Эффективные кластерные решения


Для начала следует определить, на кого рассчитана статья, чтобы читатели решили, стоит ли тратить на нее время.

Потребность в написании этой статьи возникла после прочитанного семинара на выставке ENTEREX’2002 в городе Киеве. Именно тогда, в начале 2002-го я увидел, что интерес к теме кластерных систем значительно возрос по сравнению с тем, что наблюдалось всего пару лет назад.

Я не ставил себе целью на семинаре и в этой статье проанализировать варианты решения конкретных прикладных задач на кластерных системах, это отдельная и очень обширная тема. Я ставил себе задачу познакомить читателей с терминологией и средствами построения кластерных систем, а также показать, для каких задач полезен кластеринг. Для полного убеждения сомневающихся в статье приведены конкретные примеры реализации кластерных систем и мои контакты, по которым я готов отвечать по мере возможностей на вопросы, связанные с кластерными технологиями, а также принимать ваши замечания и советы.

Концепция кластерных систем


Рисунок 1. Кластерная система
  • LAN — Local Area Network, локальная сеть
  • SAN — Storage Area Network, сеть хранения данных

Впервые в классификации вычислительных систем термин "кластер" определила компания Digital Equipment Corporation (DEC).

По определению DEC, кластер — это группа вычислительных машин, которые связаны между собою и функционируют как один узел обработки информации.

Кластер функционирует как единая система, то есть для пользователя или прикладной задачи вся совокупность вычислительной техники выглядит как один компьютер. Именно это и является самым важным при построении кластерной системы.

Первые кластеры компании Digital были построены на машинах VAX. Эти машины уже не производятся, но все еще работают на площадках, где были установлены много лет назад. И наверное самое важное то, что общие принципы, заложенные при их проектировании, остаются основой при построении кластерных систем и сегодня.

К общим требованиям, предъявляемым к кластерным системам, относятся:

  1. Высокая готовность
  2. Высокое быстродействие
  3. Масштабирование
  4. Общий доступ к ресурсам
  5. Удобство обслуживания

Естественно, что при частных реализациях одни из требований ставятся во главу угла, а другие отходят на второй план. Так, например, при реализации кластера, для которого самым важным является быстродействие, для экономии ресурсов меньше внимания придают высокой готовности.

В общем случае кластер функционирует как мультипроцессорная система, поэтому, важно понимать классификацию таких систем в рамках распределения программно-аппаратных ресурсов.


Рисунок 2. Тесно связанная мультипроцессорная система


Рисунок 3. Умеренно связанная мультипроцессорная система


Рисунок 4. Слабо связанная мультипроцессорная система

Обычно на PC платформах, с которыми мне приходится работать, используются реализации кластерной системы в моделях тесно связанной и умеренно связанной мультипроцессорных архитектур.

Разделение на High Avalibility и High Performance системы

В функциональной классификации кластеры можно разделить на "Высокоскоростные" (High Performance, HP), "Системы Высокой Готовности" (High Availability, HA), а также "Смешанные Системы".

Высокоскоростные кластеры используются для задач, которые требуют значительной вычислительной мощности. Классическими областями, в которых используются подобные системы, являются:

  • обработка изображений: рендеринг, распознавание образов
  • научные исследования: физика, биоинформатика, биохимия, биофизика
  • промышленность (геоинформационные задачи, математическое моделирование)

и много других…

Кластеры, которые относятся к системам высокой готовности, используются везде, где стоимость возможного простоя превышает стоимость затрат, необходимых для построения кластерной системы, например:

  • биллинговые системы
  • банковские операции
  • электронная коммерция
  • управление предприятием, и т.п….

Смешанные системы объединяют в себе особенности как первых, так и вторых. Позиционируя их, следует отметить, что кластер, который обладает параметрами как High Performance, так и High Availability, обязательно проиграет в быстродействии системе, ориентированной на высокоскоростные вычисления, и в возможном времени простоя системе, ориентированной на работу в режиме высокой готовности.

Проблематика High Performance кластеров


Рисунок 5. Высокоскоростной кластер

Почти в любой ориентированной на параллельное вычисление задаче невозможно избегнуть необходимости передавать данные от одной подзадачи другой.

