Видеоускоритель Nvidia GeForce GTX 1060

Часть 2: особенности карты, результаты синтетических тестов


Содержание

Данная часть знакомит читателей с особенностями видеокарты, а также с результатами синтетических тестов.

Видеообзор

Для начала предлагаем посмотреть наш видеообзор ускорителя Nvidia GeForce GTX 1060:

Наш видеообзор ускорителя Nvidia GeForce GTX 1060 можно также посмотреть на iXBT.Video

Теперь давайте взглянем на спецификации устройства.

Устройство(а)

Nvidia GeForce GTX 1060 6 ГБ 192-битной GDDR5 PCI-E
ПараметрЗначениеНоминальное значение (референс)
GPUGeForce GTX 1060 (GP106) (P/N 900-1G410-2530-000 G2)
ИнтерфейсPCI Express x16
Частота работы GPU (ROPs), МГц1507—18601507—1860
Частота работы памяти (физическая (эффективная)), МГц2000 (8000)2000 (8000)
Ширина шины обмена с памятью, бит192
Число вычислительных блоков в GPU10
Число операций (ALU) в блоке128
Суммарное количество блоков ALU1280
Число блоков текстурирования (BLF/TLF/ANIS)80
Число блоков растеризации (ROP)48
Размеры, мм270×100×35270×100×35
Количество слотов в системном блоке, занимаемые видеокартой22
Цвет текстолитачерныйчерный
ЭнергопотреблениеПиковое в 3D, Вт117117
В режиме 2D, Вт2828
В режиме «сна», Вт1111
Уровень шумаВ режиме 2D, дБА20,020,0
В режиме 2D (просмотр видео), дБА20,020,0
В режиме максимального 3D, дБА26,526,5
Выходные гнезда1×DVI (Dual-Link/HDMI), 1×HDMI 2.0b, 3×DisplayPort 1.2/1.3/1.41×DVI (Dual-Link/HDMI), 1×HDMI 2.0b, 3×DisplayPort 1.2/1.3/1.4
Поддержка многопроцессорной работыНет
Максимальное количество приемников/мониторов для одновременного вывода изображения44
Дополнительное питание: количество 8-контактных разъемовНетНет
Дополнительное питание: количество 6-контактных разъемов11
Максимальное разрешение 2DDisplay Port4096×2160
HDMI4096×2160
Dual-Link DVI2560×1600
Single-Link DVI1920×1200
Максимальное разрешение 3DDisplay Port4096×2160
HDMI4096×2160
Dual-Link DVI2560×1600
Single-Link DVI1920×1200

Комплектация локальной памятью
Карта имеет 6 ГБ памяти GDDR5 SDRAM, размещенной в 6 микросхемах по 8 Гбит на лицевой стороне PCB.

Микросхемы памяти Samsung (GDDR5). Микросхемы рассчитаны на номинальную частоту работы в 2000 (8000) МГц.

Сравнение с эталонным дизайном (reference)
Вид спереди
Nvidia GeForce GTX 1060 6 ГБ 192-битной GDDR5 PCI-E Reference card Nvidia GeForce GTX 980
Вид сзади
Nvidia GeForce GTX 1060 6 ГБ 192-битной GDDR5 PCI-E Reference card Nvidia GeForce GTX 980

Несмотря на то, что по номеру GTX 1060 является наследником GTX 960, все же эти карты находятся не в равных условиях по цене: рекомендованные розничные цены на GTX 960 давно упали до 200 долларов, а у GTX 1060 ценник начинается с 250 долларов (за 3-гигабайтную версию). Кроме того, как показали наши тесты, GTX 1060 легко обходит не только GTX 970, но и GTX 980. Поэтому мы и будем сравнивать с последним.

Понятно, что PCB абсолютно разные, потому что шины обмена с памятью отличаются: 256 бит у GTX 980 и 192 бит у GTX 1060. Правда, у последнего есть два пустых посадочных места под микросхемы памяти, и можно предположить, что на плате разведена шина памяти в 256 бит, однако, скорее всего, эти пустые места предназначены для организации 128-битной шины на той же PCB с тем же ядром с микросхемами памяти х16 (8×16=128), то есть для будущих более слабых решений типа GTX 1050.

Схема питания получила 3+1 фазу, управляется цифровым контроллером NCP81022 производства On Semiconductor.

Система охлаждения
Референсная СО Nvidia имеет закрытую форму с цилиндрическим вентилятором на конце. Радиатор, прижимающийся к ядру, выполнен из алюминиевого сплава и имеет медное основание.

Вентилятор гонит воздух через вышеупомянутый радиатор и имеет особую форму крыльчатки, дающую пониженный уровень шума.

Микросхемы памяти и силовые транзисторы охлаждаются с помощью специальной пластины у кулера. На оборотной стороне PCB нет пластин, кулер с вентиляторной частью как бы продолжает относительно короткую печатную плату.

