Экспериментальное определение скорости воздуха в кулерах и вентиляторах


Потребляемая энергия и мощность в современных компьютерах растут все быстрее. Соответственно увеличивается и количество тепла, выделяемого рабочими элементами ПК. Скоро его уже будет достаточно, чтобы и курицу пожарить. Хотя тепловыделение на один диод у современных компьютеров значительно меньше, чем у ЭВМ 60-70 годов, количество их непрерывно растет. Период, когда ничего не надо было специально охлаждать, быстро закончился. Теперь наступил этап принудительного охлаждения узлов компьютера. Путь усовершенствования систем охлаждения и повышения их эффективности прошли многие быстроразвивающиеся отрасли, например, авиация. И здесь уже без исследования аэродинамики охлаждающих потоков обойтись нельзя.

Как известно, тепловой поток, отбираемый от охлаждающей поверхности, описывается формулой Ньютона:

где альфа — коэффициент теплоотдачи, Вт/м2 К, S — площадь поверхности теплообмена, м2, дельта T — перепад температур между охлаждаемой поверхностью и теплоносителем ( Тст — Твозд.).

Температура охлаждаемой поверхности в нашем случае напрямую связана с температурой кристалла, которая является строго ограниченной величиной для обеспечения нормальной устойчивой работы компьютера. Вообще говоря, все равно, что охлаждать — корпуса процессоров, жестких дисков и т. п. — меняется лишь величина теплового потока и предельно допустимая температура узла. Схема же охлаждения остается по сути дела одинаковой.

Самый простой способ решения данной задачи — это уменьшение температуры воздуха внутри корпуса компьютера. Естественно, что далеко не каждый имеет дома кондиционер. Да и понижение температуры окружающей среды тоже имеет свои пределы, дабы не подорвать здоровье пользователя и не вывести из строя другие узлы компьютера. Чтобы температура внутри корпуса компьютера была хотя бы максимально приближена к температуре помещения, на корпус был поставлен вентилятор. Но куда он там внутри дует, и где образуются застойные зоны, доподлинно неизвестно. У каждого пользователя внутри столько своего добра понаверчено. Конечно, можно вообще снять крышку корпуса и обдувать внутренности системного блока бытовым вентилятором. Но летом все же жарче, чем зимой, температура может и выше 30 подняться (то есть градусов на 10 выше комнатной зимой), и сей способ уже не будет эффективным.

Другой способ — это увеличение площади поверхности теплообмена. Поэтому гладкую поверхность заменили оребренной. Но до бесконечности увеличивать ее невозможно, так как в силу законов теплопроводности эффективное увеличение высоты ребер имеет свой предел.

Обратимся теперь к величинам коэффициента теплоотдачи . Из литературы известно, что его значения для естественной воздушной конвекции составляют примерно 2 — 10 Вт/м2К, а для принудительной 10 — 150 Вт/м2К (и даже больше), то есть выше более чем на порядок. Поэтому к радиатору и присоединили вентилятор, причем так, чтобы он поменьше места занимал. Какое при этом значение имеет коэффициент теплоотдачи — 10 или 150 Вт/м2К — и определяет эффективность охлаждения данной системы.

Остановимся на этом подробнее. Из теории известно, что теплообмен наблюдается обычно лишь в тонком слое у поверхности охлаждаемой стенки. То есть, он обуславливается процессом теплопроводности этого пограничного слоя. За пределами пограничного слоя градиент скорости, нормальной к направлению потока, настолько мал, что вязкостью можно пренебречь. В технике встречается множество устройств, в которых теплообмен происходит в условиях вынужденного движения воздуха или жидкости. Для всех таких процессов, согласно теории подобия, характерные условия имеют единообразный, универсальный вид. Прежде всего, подобными являются процессы, протекающие в геометрически подобных системах. Необходимым условием должно быть подобие полей скоростей, температуры и давления во входном сечении систем. Если эти условия выполнены, то данные процессы будут подобны, когда критерии Рейнольдса (Re) и Прандтля (Pr) будут численно одинаковыми. Критерий Re определяет гидромеханическое подобие течений теплоносителей: Re= V*L / u, где V — скорость теплоносителя, L — характерный геометрический размер, u — коэффициент кинематической вязкости теплоносителя. Критерий Pr является теплофизической характеристикой теплоносителя и составлен лишь из физических параметров. В нашем случае охлаждения элементов компьютера, диапазон изменения температур охлаждающего воздуха невелик, и можно считать, что его физические параметры не зависят от температуры (Pr=0,71). У подобных процессов также должны быть одинаковыми и определяемые критерии подобия. В процессах конвективного теплообмена в качестве определяемого выступает критерий Нуссельта (Nu), характеризующий соотношение конвективного теплообмена и теплопроводности в пограничном слое: Nu= альфа* L / ламбда. Ламбда — коэффициент теплопроводности теплоносителя. Критериальное уравнение для процессов конвективного теплообмена при вынужденном движении теплоносителя, так как в нашем случае Pr= const, имеет вид: Nu = f (Re). То есть, можно считать, что Nu=B*Rem, где B и m — безразмерные величины, соответствующие определенному виду и режиму течения воздуха. Точное аналитическое определение этих критериев практически невозможно, и они обычно определяются экспериментально.