Таким образом, быстродействие High Performance кластерной системы определяется быстродействием узлов и связей между ними. Причем влияние скоростных параметров этих связей на общую производительность системы зависит от характера выполняемой задачи. Если задача требует частого обмена данными с подзадачами, тогда быстродействию коммуникационного интерфейса следует уделять максимум внимания. Естественно, чем меньше взаимодействуют части параллельной задачи между собою, тем меньше времени потребуется для ее выполнения. Что диктует определенные требования также и на программирование параллельных задач.

Основные проблемы при необходимости обмена данными между подзадачами возникают в связи с тем, что быстродействие передачи данных между центральным процессором и оперативной памятью узла значительно превышает скоростные характеристики систем межкомпьютерного взаимодействия. Кроме того, сильно сказывается на изменении функционирования системы, по сравнению с привычными нам SMP системами, разница в быстродействии кэш памяти процессоров и межузловых коммуникаций.

Быстродействие интерфейсов характеризуется двумя параметрами: пропускной способностью непрерывного потока даных и максимальным количеством самых маленьких пакетов, которые можно передать за единицу времени. Варианты реализаций коммуникационных интерфейсов мы рассмотрим в разделе «Средства реализации High Performance кластеров».

Проблематика High Availability кластерных систем

Сегодня в мире распространены несколько типов систем высокой готовности. Среди них кластерная система является воплощением технологий, которые обеспечивают высокий уровень отказоустойчивости при самой низкой стоимости. Отказоустойчивость кластера обеспечивается дублированием всех жизненно важных компонент. Максимально отказоустойчивая система должна не иметь ни единой точки, то есть активного элемента, отказ которого может привести к потере функциональности системы. Такую характеристику как правило называют — NSPF (No Single Point of Failure, — англ., отсутствие единой точки отказа).


Рисунок 6. Кластерная система с отсутствием точек отказов

При построении систем высокой готовности, главная цель — обеспечить минимальное время простоя.

Для того, чтобы система обладала высокими показатели готовности, необходимо:

  • чтобы ее компоненты были максимально надежными
  • чтобы она была отказоустойчивая, желательно, чтобы не имела точек отказов
  • а также важно, чтобы она была удобна в обслуживании и разрешала проводить замену компонент без останова

Пренебрежение любым из указанных параметров, может привести к потере функциональности системы.

Давайте коротко пройдемся по всем трём пунктам.

Что касается обеспечения максимальной надежности, то она осуществляется путем использования электронных компонент высокой и сверхвысокой интеграции, поддержания нормальных режимов работы, в том числе тепловых.

Отказоустойчивость обеспечивается путем использования специализированных компонент (ECC, Chip Kill модули памяти, отказоустойчивые блоки питания, и т.п.), а также с помощью технологий кластеризации. Благодаря кластеризации достигается такая схема функционирования, когда при отказе одного из компьютеров задачи перераспределяются между другими узлами кластера, которые функционируют исправно. Причем одной из важнейших задач производителей кластерного программного обеспечения является обеспечение минимального времени восстановления системы в случае сбоя, так как отказоустойчивость системы нужна именно для минимизации так называемого внепланового простоя.

Много кто забывает, что удобство в обслуживании, которое служит уменьшению плановых простоев (например, замены вышедшего из строя оборудования) является одним из важнейших параметров систем высокой готовности. И если система не разрешает заменять компоненты без выключения всего комплекса, то ее коэффициент готовности уменьшается.