После 6-часового прогона под нагрузкой максимальная температура GPU не превысила 67 градусов, что является очень хорошим результатом для такого рода ускорителей!
Мониторинг температурного режима с помощью MSI Afterburner (автор А. Николайчук AKA Unwinder)

Методика измерения шума

  • Помещение шумоизолировано и заглушено, снижены реверберации.
  • Системный блок, в котором исследовался шум видеокарт, не имеет вентиляторов, не является источником механического шума.
  • Фоновый уровень 20 дБА — это уровень шума в комнате и уровень шумов собственно шумомера.
  • Измерения проводились на расстоянии 50 см от видеокарты на уровне системы охлаждения.
  • Режимы измерения:
    1. Режим простоя в 2D: загружен интернет-браузер с сайтом iXBT.com, окно Microsoft Word, ряд интернет-коммуникаторов.
    2. Режим 2D с просмотром фильмов: используется SmoothVideo Project (SVP) — аппаратное декодирование со вставкой промежуточных кадров.
    3. Режим 3D с максимальной нагрузкой на ускоритель: используется тест FurMark.

В режиме простоя в 2D вентилятор работал на частоте 700 оборотов в минуту, при этом температура графического ядра не поднималась выше 30 градусов, а уровень шума был равен фоновому и составлял 20,0 дБА.

При просмотре фильма с аппаратным декодированием температура графического ядра медленно вырастала до 32 градусов, вентилятор работал на частоте вращения 955 оборотов в минуту, уровень шума не менялся.

В режиме максимальной нагрузки в 3D температура достигала уровня 67 °C, частота вращения вентилятора поднималась до 1823 оборотов в минуту, шум вырастал до 26,5 дБА. В результате мы смело можем говорить о тихой СО. Стоит напомнить, что референсные кулеры будут встречаться на практике только в картах Founder’s Edition, которые можно купить только на сайте компании Nvidia (в розничной продаже в России их не будет).

Комплектация
Карта попала к нам в OEM-поставке, без комплекта.

Упаковка


Синтетические тесты


Конфигурация тестового стенда

  • Компьютер на базе процессора Intel Core i7-5960X (Socket 2011):
    • процессор Intel Core i7-5960X (o/c 4 ГГц);
    • СО Intel Thermal Solution RTS2011LC;
    • системная плата ASRock Fatal1ty X99X Killer на чипсете Intel X99;
    • оперативная память 16 ГБ DDR4 G.Skill Ripjaws4 F4-2800C16Q-16GRK 2800 МГц;
    • жесткий диск Seagate Barracuda 7200.14 3 ТБ SATA2;
    • 2 SSD Corsair Neutron SSD CSSD-N120GB3-BK;
    • блок питания Thermaltake Toughpower DPS G 1050W (1050 Вт);
    • корпус Corsair Obsidian 800D Full Tower.
  • операционная система Windows 10 Pro 64-битная; DirectX 12;
  • монитор Samsung U28D590D (28″);
  • драйверы AMD версии Crimson Edition 16.6.1;
  • драйверы Nvidia версии 368.39 (для GTX 1060 — 368.64);
  • VSync отключен.


Используемые нами пакеты синтетических тестов можно скачать здесь:

Для работы RightMark3D 2.0 требуется установленный пакет MS Visual Studio 2005 runtime, а также последнее обновление DirectX runtime.

В качестве синтетических тестов DirectX 11 мы использовали примеры из пакетов SDK компаний Microsoft и AMD, а также демонстрационную программу Nvidia. Во-первых, это HDRToneMappingCS11.exe и NBodyGravityCS11.exe из комплекта DirectX SDK (February 2010). Мы взяли и приложения обоих производителей видеочипов: Nvidia и AMD. Из ATI Radeon SDK были взяты примеры DetailTessellation11 и PNTriangles11 (они также есть и в DirectX SDK). Дополнительно использовалась демонстрационная программа компании Nvidia — Realistic Water Terrain, также известная как Island11.

Синтетические тесты проводились на следующих видеокартах:

  • GeForce GTX 1060 со стандартными параметрами (сокращенно GTX 1060)
  • GeForce GTX 1080 со стандартными параметрами (сокращенно GTX 1080)
  • GeForce GTX 960 со стандартными параметрами (сокращенно GTX 960)
  • Radeon RX 480 со стандартными параметрами (сокращенно RX 480)
  • Radeon R9 390X со стандартными параметрами (сокращенно R9 390X)

Для анализа производительности новой модели видеокарты GeForce GTX 1060 мы выбрали несколько решений от обоих производителей GPU. GeForce GTX 960 является прямым предшественником новинки, основанном на примерно аналогичном по позиционированию и площади графическом процессоре из предыдущего поколения Maxwell. Видеокарта GeForce GTX 1080 взята как топовое решение нынешнего поколения с максимальной производительностью, основанное на чипе GP104 — сравнение с ним покажет, насколько медленнее теоретически вдвое урезанная GTX 1060.