Значение критерия Re пропорционально скорости движения потока воздуха. То есть, чем выше скорость, тем больше коэффициент теплоотдачи и поток тепла, отбираемого от охлаждаемой поверхности. Скорость движения воздуха определяется параметрами и геометрией охлаждающего вентилятора и радиатора. Термин "кулер", широко применяющийся во всех статьях, наиболее правильно определяется, на наш взгляд, как устройство для охлаждения узлов компьютера, состоящее из вентилятора и радиатора. В дальнейшем мы тоже будем использовать этот термин в такой трактовке.

При переходе к охлаждению при помощи вынужденной конвекции (постановке на радиатор вентилятора), на наш взгляд, часто не принимают во внимание особенности принудительного охлаждения. Расход и, следовательно, скорость воздуха определяются гидравлическими потерями в тракте кулера, в частности, в радиаторе. В этом случае оребрение не только улучшает теплообмен, но, с другой стороны, и ухудшает его, увеличивая коэффициент гидравлического сопротивления, что приводит к уменьшению расхода воздуха через вентилятор. В старые времена каждый серийный отечественный вентилятор имел расходную характеристику. То есть, определялась взаимосвязь расхода, напора и частоты вращения вентилятора. Достать такие данные для современных кулеров сейчас практически невозможно. И часто приходится выбирать их, полагаясь на слухи, рекламу или просто методом тыка. Хорошо хоть, есть статьи, описывающие их сравнительную эффективность

Самый простой, на первый взгляд, способ увеличения расхода воздуха — это увеличение частоты вращения вентилятора, которая ограничивается его конструктивными особенностями. Вентилятор должен иметь большой ресурс работы и низкий уровень шума. В основном эти условия зависят от конструкции его подшипников, а также лопаточного аппарата.

Вообще говоря, качественно о расходе воздуха через вентилятор можно судить по частоте его вращения. У нас под рукой оказался новый кулер EISCA. Этакий монстр с очень большим радиатором (по сравнению с площадью контактной с кристаллом поверхности) и относительно высокими ребрами. Отношение высоты ребра к его толщине (мм) — 16/2 =8. Зазор между верхней точкой ребра и корпусом составлял 2 мм.

кулер
Кулер №1

Вентилятор подключался к компьютеру без установки его в рабочее положение. Плоскость его вращения располагали горизонтально и вертикально (в двух положениях — направление течения воздуха вниз и вверх). Частота вращения (обороты в минуту) измерялась штатным датчиком кулера для трех позиций: 1. Кулер в сборе. 2. Без радиатора. 3. Вместо радиатора на расстоянии 6мм от среза вентилятора устанавливалась гладкая пластина.

Положение кулера В сборе Без радиатора С пластиной
Вертикально 4550 4560 4000
Горизонтально вниз 4340 4350 3660
Горизонтально вверх 4460 4430 3740

Из приведенных данных видно, что частота вращения зависит от положения вентилятора. В вертикальном положении во всех случаях она несколько больше. В горизонтальном положении тоже есть небольшая разница частоты вращения в зависимости от положения кулера. Все это однозначно обусловлено конструкцией подшипников вала вентилятора. А вот постановка пластины вместо радиатора существенно влияет на частоту вращения, а, следовательно, и на расход воздуха. Гидравлическое сопротивление тракта в этом случае ощутимо возросло. А связано это, по всей видимости, с тем, добивает ли струя воздуха до основания ребер кулера или нет. Коэффициенты сопротивления для этих случаев существенно отличаются. В конечном счете, все это приведет и к значительной разнице в теплоотводе от поверхности. Но это все качественные эксперименты, которые просто заставляют задуматься об эффективности работы кулера.

Перейдем теперь к количественным измерениям на выходе из кулеров и вентиляторов

Измерение малых скоростей (меньше 5 м/с) и расходов воздуха — весьма сложное и кропотливое дело. Традиционный способ измерения при помощи трубки Пито — Прандтля здесь уже непригоден из-за весьма малой величины скоростного напора (меньше 1 мм водяного столба). На “коленке” такие измерения не проведешь. Приходится искать довольно сложную специальную аппаратуру. На счастье, у нас в загашнике сохранился практически непользованный термоанемометр DISA 55D80. Даже комплект датчиков заводской тарировки к нему остался. Прибор предназначен для измерения крайне низких скоростей воздуха с высокой точностью в конвективных и вентиляционных потоках.