Смешанные архитектуры


Рисунок 7. Высокоскоростной отказоустойчивый кластер

Сегодня часто можно встретить смешанные кластерные архитектуры, которые одновременно являются как системами высокой готовности, так и высокоскоростными кластерными архитектурами, в которых прикладные задачи распределяются по узлам системы. Наличие отказоустойчивого комплекса, увеличение быстродействия которого осуществляется путем добавления нового узла, считается самым оптимальным решением при построении вычислительной системы. Но сама схема построения таких смешанных кластерных архитектур приводит к необходимости объединения большого количества дорогих компонент для обеспечения высокого быстродействия и резервирования одновременно. И так как в High Performance кластерной системе наиболее дорогим компонентом является система высокоскоростных коммуникаций, ее дублирование приведет к значительным финансовым затратам. Следует отметить, что системы высокой готовности часто используются для OLTP задач, которые оптимально функционируют на симметричных мультипроцессорных системах. Реализации таких кластерных систем часто ограничиваются 2-х узловыми вариантами, ориентированными в первую очередь на обеспечение высокой готовности. Но в последнее время использование недорогих систем количеством более двух в качестве компонент для построения смешанных HA/HP кластерных систем становится популярным решением.

Что подтверждает, в частности, информация агентства The Register, опубликованная на его страничке:

"Председатель корпорации Oracle объявил о том, что в ближайшее время три Unіх сервера, на которых работает основная масса бизнес-приложений компании, будут заменены на блок серверов на базе процессоров Іntеl под управлением ОС Lіnuх. Ларри Эллисон настаивает на том, что введение поддержки кластеров при работе с приложениями и базами данных снижает затраты и повышает отказоустойчивость."

Средства реализации High Performance кластеров

Самыми популярными сегодня коммуникационными технологиями для построения суперкомпьютеров на базе кластерных архитектур являются:

Myrinet, Virtual Interface Architecture (cLAN компании Giganet — одна из первых коммерческих аппаратных реализаций), SCI (Scalable Coherent Interface), QsNet (Quadrics Supercomputers World), Memory Channel (разработка Compaq Computer и Encore Computer Corp), а также хорошо всем известные Fast Ethertnet и Gigabit Ethernet.


Рисунок 8. Скорость передачи непрерывного потока данных


Рисунок 9. Время передачи пакета нулевой длинны

Эти диаграммы (Рис. 8 и 9) дают возможность увидеть быстродействие аппаратных реализаций разных технологий, но следует помнить, что на реальных задачах и при использовании разнообразных аппаратных платформ параметры задержки и скорости передачи данных получаются на 20-40%, а иногда на все 100% хуже, чем максимально возможные.

Например, при использовании библиотек MPI для коммуникационных карточек cLAN и Intel Based серверов с шиной PCI, реальная пропускная способность канала составляет 80-100 MByte/sec, задержка — около 20 мксек.

Одной из проблем, которые возникают при использовании скоростных интерфейсов, например, таких как SCI является то, что архитектура PCI не подходит для работы с высокоскоростными устройствами такого типа. Но если перепроектировать PCI Bridge с ориентацией на одно устройство передачи данных, то эта проблема решается. Такие реализации имеют место в решениях некоторых производителей, например, компании SUN Microsystems.

Таким образом, при проектировании высокоскоростных кластерных систем и расчета их быстродействия, следует учитывать потери быстродействия, связанные с обработкой и передачей данных в узлах кластера.

Таблица 1. Сравнение высокоскоростных коммуникационных интерфейсов

Технология Пропускная способность MByte/s Задержка мксек/пакет Стоимость карточки/свича на 8 портов Поддержка платформ Комментарий
Fast Ethertnet 12.5 158 50/200 Linux, UNIX, Windows Низкие цены, популярная
Gigabit Ethernet 125 33 150/3500 Linux, UNIX, Windows Удобство модернизации
Myrinet 245 6 1500/5000 Linux, UNIX, Windows Открытый стандарт, популярная
VI (сLAN от Giganet) 150 8 800/6500 Linux, Windows Первая аппаратная промышленная реализация VI
SCI 400 1.5 1200/5000* Linux, UNIX, Windows Стандартизирована, широко используется
QsNet 340 2 N/A** True64 UNIX AlphaServer SC и системы Quadrics
Memory Channel 100 3 N/A True64 UNIX Используется в Compaq AlphaServer

* аппаратура SCI (и программное обеспечение поддержки) допускает построение так называемых MASH топологий без использования коммутаторов

** нет данных




Рисунок 10. Тесно связанная мультипроцессорная система с несимметричным доступом к памяти

Одной интересной особенностью коммуникационных интерфейсов, которые обеспечивают низкие задержки, является то, что на их основе можно строить системы с архитектурой NUMA, а также системы, которые на уровне программного обеспечения могут моделировать многопроцессорные SMP системы. Преимуществом такой системы является то, что вы можете использовать стандартные операционные системы и программное обеспечение, ориентированное на использование в SMP решениях, но в связи с высокой, в несколько раз выше по сравнению с SMP задержкой междупроцессорного взаимодействия, быстродействие такой системы будет малопрогнозируемо.