Из видеокарт конкурирующей компании AMD для нашего сравнения мы выбрали две видеокарты разных поколений. Чисто технически, по сложности и площади GPU, реальным соперником для GeForce GTX 1060 от AMD является новая одночиповая видеокарта модели Radeon RX 480, но она стоит дешевле рассматриваемой калифорнийской новинки. Поэтому мы взяли еще и Radeon R9 390X, основанную на старом графическом процессоре Hawaii, до сих пор продающемся на рынке и составляющем неплохую конкуренцию многим новым решениям в синтетических тестах.

Direct3D 10: тесты пиксельных шейдеров PS 4.0 (текстурирование, циклы)

От устаревших DirectX 9 тестов мы отказались, а во вторую версию RightMark3D вошли два ранее знакомых теста PS 3.0 под Direct3D 9, которые были переписаны под DirectX 10, а также еще два новых теста. В первую пару добавились возможности включения самозатенения и шейдерного суперсэмплинга, что дополнительно увеличивает нагрузку на видеочипы.

Эти тесты измеряют производительность выполнения пиксельных шейдеров с циклами при большом количестве текстурных выборок (в самом тяжелом режиме до нескольких сотен выборок на пиксель) и сравнительно небольшой загрузке ALU. Иными словами, в них измеряется скорость текстурных выборок и эффективность ветвлений в пиксельном шейдере.

Первым тестом пиксельных шейдеров будет Fur. При самых низких настройках в нем используется от 15 до 30 текстурных выборок из карты высот и две выборки из основной текстуры. Режим Effect detail — «High» увеличивает количество выборок до 40—80, включение «шейдерного» суперсэмплинга — до 60—120 выборок, а режим «High» совместно с SSAA отличается максимальной «тяжестью» — от 160 до 320 выборок из карты высот.

Проверим сначала режимы без включенного суперсэмплинга, они относительно просты, и соотношение результатов в режимах «Low» и «High» должно быть примерно одинаковым.

Производительность в данном тесте зависит от количества и эффективности блоков TMU, влияет на результат также и эффективность выполнения сложных программ. А в варианте без суперсэмплинга дополнительное влияние на производительность оказывает еще и эффективный филлрейт и пропускная способность памяти. Результаты при детализации уровня «High» получаются несколько ниже, чем при детализации «Low».

В задачах процедурной визуализации меха с большим количеством текстурных выборок, компания AMD лидирует еще со времени выпуска первых видеочипов на базе архитектуры GCN. Именно платы Radeon и по сей день являются лучшими в этих сравнениях, что говорит о большей эффективности выполнения ими этих программ, особенно это касается GPU предыдущего поколения. Вывод подтверждается и сегодняшним сравнением — рассматриваемая нами новая видеокарта Nvidia проиграла обоим решениям конкурента, включая Radeon R9 390X на устаревшем графическом процессоре. Впрочем, сравнение с RX 480 не столь плачевное, как это было раньше, ведь новинка проиграла лишь 15-16%.

В нашем первом Direct3D 10 тесте новая видеоплата модели GeForce GTX 1060 показала производительность в 66-69% от скорости топовой модели текущего поколения, и серьезно обошла своего предшественника на основе чипа GM206. В целом, это можно считать неплохим результатом. Посмотрим на этот же тест, но с включенным «шейдерным» суперсэмплингом, увеличивающим работу в четыре раза: в такой ситуации что-то должно измениться, и ПСП с филлрейтом будут влиять меньше:

В усложненных условиях результаты теста уже интереснее. Новая видеокарта модели GeForce GTX 1060 в этот раз опережает аналогичную по позиционированию модель из прошлого поколения GTX 960 почти вдвое. А вот от топовой GTX 1080 она отстала чуть больше — уступив уже до 42%, что соответствует теории. Неудивительно, что новинка отстала от конкурентов в виде Radeon RX 480 и R9 390X, но отставание оказалось примерно таким же.

Следующий DX10-тест измеряет производительность исполнения сложных пиксельных шейдеров с циклами при большом количестве текстурных выборок и называется Steep Parallax Mapping. При низких настройках он использует от 10 до 50 текстурных выборок из карты высот и три выборки из основных текстур. При включении тяжелого режима с самозатенением число выборок возрастает в два раза, а суперсэмплинг увеличивает это число в четыре раза. Наиболее сложный тестовый режим с суперсэмплингом и самозатенением выбирает от 80 до 400 текстурных значений, то есть в восемь раз больше по сравнению с простым режимом. Проверяем сначала простые варианты без суперсэмплинга:

Второй пиксель-шейдерный тест Direct3D 10 интереснее с практической точки зрения, так как разновидности parallax mapping широко применяются в играх, а тяжелые варианты, вроде steep parallax mapping, давно используются во многих проектах, например в играх серий Crysis, Lost Planet и многих других. Кроме того, в нашем тесте, помимо суперсэмплинга, можно включить самозатенение, увеличивающее нагрузку на видеочип еще примерно в два раза — такой режим называется «High».