стенд
Измерительный стенд

DISA
DISA 55D80
датчик

Датчик

Принцип действия термоанемометров, измеряющих скорости порядка нескольких метров в секунду и более, основан на поддержании постоянной величины силы тока через проволочный датчик при изменении скорости обтекающего его воздуха. На выходе прибора, после преобразования и усиления сигнала, фиксируется величина напряжения, соответствующая определенной скорости воздуха.

Данный прибор имеет два режима измерения. Первый — от 0 до 30 см/с, что соответствует скоростям при свободной конвекции воздуха. Здесь применяется еще более сложная схема измерения. На датчик, при помощи специального осциллятора, подается сигнал с частотой 300 Гц и амплитудой ±0,03 мм, которая поддерживается вблизи резонансной частоты датчика. Скорость обтекания датчика складывается из скорости движения датчика и скорости внешнего потока воздуха. По разности сигналов в моменты, когда датчик движется в противоположных направлениях, можно определить скорость и направление течения воздуха.

Во втором режиме можно измерять скорости воздуха от 0 до 2 м/с при функционировании прибора в режиме постоянного тока. Здесь определяется только абсолютная величина скорости перпендикулярно датчику.

Сам датчик представляет собой миниатюрный держатель — усики с наваренной между ними проволочкой диаметром порядка нескольких десятых мм и длиной порядка 1мм. Первоначально каждый датчик калибровался по заранее известным значениям скоростей на специальном заводском стенде.

Напомним, что исследование и проектирование любых систем охлаждения включает в себя две взаимосвязанные части — аэродинамическую (или гидравлическую) и тепловую. Попробуем при помощи DISA 55D80 разобраться с первой, то есть, измерим поле скоростей на выходе из кулеров и их вентиляторов.

Рассмотрим уже упомянутый кулер №1 и два других кулера ACORP (№2) и ЕС-4510 (№3). Конечно, это не последнее слово техники, но они или им подобные еще очень часто используются, и скорости воздуха в них как раз составляют 0,5 — 2 м/с. С точки зрения аэродинамики, процессы, возникающие в них, аналогичны и более поздним моделям.

кулеры
Кулеры №2 и №3

Питание вентиляторов (12 В — контролировалось мультиметром) осуществлялось от компьютера. Датчик перемещался вдоль неподвижного кулера в горизонтальной плоскости при помощи координатника, имеющего точность отсчета перемещений 0,1 мм. Нулевой точкой во всех измерениях являлась точка напротив боковой стенки с левой стороны кулера, смотря по ходу движения воздуха. Вращение вентилятора направлено от правой стенки к левой.

На рисунке 1 представлено поле скоростей на выходе из радиатора №1. Измерения проводились на расстоянии 3мм от его среза в среднем по высоте сечении. Шаг измерений составлял 1 мм.

график
Скорость воздуха в среднем сечении (торцевая поверхность)

Видно, что максимальные скорости составляют порядка 1,3-1,4 м/с. Сто процентов шкалы прибора составляют 2 м/с. Шкала линейная. Хорошо видно расположение ребер — скорость за ними минимальна. Направление скорости воздуха — горизонтальное, что было проверено путем изменения плоскости измерения датчика, то есть, эффект закрутки потока вентилятором здесь уже отсутствует. Наблюдается некоторая асимметричность потока воздуха. По-видимому, это связано с различным числом щелей на боковой поверхности радиатора. С правой стороны существует еще две дополнительные щели шириной аж 9 мм против 2 мм у всех остальных. Зачем это сделано — совершенно непонятно. Скорость в них составляет порядка 0,08-0,1 м/с

На следующем рисунке представлена скорость воздуха в среднем сечении боковых щелей.

график 2
Скорость воздуха в боковых щелях

Нумерация щелей начиналась от среза радиатора, где проводились предыдущие измерения. Видно, что крайние щели практически не работают. Основной же расход воздуха проходит через щели, расположенные напротив вентилятора. Что совершенно естественно, принимая во внимание закрутку потока вентилятором. Но вот хорошо ли это — большой вопрос. Получается, что значительная часть воздуха вообще не участвует в охлаждении большей части такого здорового радиатора.

На следующем рисунке приведены измерения скорости воздуха по высоте щели.

график 3
Скорость воздуха по высоте щели

Здесь все выглядит очень прилично. Прямо-таки классическая эпюра скорости для установившегося течения воздуха в щели. Это тоже косвенно указывает на то, что поток воздуха уже стабилизировался после вентилятора.

Приступим теперь к рассмотрению течения воздуха в кулерах №2 и №3.