Средства распараллеливания

Существует несколько разных подходов к программированию параллельных вычислительных систем:

  • на стандартных широко распространенных языках программирования с использованием коммуникационных библиотек и интерфейсов для организации межпроцессорного взаимодействия (PVM, MPI, HPVM, MPL, OpenMP, ShMem)
  • использование специализированных языков параллельного программирования и параллельных расширений (параллельные реализации Fortran и C/C++, ADA, Modula-3)
  • использование средств автоматического и полуавтоматического распараллеливания последовательных программ (BERT 77, FORGE, KAP, PIPS, VAST)
  • программирование на стандартных языках с использованием параллельных процедур из специализированных библиотек, которые ориентированы на решение задач в конкретных областях, например: линейной алгебры, методов Монте-Карло, генетических алгоритмов, обработки изображений, молекулярной химии, и т.п. (ATLAS, DOUG, GALOPPS, NAMD, ScaLAPACK).

Существует также немало инструментальных средств, которые упрощают проектирование параллельных программ. Например:

  • CODE — Графическая система для создания параллельных программ. Параллельная программа изображается в виде графа, вершины которого есть последовательные части программы. Для передачи сообщений используются PVM и MPI библиотеки.
  • TRAPPER — Коммерческий продукт немецкой компании Genias. Графическая среда программирования, которая содержит компоненты построения параллельного программного обеспечения.

По опыту пользователей высокоскоростных кластерных систем, наиболее эффективно работают программы, специально написанные с учетом необходимости межпроцессорного взаимодействия. И даже несмотря на то, что программировать на пакетах, которые используют shared memory interface или средства автоматического распараллеливания, значительно удобней, больше всего распространены сегодня библиотеки MPI и PVM.

Учитывая массовою популярность MPI (The Message Passing Interface), хочется немного о нём рассказать.

"Интерфейс передачи сообщений" — это стандарт, который используется для построения параллельных программ и использует модель обмена сообщениями. Существуют реализации MPI для языка C/C++ и Fortran как в бесплатных, так и коммерческих вариантах для большинства распространенных суперкомпьютерных платформ, в том числе High Performance кластерных систем, построенных на узлах с ОС Unix, Linux и Windows. За стандартизацию MPI отвечает MPI Forum (http://www.mpi-forum.org). В новой версии стандарта 2.0 описано большое число новых интересных механизмов и процедур для организации функционирования параллельных программ: динамическое управление процессами, односторонние коммуникации (Put/Get), параллельные I/O. Но к сожалению, пока нет полных готовых реализаций этой версии стандарта, хотя часть из нововведений уже активно используется.

Для оценки функциональности MPI, хочу представить вашему вниманию график зависимости времени вычисления задачи решения систем линейных уравнений в зависимости от количества задействованных процессоров в кластере. Кластер построен на процессорах Intel и системе межузловых соединений SCI (Scalable Coherent Interface). Естественно, задача частная, и не надо понимать полученные результаты как общую модель прогнозирования быстродействия желаемой системы.


Рисунок 11. Зависимость времени вычисления задачи решения систем линейных уравнений в зависимости от количества задействованных процессоров в кластере

На графике отображены две кривые, синяя — линейное ускорение и красная — полученное в результате эксперимента. То есть, в результате использования каждой новой ноды мы получаем ускорение выше, чем линейное. Автор эксперимента утверждает, что такие результаты получаются из-за более эффективного использования кэш памяти, что вполне логично и объяснимо. Если у кого возникнут мысли и идеи по этому поводу, буду благодарен, если вы ими поделитесь (мой e-mail: svv@ustar.kiev.ua).