Диаграмма в целом схожа с предыдущей, если рассматривать вариант без включения суперсэмплинга, и в этот раз новая модель видеокарты GeForce GTX 1060 снова оказалась заметно быстрее своей прямой предшественницы GTX 960, и снова показала скорость 65-66% от скорости топовой модели на графическом процессоре GP104, что близко к теории. Если же рассматривать сравнение с видеокартами AMD, то и в этом случае новинка уступает обеим платам Radeon, но если брать RX 480, то разница между ними — все те же 15-16%. Посмотрим, что изменит включение суперсэмплинга:

При включении суперсэмплинга и самозатенения задача становится тяжелее, совместное включение сразу двух опций увеличивает нагрузку на карты почти в восемь раз, вызывая серьезное падение производительности. Разница между скоростными показателями протестированных видеокарт немного изменилась, хотя включение суперсэмплинга сказывается меньше, чем в предыдущем случае.

А нашем сегодняшнем сравнении такие условия почти не изменили соотношение сил, если не смотреть на топовую видеокарту Nvidia. Графические решения AMD Radeon в этом D3D10-тесте пиксельных шейдеров работают эффективнее конкурирующих плат GeForce, хотя новая модель GeForce GTX 1060, основанная на втором чипе архитектуры Pascal, смогла подобраться ближе к уровню Radeon RX 480. Хотя устаревшее решение конкурента оказалось еще быстрее их, а GTX 1080 стала явным лидером. По сравнению с решениями Nvidia, новинка показала скорость на 40-45% медленнее GeForce GTX 1080 и обогнала GTX 960 более чем в полтора раза.

Direct3D 10: тесты пиксельных шейдеров PS 4.0 (вычисления)

Следующая пара тестов пиксельных шейдеров содержит минимальное количество текстурных выборок для снижения влияния производительности блоков TMU. В них используется большое количество арифметических операций, и измеряют они именно математическую производительность видеочипов, скорость выполнения арифметических инструкций в пиксельном шейдере.

Первый математический тест — Mineral. Это тест сложного процедурного текстурирования, в котором используются лишь две выборки из текстурных данных и 65 инструкций типа sin и cos.

Результаты предельных математических тестов чаще всего лишь примерно соответствуют разнице по частотам и количеству вычислительных блоков, на результаты влияет и разная эффективность их использования в конкретных задачах, и оптимизация драйверов, и новейшие системы управления частотами и питанием, и даже упор в ПСП. В случае нашего теста Mineral, мощные видеокарты явно не показали актуальные результаты, — похоже, что тест не отражает реальной разницы в производительности.

В таких условиях рассматриваемая сегодня GeForce GTX 1060 в этом тесте смогла даже опередить прямого конкурента в виде Radeon RX 480, что можно считать маленькой, но важной победой. Хотя старая уже модель R9 390X обошла вообще всех в этом тесте. Зато предшественница на базе чипа архитектуры Maxwell оказалась примерно в полтора раза медленнее, а топовый вариант на GP104 лишь на 29% быстрее новинки, что не так уж и много.

Рассмотрим второй тест шейдерных вычислений, который носит название Fire. Он тяжелее для ALU, и текстурная выборка в нем только одна, а количество инструкций типа sin и cos увеличено вдвое, до 130. Посмотрим, что изменилось при увеличении нагрузки:

Второй математический тест из нашего RigthMark показывает обычно уже более-менее похожие на реальное положение дел результаты видеокарт относительно друг друга. Так, новая модель GeForce GTX 1060 в этот раз на 60% опережает прямую предшественницу GTX 960, и показывает скорость на уровне 66% от топовой модели GTX 1080 — похоже, что это и есть реальная разница между ними при двукратном отличии в количестве исполнительных блоков.

Если сравнивать второй GPU архитектуры Pascal с платами Radeon, то более новая модель из видеокарт на чипах компании AMD снова показала чуть меньший результат, и разница между GeForce GTX 1060 и Radeon RX 480 снова оказалась в пользу новинки. Хотя графический процессор Hawaii, несмотря на то, что он был выпущен очень давно, до сих пор весьма силен в математических тестах, и поэтому Radeon R9 390X явно быстрее этой пары свежих среднеценовых GPU.

Direct3D 10: тесты геометрических шейдеров

В составе пакета RightMark3D 2.0 есть два теста скорости геометрических шейдеров, первый вариант носит название «Galaxy», техника аналогична «point sprites» из предыдущих версий Direct3D. В нем анимируется система частиц на GPU, геометрический шейдер из каждой точки создает четыре вершины, образующие частицу. Аналогичные алгоритмы должны получить широкое использование в будущих играх под DirectX 10.