Первое, что бросается в глаза при взгляде на клер №2 — это то, что, глядя сверху, видно — площадь вентилятора меньше площади радиатора. Он проработал у меня в компьютере не один год когда он был внутри корпуса, я на него внимания не обращал. Поэтому первое, что было измерено — это направление скорости воздуха на выходе из радиатора. Этого можно добиться путем изменения угла наклона датчика к горизонтальной поверхности и фиксирования максимального значения скорости. Оказалось, что поток выходит из щелей вверх под углом 15-20 градусов к горизонтальной плоскости. Таким образом, что же получается — нагретый после радиатора воздух опять идет на вход вентилятора. Ясно, что сие не есть хорошо, и так быть не должно.

Поэтому терять время на этот кулер не стали, а заменили его вентилятор на другой, который полностью закрыл радиатор. Так и получили кулер №3. Вверх он не дует — проверили.

На рисунке представлено поле скоростей, измеренное на расстоянии 1,5 мм за срезом радиатора.

график 4
Скорость воздуха на выходе из радиатора кулера №3

Здесь измерения проводились в середине и по краям каждой из щелей (шаг — 0,5 мм), а также в середине ребра (шаг от края щели 1 мм). Обращает на себя внимание тот факт, что скорость воздуха в середине щелей в левой половине радиатора ниже, чем у ребер, и уж тем более ниже, чем в правой части. Опять же, после нахождения максимальной составляющей скорости потока оказалось, что она направлена под углом 15 градусов к нормали. То есть, закрутка потока воздуха вентилятором сильно сказывается. Поля скоростей с противоположной стороны радиатора оказались идентичными. Поэтому здесь мы их не приводим.

Рассмотрим теперь поле скоростей воздуха непосредственно за вентиляторами кулеров №2 и№3. Всю центральную зону проточной части вентилятора занимает его двигатель. Расстояние от среза вентилятора до охлаждаемой поверхности определяется высотой ребра радиатора и обычно составляет для кулеров такого типа 3-5 мм. Сразу можно предположить, что скорость воздуха в центральной зоне ниже, чем скорость напротив рабочих щелей. Эта зона находится как раз напротив основной зоны охлаждения кристаллов. Здесь-то, вроде бы и надо иметь максимальную скорость воздуха и, соответственно, максимальный коэффициент теплоотдачи. Определим это количественно. Измерялись значения скорости, направленной по нормали к поверхности вентилятора. В принципе, эта составляющая и является определяющей в интенсивности теплообмена на поверхности такого рода кулеров. Скорость воздуха измерялась в трех сечениях. Первое — 5 мм от среза вентилятора. Далее к вентилятору присоединялись цилиндрические насадки с диаметром, равным диаметру рабочей части вентилятора, высотой 20 и 50 мм.

вентилятор с насадками

Второе и третье измерение проводились на срезе этих насадок соответственно.

график 5
Скорость воздуха за вентилятором №2

график 6
Скорость воздуха за вентилятором №3

Ясно видно, что в первом сечении имеется весьма существенный провал скорости в центральной части. Но уже на расстоянии 20 мм от вентилятора центральная зона с низкими значениями скоростей значительно сужается. Далее поле скоростей продолжает выравниваться, но уже не так заметно. Заметим, что полное выравнивание поля скоростей в цилиндрическом канале происходит на расстоянии не менее 10 его диаметров от начала. Здесь по нашему методу и можно определять расход воздуха через вентилятор. Следует отметить, что удлинение цилиндрического канала приводит к увеличению гидравлического сопротивления за вентилятором и, следовательно, к уменьшению расхода воздуха через него. Таким образом, ясно, что для интенсификации теплообмена необходимо подбирать оптимальное расстояние между вентилятором и радиатором.

В настоящее время на рынке имеется море различных моделей кулеров, и число их все растет и растет. И сейчас уже, по-видимому, настало время оптимизации конструкций, а не просто увеличения мощностей двигателей вентиляторов. Для этого необходимо представлять картину течения воздуха в кулерах, что мы здесь и попытались сделать. А также и его тепловые характеристики, что, возможно, сделаем в дальнейшем. Конечно, мы охватили лишь малую толику проблем, но, в принципе, эта методика и оборудование позволяют проводить и дальнейшие исследования на других моделях.




Дополнительно

iXBT BRAND 2016

«iXBT Brand 2016» — Выбор читателей в номинации «Процессоры (CPU)»:
Подробнее с условиями участия в розыгрыше можно ознакомиться здесь. Текущие результаты опроса доступны тут.

Нашли ошибку на сайте? Выделите текст и нажмите Shift+Enter

Код для блога бета

Выделите HTML-код в поле, скопируйте его в буфер и вставьте в свой блог.