Средства реализации High Availability кластеров

High Availability кластеры можно распределить на:

  • Shared Nothing Architecture (архитектура без разделения ресурсов)
  • Shared Disk Architecture (архитектура с общими дисками)

Рисунок 12. Архитектура без разделения ресурсов

Архитектура без распределения ресурсов не использует общей системы хранения данных. При ее использовании каждый узел имеет свои дисковые накопители, которые не используются совместно узлами кластерной системы. Фактически, на аппаратном уровне разделяются только коммуникационные каналы.


Рисунок 13. Архитектура с общими дисками

Архитектура с общими дисками классически используется для построения кластерных систем высокой готовности, ориентированных на обработку больших объемов данных. Такая система состоит из общей системы хранения данных и узлов кластера, которые распределяют доступ к общим данным. При высокой мощности системы хранения данных, при работе с задачами, ориентированными на их обработку, архитектура с общими дисками является более эффективной. В этом случае не нужно держать несколько копий данных и в то же время, при выходе из строя узла, задачи могут быть мгновенно доступны для других узлов.

В случае, если в задаче удается логически разделить данные для того, чтобы запрос из некого подмножества запросов можно было бы обработать с использованиям части данных, то система без разделения ресурсов может оказаться более эффективным решением.

На мой взгяд интересной является возможность построения гетерогенных кластерных систем. Например, программное обеспечение Tivoli Sanergy разрешает строить системы, в которых возможно разделение доступа к данным между гетерогенными узлами. Такое решение может быть очень полезным в системах коллективной обработки видеоинформации или других данных в организации, где на одной платформе просто не существует требуемого спектра решений или же уже существует сформированный парк аппаратных и программных ресурсов, которые нужно использовать более эффективно.


Рисунок 14. Гетерогенная кластерная система

Самыми популярными коммерческими системами сегодня являются двухузловые отказоустойчивые кластеры. Различают Активный-Активный (Active-Active) и Активный-Пассивный (Active-Passive) модели реализации отказоустойчивых кластерных систем в отношении распределения програмных ресурсов.


Рисунок 15. Модель Активный-Активный

В модели Активный-Активный мы практически получаем вместе с отказоустойчивым решением — решение высокоскоростное, так как одна задача работает на нескольких серверах одновременно. Такой вариант реализован, например, в Oracle Prallel Server, MS SQL 2000, IBM DB2. То есть, реализация такой модели возможна лишь в случае написания прикладного программного обеспечения с ориентацией на функционирование в кластерном режиме (исключение составляют кластерные системы с разделением оперативной памяти). В модели Активный-Активный возможно масштабирование скорости работы задачи путем добавления нового узла, если конечно программным обеспечением поддерживается необходимое количество нод. Например, Oracle Parallel Server 8.0.5 поддерживает работу на кластере от 2-х до 6-ти узлов.


Рисунок 16. Активный-Активный кластер на 3-х узлах

Очень часто пользователи встречаются с такой проблемой, когда нужно обеспечить отказоустойчивое функционирование уже готовых программных решений. К сожалению, модель Активный-Активный в таком случае не работает. Для подобных ситуаций используется модель, в которой обеспечивается миграция задач, выполнявшихся на узле, вышедшем из строя, на другие узлы. Таким образом, мы получаем реализацию Активный-Пассивный.


Рисунок 17. Модель Активный-Пассивный

Учитывая то, что во многих случаях мы можем разбить одну задачу на несколько распределением зон ответственности, а также то, что в общем случае на предприятии нужно выполнять много разных задач, реализуется так называемая модель кластерной системы псевдо Активный-Активный.


Рисунок 18. Псевдо Активный-Активный кластер на 3-х узлах

Если вам нужно обеспечить отказоустойчивую работу нескольких программных ресурсов, то достаточно добавить в систему новый узел и запустить на кластере нужные вам задачи, которые в случае отказа этого узла перейдут на выполнение на другом узле. Такая модель реализована в программном обеспечении ReliantHA для ОС Caldera OpenUnix и Unixware, которое поддерживает кластеризацию от 2-х к 4-х узлам, в MSCS (Microsoft Cluster Service) и Linux Failover Cluster модели.

