Демон Максвелла шалит: как квантовый мир чуть не опроверг законы физики

Пост опубликован в блогах iXBT.com, его автор не имеет отношения к редакции iXBT.com
| Мнение | Наука и космос

Представьте себе мир, где привычные законы физики вдруг начинают сбоить. Где крошечные частицы ведут себя непредсказуемо, а строгие правила термодинамики, казалось бы, дают трещину. Звучит как сюжет фантастического фильма? Но именно с такой реальностью сталкиваются ученые, исследующие границы квантового мира. И недавнее открытие, сделанное совместными усилиями японских и словацких исследователей, заставляет по-новому взглянуть на, казалось бы, незыблемые основы физики.

Второе начало: закон, который (почти) нельзя нарушить

Второй закон термодинамики, или второе начало, — это что-то вроде фундаментального правила, управляющего всем во Вселенной. Он гласит, что энтропия, то есть мера хаоса и беспорядка, в замкнутой системе может только возрастать. Проще говоря, все стремится к беспорядку: чашка горячего кофе остывает, идеально сложенная стопка бумаг разлетается от дуновения ветра, а в комнате, если ее не убирать, воцаряется хаос. Этот закон объясняет, почему время течет только в одном направлении, и почему вечный двигатель — всего лишь красивая мечта.

Иллюстрация
Автор: ИИ Copilot Designer//DALL·E 3 Источник: www.bing.com

Но что, если мы заглянем в микромир, где правят законы квантовой механики? Оказывается, там все не так однозначно.

Демон Максвелла: хитрый нарушитель спокойствия

Еще в XIX веке знаменитый физик Джеймс Клерк Максвелл придумал мысленный эксперимент, который поставил под сомнение незыблемость второго начала. Он представил себе крошечное существо, «демона», способного сортировать молекулы газа по скорости. Быстрые молекулы — в одну сторону, медленные — в другую. В результате, без каких-либо затрат энергии, создается разница температур, которую можно использовать для совершения работы. Прямое нарушение второго начала!

Целевая система A, контроллер (демон), состоящий из внутреннего состояния M и классического регистра K, и две ванны B1 и B2 при одинаковой обратной температуре β.
Автор: Minagawa, S., Mohammady, M.H., Sakai, K. et al. Источник: www.nature.com

Этот парадокс, получивший название «Демон Максвелла», более ста лет будоражил умы ученых. Как такое возможно? Где кроется подвох?

Квантовые лазейки: когда правила можно обойти (теоретически)

И вот тут на сцену выходит недавнее исследование. Ученые из Нагойского университета и Словацкой академии наук создали математическую модель «демонического двигателя» — системы, в которой демон Максвелла, пусть и в теоретическом виде, но все-таки работает.

Они использовали сложный математический аппарат — теорию квантовых инструментов — и получили поразительный результат: в определенных, строго специфических условиях, демон действительно может извлекать больше работы, чем затрачивает! Кажется, второе начало термодинамики нарушено?

«Мы были, мягко говоря, удивлены, — делится впечатлениями Синтаро Минагава, один из авторов исследования. — Получается, что в квантовом мире есть лазейки, позволяющие обойти, казалось бы, непреложный закон».

Шаг взаимодействия (t₀ → t₁): система A и память M взаимодействуют через унитарный канал U. Шаг считывания (t₁ → t₂): инструмент M применяется к памяти M, и результат k записывается в классический регистр K. Шаг взаимодействия и шаг считывания вместе называются шагом измерения. Шаг управления с обратной связью (t₂ → t₃): управляемый унитарный канал Fk применяется к составной системе A и термостату B₁, в зависимости от результата k. Шаг стирания (t₃ → t₄): унитарный канал V применяется к составной системе MK и термостату B₂, чтобы вернуть состояние MK к его начальной конфигурации. Предполагается, что общая составная система эволюционирует адиабатически в течение всего протокола, то есть теплообмен с любым внешним источником отсутствует.
Автор: Minagawa, S., Mohammady, M.H., Sakai, K. et al. Источник: www.nature.com
Не спешите паниковать: закон все еще в силе!

Но не стоит делать поспешных выводов. Хотя квантовая теория теоретически допускает возможность нарушения второго начала, на практике это вовсе не означает, что оно перестает работать.

«Важно понимать, что квантовая механика и термодинамика — это как две разные игры, — объясняет Франческо Бушеми. — Квантовая теория просто 'не знает' о существовании второго начала. Но, и это самое интересное, любой квантовый процесс можно реализовать так, чтобы он не противоречил законам термодинамики. Достаточно добавить дополнительные системы, чтобы восстановить баланс».

Другими словами, демон Максвелла может немного «пошалить» в квантовом мире, но в конечном итоге ему все равно придется «заплатить по счетам». Энергия не берется из ниоткуда и не исчезает в никуда.

Что это значит для нас?

Это открытие — не просто очередная головоломка для физиков-теоретиков. Оно имеет далеко идущие последствия. Понимание того, как квантовая механика взаимодействует с термодинамикой, открывает новые горизонты в разработке квантовых компьютеров и микроскопических двигателей.

Исследование японо-словацкой команды — это еще один шаг на пути к разгадке тайн квантового мира. И, возможно, именно благодаря таким «нарушениям» привычных законов мы сможем создать технологии, которые сегодня кажутся фантастикой. Кто знает, может быть, в будущем нас ждут двигатели, работающие на «демонической» энергии? Пока это лишь гипотеза, но квантовый мир полон сюрпризов. И, похоже, самое интересное еще впереди.

1 комментарий

a
Демон Максвелла — штука совершенно классическая.

Добавить комментарий

Сейчас на главной

Новости

Публикации

Сколько датчиков дыма нужно устанавливать в доме для максимальной безопасности

Огонь распространяется быстрее, чем кажется. По статистике, большинство домашних пожаров развивается всего за несколько минут, и именно первые секунды решают, будет ли у человека шанс...

Что такое ретрит, и как он может помочь вернуть силы

В мире, где всё движется с бешеной скоростью, где гаджеты не замолкают ни на минуту, а мысли переполнены задачами, тревогами и планами, становится всё труднее услышать самого себя. Именно поэтому...

Возвращая вымерших: как наука приближает де-экстинкцию к реальности

Идея вернуть к жизни исчезнувшие виды ещё недавно звучала как научная фантастика. Мамонты, тасманийские тигры, древние птицы — всё это казалось навсегда ушедшим в прошлое. Однако...

Какие комплектующие ПК чаще всего выходят из строя и как этого избежать

Каждый, кто хоть раз сталкивался с поломкой компьютера, знает, что это не только потеря времени, но и риск лишиться важных данных. В этой небольшой статье вы узнаете, какие комплектующие ПК...

Почему кошек не стоит будить во время их сна

Если кошка доверяет вам, вы могли заметить, как она крепко спит с вами на кровати или в другом укромном месте. Глубокая фаза сна питомца может даже сопровождаться лёгким, едва слышным сопением или...

Почему проект газотурбинного автомобиля Chrysler Turbine Car оказался провальным?

Осенью 1963 года на улицах американских городов появился необычный звук. Это было не привычное урчание поршневого мотора, а «мягкий свист» реактивной турбины. Люди оборачивались, водители снижали...