components B.V. лицензии на использование этой технологии и инвестиции Intel в компанию CDT. Итак, что же есть у компании на сегодняшний день.

LEP-дисплеи: день сегодняшний

На сегодняшний день компания может представить монохромные (желтого свечения) LEP-дисплеи, приближающиеся по эффективности к жидкокристаллическим дисплеям LCD (Liquid Crystal Display), уступающие им по сроку службы, но имеющие ряд существенных преимуществ.

  • Поскольку многие стадии процесса производства LEP- дисплеев совпадают с аналогичными стадиями производства LCD, производство легко переоборудовать. Кроме того, технология LEP позволяет наносить пластик на гибкую подложку большой площади, что невозможно для неорганического светодиода (там приходится использовать матрицу диодов).

    гибкость LEP


  • Поскольку пластик сам излучает свет, не нужна подсветка и прочие хитрости, необходимые для получения цветного изображения на LCD-мониторе. Больше того, LEP-монитор обеспечивает 180-градусный угол обзора.

    Видно под любым углом


  • Поскольку устройство дисплея предельно просто: вертикальные электроды с одной стороны пластика, горизонтальные — с другой, изменением числа электродов на единицу протяженности по горизонтали или вертикали можно добиваться любого необходимого разрешения, а также, при необходимости, различной формы пиксела.
  • Поскольку LEP-дисплей работает при низком напряжении питания (менее 3 V) и имеет малый вес, его можно использовать в портативных устройствах, питающихся от батарей.
  • Поскольку LEP-дисплей обладает крайне малым временем переключения (менее 1 микросекунды), его можно использовать для воспроизведения видеоинформации.
  • Поскольку слой пластика очень тонок, можно использовать специальные поляризующие покрытия для достижения высокой контрастности изображения даже при сильной внешней засветке.
Эти преимущества плюс дешевизна привели к возникновению у LEP-технологии достаточно радужных перспектив.

LEP-дисплеи: день завтрашний

День 16 февраля 1998 года стал историческим для LEP-технологии: компании CDT и Seiko-Epson продемонстрировали первый в мире пластиковый телевизионный экран.

первый монитор, сделанный по технологии LEP

Правда, он пока черно-белый (точнее — черно-желтый) и размером всего 50 мм2, но толщина в 2 мм впечатляет. Уже сейчас такие дисплеи могут найти применение в видеокамерах и цифровых фотоаппаратах, а к концу года компании планируют представить полноразмерный цветной дисплей (не уточняя, правда, что такое "полный размер").

Причины, по которым Seiko-Epson приняла участие в этом проекте, по словам Генерального менеджера по базовым исследованиям (General Manager of basic research) компании доктора Шимоды (Dr. Shimoda), заключаются в том, что сочетание LEP-технологии с многослойной TFT (Thin Film Transistor) технологией и технологией струйной печати, в которых Seiko-Epson является мировым лидером, а также возможность использования для производства LEP-дисплеев большей части уже имеющегося оборудования позволит достичь быстрого прогресса в данной программе. "LEP-дисплеи, — считает доктор Шимода, — станут конкурентоспособными не только по сравнению с LCD, но и по сравнению с обычными дисплеями на базе CRT (Catod Ray Tube, или электронно-лучевая трубка) как по качеству, так и по цене.

Заявление громкое, мне же не остается ничего другого, кроме как сказать в заключение свою любимую фразу: поживем — увидим.

По материалам компании CDT Ltd