Система коммуникаций в отказоустойчивых кластерных системах может быть построена на таком же оборудовании, как и в высокоскоростных кластерах. Но в случае реализации архитектуры с разделяемым дисковым накопителем, возникает необходимость обеспечения высокоскоростного доступа к общей системе хранения данных. Эта задача имеет сегодня множество вариантов решений.

Если используется простейшая 2-х узловая модель, то доступ к дискам может быть построен через их прямое подключение к общей SCSI шине,


Рисунок 19. Архитектура с общей SCSI шиной

или с помощью автономной дисковой подсистемы со встроенным контролером SCSI to SCSI. В последнем случае диски подключаются ко внутренним независимым каналам дисковой подсистемы.


Рисунок 20. Вариант с использованием SCSI to SCSI дисковой подсистемы

Вариант с использованием SCSI to SCSI дисковой подсистемы является более масштабируемым, функциональным и отказоустойчивым. Несмотря на то, что появляется еще один мостик между узлом и дисками, скорость такой системы обычно выше, так как мы получаем коммутируемый доступ к накопителю (ситуация похожа на использование концентратора и коммутатора в локальной сети). В отличие от варианта с разделением доступа к дискам на общей SCSI шине, отдельная независимая дисковая подсистема имеет также удобную возможность построения систем без точек отказа и возможность построения многоузловых конфигураций.

В последнее время начинает приобретать популярность новый последовательный интерфейс для протокола SCSI — FC (Fibre Channel). На базе FC строятся так называемые сети хранения данных — SAN (Storage Area Network).


Рисунок 21. Кластерная система с использованием SAN на базе Fibre Channel

К основным преимуществам Fibre Channel можно отнести практически все его особенности.

  • Высокие скорости передачи данных
  • Протоколо-независимость (0-3 уровни)
  • Большие расстояния между точками
  • Низкие задержки при передаче коротких пакетов
  • Высокая надежность передачи данных
  • Практически неограниченное масштабирование
  • Многоточечные топологии

Эти замечательные особенности Fibre Channel получил благодоря тому, что в его проектировании принимали участие специалисты в областях как канальных, так и сетевых интерфейсов, причем им удалось объединить в одном FC интерфейсе положительные черты обоих.

Для понимания значимости FC я приведу сравнительную табличку FC и параллельного SCSI интерфейса.

Таблица 2. Таблица сравнительных характеристик FC и параллельного SCSI интерфейса

  Fibre Channel Parallel SCSI
Быстродействие 100MB/s

Новый стандарт: 200MB/s & 400MB/s

Ultra160m — 160MB/s

Новый стандарт: 320MB/s

Максимальные расстояния Copper: 30m

Fiber optic: 2-10km

Copper, single-ended: 3m

Copper, differential: 25m

Протоколы, которые поддерживаются SCSI, TCP/IP, VI, IPI, ESCON, HIPPI, FCON и прочие SCSI
Максимальное количество подключений 127 на кольцо,

224 на коммутатор

16 на канал
Топологии кольцо, точка-точка, коммутатор точка-точка, чрезвычайно сложная реализация устройства коммутации каналов

Сегодня FC устройства стоят дороже, чем устройства с параллельным SCSI, но разница в цене в последнее время резко уменьшается. Диски и системы хранения данных уже практически равны по стоимости с параллельными SCSI реализациями, значительную разницу в стоимости обеспечивают только FC адаптеры.

Существует еще один очень интересный вариант реализации кластерной архитектуры — кластерная система с разделяемой памятью (в т.ч. оперативной) Shared Memory Cluster. Фактически этот кластер может функционировать как в модели умеренно связанной многопроцессорной системы, так и тесно связанной. Такая система, как уже говорилось в начале статьи, называется NUMA.


Рисунок 22. Модель кластера с разделяемой памятью

Кластер с разделяемой памятью использует программное обеспечение (кластерные сервисы), которое обеспечивает один образ системы (single system image), даже если кластер построен как архитектура без распределения ресурсов, которым его соответственно видит операционная система.

В завершение рассказа о кластерных системах высокой готовности, хочу привести статистику по простоям различных систем.