Изменение балансировки в тестах геометрических шейдеров не влияет на конечный результат рендеринга, итоговая картинка всегда абсолютно одинакова, изменяются лишь способы обработки сцены. Параметр «GS load» определяет, в каком из шейдеров производятся вычисления — в вершинном или геометрическом. Количество вычислений всегда одинаково.

Рассмотрим первый вариант теста «Galaxy», с вычислениями в вершинном шейдере, для трех уровней геометрической сложности:

Соотношение скоростей при разной геометрической сложности сцен примерно одинаково для всех решений, производительность соответствует количеству точек, с каждым шагом падение FPS близкое к двукратному. Задача эта для мощных современных видеокарт довольно простая, и производительность в ней ограничена скоростью обработки геометрии, а иногда и пропускной способностью памяти и/или филлрейтом.

Наблюдаемая разница между результатами видеокарт на чипах Nvidia и AMD в этот раз явно в пользу решений калифорнийской компании и она обусловлена отличиями в геометрических конвейерах чипов этих компаний. В тестах геометрии платы GeForce всегда были конкурентоспособнее Radeon, в нашем случае хорошо заметно, что современные видеочипы Nvidia имеют большее количество блоков по обработке геометрии и выигрывают с заметным преимуществом.

Новая модель GeForce GTX 1060 отстает от GTX 1080 лишь на 27-30%, оказавшись до двух раз быстрее аналогичной по позиционированию платы прошлого поколения в виде GeForce GTX 960. Видеокарты Radeon показывают результаты между GTX 960 и новинкой, причем разница между Radeon R9 390X на старом GPU и новой RX 480 совсем невелика. Обе они проиграли GeForce GTX 1060, хоть и не в разы. Посмотрим, как изменится ситуация при переносе части вычислений в геометрический шейдер:

При изменении нагрузки в этом тесте цифры изменились незначительно для плат AMD и для решений Nvidia. И это ничего особенно не меняет. Видеокарты в этом тесте геометрических шейдеров слабо реагируют на изменение параметра GS load, отвечающего за перенос части вычислений в геометрический шейдер, поэтому и наши выводы остаются неизменными. GeForce GTX 1060 в этом подтесте показала отличный результат, обогнав все остальные видеокарты, кроме топовой GTX 1080, от которой она отстала на 25-32%. Отставание свежей Radeon RX 480 от новинки получилось примерно такое же — 25-33%.

К сожалению, «Hyperlight» — второй тест геометрических шейдеров, демонстрирующий использование сразу нескольких техник: instancing, stream output, buffer load, в котором используется динамическое создание геометрии при помощи отрисовки в два буфера, а также новая возможность Direct3D 10 — stream output, на всех современных видеокартах компании AMD не работает. Этот тест давно перестал запускаться на платах этой компании, и ошибка не исправлена вот уже несколько лет. Так что рассматриваем в этом тесте только результаты видеокарт Nvidia:

На этой диаграмме мы видим почти то же самое, что и в тесте Galaxy. Новая видеоплата на базе чипа GP106 оказалась на четверть быстрее решения предыдущего поколения GeForce GTX 960, а вот от топовой платы своего же поколения Pascal в виде модели GTX 1080 она отстала на 32-36% — снова мы видим примерно две трети от скорости GP104, на что примерно и стоит рассчитывать в реальных условиях. Возможно, в тяжелом режиме что-то изменится:

В таких условиях результаты видеокарт компании Nvidia изменились, но это не сильно сказалось на их взаимном положении. У новинки GTX 1060 мы видим все те же 66-70% от скорости топовой GeForce GTX 1080, а плата из предыдущего поколения Maxwell, основанная на аналогичном по позиционированию GPU, проиграла новинке около 33%. В целом, можно сказать, что в тестах на основе геометрических шейдеров новинка показала себя неплохо.

Direct3D 10: скорость выборки текстур из вершинных шейдеров

В тестах «Vertex Texture Fetch» измеряется скорость большого количества текстурных выборок из вершинного шейдера. Тесты схожи, по сути, так что соотношение между результатами карт в тестах «Earth» и «Waves» должно быть примерно одинаковым. В обоих тестах используется displacement mapping на основании данных текстурных выборок, единственное существенное отличие состоит в том, что в тесте «Waves» используются условные переходы, а в «Earth» — нет.

Рассмотрим первый тест «Earth», сначала в режиме «Effect detail Low»:

Наши предыдущие исследования показали, что на результаты этого теста может влиять и филлрейт и пропускная способность памяти, ограничивающая производительность, что хорошо заметно по результатам плат Nvidia в простых режимах. Все новые видеокарты компании Nvidia в этом тесте показывают скорость явно заниженную — этот тест не очень хорошо исполняется на всех платах GeForce.

Явным лидером в этом тесте является старая плата компании AMD на базе видеочипа Hawaii — в этот раз она оказалась сильнее всех остальных плат сравнения, от Nvidia и новинки AMD. Кстати, если сравнивать GTX 1060 с прямым конкурентом RX 480, то они весьма близки друг к другу, и GeForce лишь немного быстрее Radeon. Посмотрим на производительность представленных в сравнении видеокарт в этом же тесте, но с увеличенным количеством текстурных выборок:

Ситуация на диаграмме слегка изменилась, и решения компании AMD в тяжелых режимах потеряли значительно больше плат GeForce. Новая модель GeForce GTX 1060 в сложных условиях показала скорость около 75% от производительности GTX 1080, заметно обогнав предшественницу в лице GTX 960. К слову, если сравнивать новинку со свежей же моделью Radeon, то GeForce GTX 1060 явно выигрывает у платы AMD уже во всех режимах, но особенно — в самом тяжелом, где разница достигает 40%.

Рассмотрим результаты второго теста текстурных выборок из вершинных шейдеров. Тест «Waves» отличается меньшим количеством выборок, зато в нем используются условные переходы. Количество билинейных текстурных выборок в данном случае до 14 («Effect detail Low») или до 24 («Effect detail High») на каждую вершину. Сложность геометрии изменяется аналогично предыдущему тесту.

Результаты во втором тесте вершинного текстурирования «Waves» во многом похожи на то, что мы видели на предыдущих диаграммах. Скоростные показатели GeForce GTX 1060 в этом тесте явно выше производительности Radeon RX 480, хотя старенькая Radeon R9 390X оказалась быстрее их всех, и даже GTX 1080 обогнала. Если сравнивать новое решение Nvidia с GeForce, то GTX 960 отстал вдвое, а топовая GTX 1080 оказалась лишь на 20-22% быстрее. Рассмотрим второй вариант этой же задачи:

С усложнением задачи во втором тесте текстурных выборок скорость всех решений стала ниже, и видеокарты Nvidia пострадали несколько больше. Но в выводах ничего не меняется, новая модель GeForce GTX 1060 снова где-то на 20-26% медленнее топовой видеокарты на чипе GP104 этого же поколения, и более чем вдвое быстрее своей предшественницы из предыдущего поколения Maxwell. Если сравнивать GeForce GTX 1060 с Radeon RX 480, то решение Nvidia все же побыстрее — до 27%. Правда, старая Radeon R9 390X снова впереди всех.

3DMark Vantage: тесты Feature

Синтетические тесты из пакета 3DMark Vantage могут показать нам то, что мы ранее упустили. Feature тесты из этого тестового пакета обладают поддержкой DirectX 10, до сих пор актуальны и интересны тем, что отличаются от наших. При анализе результатов новейшей видеокарты GeForce GTX 1060 в этом пакете мы сделаем какие-то новые и полезные выводы, ускользнувшие от нас в тестах из пакетов семейства RightMark.

Feature Test 1: Texture Fill

Первый тест измеряет производительность блоков текстурных выборок. Используется заполнение прямоугольника значениями, считываемыми из маленькой текстуры с использованием многочисленных текстурных координат, которые изменяются каждый кадр.

Эффективность видеокарт AMD и Nvidia в текстурном тесте компании Futuremark достаточно высока и итоговые цифры разных моделей близки к соответствующим теоретическим параметрам. Разница в скорости между GeForce GTX 960 и GTX 1060 оказалась почти двукратной в пользу более нового решения на базе чипа архитектуры Pascal, естественно. Ну а по сравнению с GTX 1080, новинка отстала от топовой модели почти вдвое, как примерно и должно получаться, исходя из теоретической разницы.

Что касается сравнения скорости текстурирования новой видеоплаты от Nvidia с имеющимися на рынке решениями конкурента, то новинка все же уступает видеокарте Radeon RX 480 около 10%, ну а модель предыдущего поколения 390X впереди них обеих. Так что результаты этого теста в очередной раз показали, что видеокарты компании AMD с текстурированием справляются весьма неплохо, и плата на GP106 не смогла достать Polaris 10 от конкурента по текстурированию — у последнего блоков TMU заметно больше.

Feature Test 2: Color Fill

Вторая задача — тест скорости заполнения. В нем используется очень простой пиксельный шейдер, не ограничивающий производительность. Интерполированное значение цвета записывается во внеэкранный буфер (render target) с использованием альфа-блендинга. Используется 16-битный внеэкранный буфер формата FP16, наиболее часто используемый в играх, применяющих HDR-рендеринг, поэтому такой тест является вполне своевременным.

Цифры из второго подтеста 3DMark Vantage показывают производительность блоков ROP, без учета величины пропускной способности видеопамяти (т. н. «эффективный филлрейт»), и тест измеряет именно производительность ROP. Рассматриваемая нами сегодня плата GeForce GTX 1060 отстала от лучшей из плат сравнения на все те же почти 50%. Неудивительно, что GeForce GTX 1080 почти вдвое быстрее, ведь так и должно быть по теории. А вот прямая предшественница GTX 960 более чем в полтора раза медленнее сегодняшней новинки, так что с эффективностью работы блоков ROP в Pascal все нормально.