Рисунок 23. Сравнение среднего времени простоя различных систем

Приведены усредненные данные, а также данные, взятые из рекламных материалов одной из компаний производителей, поэтому их нужно воспринимать с некоторой долей критичности. Однако общая картина, которую они описывают, является вполне корректной.

Как видим, кластерные системы высокой готовности не являются панацеей при минимизации простоев. Если простой системы является чрезвычайно критичным, тогда следует использовать системы класса Fault Tolerant или Continuous Availability, системы такого класса имеют коэффициент готовности на порядок выше, чем системы класса High Availability.

Примеры проверенных решений

Так как успешность любой технологии доказывается примерами ее практического использования, я хочу показать конкретные варианты реализации нескольких наиболее важных, на мой взгляд, кластерных решений.

Сперва о высокоскоростных кластерах.

Одним из наиболее полезных, на мой взгляд, примеров является то, что первые места, да и вообще большинство мест 18-й редакции списка самых мощных суперкомпьютеров мира занимают системы IBM SP2 и Compaq AlphaServer SC. Обе системы являются массивно-параллельными вычислительными системами (MPP), которые структурно аналогичны High Performance кластерным решениям.

В IBM SP2 в качестве узлов используются машины RS/6000, соединенные коммутатором SP Switch2. Пропускная способность коммутатора — 500MB/s в одном направлении, величина задержки — 2.5 мксек.

Compaq AlphaServer SC. Узлы — 4-х процессорные системы типа Compaq AlphaServer ES45, соединенные с помощью коммуникационного интерфейса QsNet, параметры которого упоминались выше.

В том же суперкомпьютерном списке находятся машины, построенные на обычных Intel платформах и коммутаторах SCI и Myrinet и даже обычном Fast и Gigabit Ethernet. Причем как в первых двух вариантах, так и на высокоскоростных кластерных системах, построенных на рядовом оборудовании, для програмирования используются пакеты MPI.

Ну и напоследок хочется привести красивый пример масштабируемой кластерной системы высокой готовности. Аппаратная модель кластерного решения для отказоустойчивой высокоскоростной обработки базы данных IBM DB/2.


Рисунок 24. Кластер IBM DB2

На этом все. Если у кого возникнут вопросы, советы или желание пообщаться — милости просим. Мои координаты вы найдете в конце статьи.

Литература

  • "Sizing Up Parallel Architectures", — Greg Pfister, старший технический специалист компании IBM.
  • "Возможна ли отказоустойчивость для Windows?", — Наталья Пирогова, материалы издательства «Открытые системы».
  • "Использование систем распараллеливания задач в слабосвязанном кластере", — М.Н.Иванов.
  • "Отказоустойчивые компьютеры компании Stratus", — Виктор Шнитман, материалы издательства «Открытые системы».
  • "Современные высокопроизводительные компьютеры", — В. Шнитман, информационно-аналитические материалы Центра Информационных Технологий.
  • "Шаг к сетям хранения данных", информационно-аналитические материалы компании ЮСТАР.
  • "Эволюция архитектуры виртуального интерфейса", — Торстен фон Айкен, Вернер Фогельс, материалы издательства «Открытые системы».
  • Материалы Лаборатории Параллельных Информационных Технологий "НИВЦ МГУ".
  • Материалы Cluster Computing Info Centre.
  • Материалы SCI Europe.
  • Материалы VI Forum (Virtual Architecture Developers Forum).
  • Материалы компании Caldera.
  • Материалы компании Dolphinics.
  • Материалы компании Emulex.
  • Материалы компании KAI Software, a Division of Intel Americas, Inc. (KAI).
  • Материалы компании Myricom, Inc.
  • Материалы компании Oracle.
  • Рекомендации технической поддержки корпорации Intel.



  • Поделиться:
Дополнительно

ВИКТОРИНА OCZ

NAND память какого производителя используется в накопителях OCZ Vector 150?

Нашли ошибку на сайте? Выделите текст и нажмите Shift+Enter

Код для блога бета

Выделите HTML-код в поле, скопируйте его в буфер и вставьте в свой блог.