Ну а если сравнивать скорость заполнения сцены новой видеокартой GeForce GTX 1060 с решениями компании AMD, то рассматриваемая нами сегодня плата в этом тесте снова показала чуть меньшую скорость заполнения сцены по сравнению с Radeon RX 480 (разница составила всего 6%). Ну а R9 390X очень сильно отстал от обеих современных видеокарт. Судя по всему, на результате сказалось не только большое количество блоков ROP, но и эффективные оптимизации по сжатию данных у современных GPU обоих производителей.

Feature Test 3: Parallax Occlusion Mapping

Один из самых интересных feature-тестов, так как подобная техника давно используется в играх. В нем рисуется один четырехугольник (точнее, два треугольника) с применением специальной техники Parallax Occlusion Mapping, имитирующей сложную геометрию. Используются довольно ресурсоемкие операции по трассировке лучей и карта глубины большого разрешения. Также эта поверхность затеняется при помощи тяжелого алгоритма Strauss. Это тест очень сложного и тяжелого для видеочипа пиксельного шейдера, содержащего многочисленные текстурные выборки при трассировке лучей, динамические ветвления и сложные расчеты освещения по Strauss.

Этот тест из пакета 3DMark Vantage отличается от проведенных нами ранее тем, что результаты в нем зависят не исключительно от скорости математических вычислений, эффективности исполнения ветвлений или скорости текстурных выборок, а от нескольких параметров одновременно. Для достижения высокой скорости в этой задаче важен верный баланс GPU, а также эффективность выполнения сложных шейдеров.

В данном случае, важны и математическая и текстурная производительность, и в этой «синтетике» из 3DMark Vantage новая плата GeForce GTX 1060 показала довольно неплохой результат, оказавшись на 78% быстрее аналогичной модели предыдущего поколения, основанного на базе схожего графического процессора архитектуры Maxwell — GTX 960. А старшая модель текущего поколения GTX 1080 на основе GP104 все так же почти вдвое быстрее новинки. Среднеценовая плата Nvidia в этом тесте показала результат почти на одном уровне с Radeon RX 480 (разница составила лишь 4%), но обе они отстали от R9 390X.

Feature Test 4: GPU Cloth

Четвертый тест интересен тем, что рассчитывает физические взаимодействия (имитация ткани) при помощи видеочипа. Используется вершинная симуляция, при помощи комбинированной работы вершинного и геометрического шейдеров, с несколькими проходами. Используется stream out для переноса вершин из одного прохода симуляции к другому. Таким образом, тестируется производительность исполнения вершинных и геометрических шейдеров и скорость stream out.

Скорость рендеринга в этом тесте также зависит сразу от нескольких параметров, и основными факторами влияния должны бы являться производительность обработки геометрии и эффективность выполнения геометрических шейдеров. То есть сильные стороны чипов Nvidia должны проявляться, но мы давно уже отмечаем весьма странные результаты, увы. В этом тесте очередная новая видеокарта Nvidia показала низкую скорость, ровно на уровне старшей сестры GeForce GTX 1080, поэтому вряд ли можно судить о реальной скорости обработки геометрии по этому тесту.

Сравнение с платами Radeon в этом тесте для новинки в таких условиях далеко не самое радостное. Несмотря на теоретически меньшее количество геометрических исполнительных блоков и отставание по геометрической производительности у чипов AMD, по сравнению с конкурирующими решениями, обе платы Radeon в этом тесте работают весьма эффективно, обгоняя все видеокарты GeForce, представленные в сравнении. Соответственно, RX 480 в таких условиях аж на 36% быстрее новинки.

Feature Test 5: GPU Particles

Тест физической симуляции эффектов на базе систем частиц, рассчитываемых при помощи видеочипа. Также используется вершинная симуляция, каждая вершина представляет одиночную частицу. Stream out используется с той же целью, что и в предыдущем тесте. Рассчитывается несколько сотен тысяч частиц, все анимируются отдельно, также рассчитываются их столкновения с картой высот.

Аналогично одному из тестов нашего RightMark3D 2.0, частицы отрисовываются при помощи геометрического шейдера, который из каждой точки создает четыре вершины, образующие частицу. Но тест больше всего загружает шейдерные блоки вершинными расчетами, также тестируется stream out.

А вот во втором «геометрическом» тесте из 3DMark Vantage ситуация изменилась. В этот раз новая GeForce уже показывает очень хорошие результаты, чуть-чуть обогнав обе платы соперника, да и решение архитектуры Maxwell. Новая плата GeForce GTX 1060 в этот раз отстала от GTX 1080 лишь на 32%, обогнав предшественницу из предыдущего поколения почти на 60%. Сравнение новинки от Nvidia с конкурирующими видеокартами компании AMD в этот раз более позитивное — новая плата на втором GPU семейства Pascal показала результат чуть лучше обеих одночиповых видеокарт компании-соперника.

Feature Test 6: Perlin Noise

Последний feature-тест пакета Vantage является математически-интенсивным тестом для GPU, он рассчитывает несколько октав алгоритма Perlin noise в пиксельном шейдере. Каждый цветовой канал использует собственную функцию шума для большей нагрузки на видеочип. Perlin noise — это стандартный алгоритм, часто применяемый в процедурном текстурировании, он использует много математических вычислений.

В этом математическом тесте производительность решений хоть и не полностью соответствует теории, но очень близка к тому, что должна быть, исходя из пиковых показателей. В математическом тесте из пакета компании Futuremark, показывающем пиковую производительность видеочипов в предельных задачах, мы видим распределение результатов, сильно отличающееся по сравнению со схожими тестами из нашего тестового пакета.

Хотя видеочипы компании AMD с архитектурой GCN до сих пор справляются с подобными задачами лучше решений конкурента в случаях, когда выполняется интенсивная «математика», но последние модели графических процессоров от компании Nvidia, основанные на архитектуре Pascal, почти достают своих прямых конкурентов по скорости. Так, GeForce GTX 1060 пусть и не достала Radeon R9 390X и RX 480, но отстала от последней лишь на 9%, что вполне можно назвать хорошим результатом, учитывая меньшую сложность GPU от Nvidia — у них наконец-то получились весьма производительные решения с точки зрения интенсивных вычислений, и во многом спасибо нужно сказать очень высокой тактовой частоте чипа.

Сравнивать новинку с предыдущей моделью компании из семейства GeForce GTX 900 смысла не очень много, в этом тесте разница довольно велика. Рассматриваемая сегодня видеокарта показала результат на 60% лучше, чем аналогичная ей GeForce GTX 960 из предыдущего поколения. Это очень хорошие показатели в таких тестах, которые намекают на достаточно сильные выступления GeForce GTX 1060 и в игровых приложениях.

Direct3D 11: Вычислительные шейдеры и производительность тесселяции

Обычно для тестов новых решений в задачах, использующих такие возможности DirectX 11, как тесселяция и вычислительные шейдеры, мы пользуемся примерами из пакетов для разработчиков (SDK) и демонстрационными программами компаний Microsoft, Nvidia и AMD. Но увы, все наши привычные тесты, использующие вычислительные шейдеры и тесселяцию, на тестовой системе с DirectX 12 под управлением операционной системы Windows 10 работают некорректно. Они толком не работают ни в оконном режиме, ни в полноэкранном. И разрешение менять не дают, аварийно завершая работу. Для будущих материалов будет разработана новая методика с актуальными синтетическими тестами DirectX 11/12 и OpenCL — в комментариях к статье на нашем форуме вы можете написать свои пожелания по тестовому набору.

***

Исходя из результатов синтетических тестов новой видеокарты Nvidia GeForce GTX 1060, основанной на совершенно новом графическом процессоре GP106, ставшем уже вторым представителем архитектуры Pascal, а также результатам других моделей видеокарт от обоих производителей дискретных видеочипов, можно сделать вывод о том, что рассматриваемая нами сегодня видеокарта способна стать одним из наиболее производительных решений в своем классе, опередив даже такие решения предыдущего поколения более высокого ценового уровня, как GeForce GTX 980.

Новая видеокарта компании Nvidia показала достаточно сильные результаты в большинстве синтетических тестов, примерно на уровне с основным конкурирующим решением от компании AMD в лице Radeon RX 480. Хотя в некоторых тестах мы наблюдали и явные проигрыши, но практика показала, что в играх картина будет несколько иной, так как не всю синтетику можно перенести на игры. В очередной раз отмечаем, что у Radeon и GeForce есть разные сильные стороны: если решения компании AMD традиционно отличаются весьма эффективным исполнением сравнительно интенсивных вычислительных задач, то графические процессоры Nvidia отыгрываются в геометрических тестах с применением тесселяции и тестах с более сложными вычислениями.

В реальных игровых приложениях все равно положение будет несколько иным, по сравнению с синтетическими тестами. Судя по опыту предыдущих сравнений, модель GeForce GTX 1060 должна показать в играх скорость чуть выше уровня GeForce GTX 980 и явно опередить Radeon RX 480, пусть и не с подавляющим преимуществом. На первый взгляд, новинка от Nvidia кажется неплохо сбалансированным решением, особенно для противодействия Radeon RX 480, даже с учетом существующей разницы в ценах. А уж если затронуть тему энергоэффективности и производительности на 1 мм² площади GPU или на транзистор, то GeForce GTX 1060 выйдет явным победителем. Архитектура Pascal получилась действительно эффективной!

В следующей части нашего материала мы предлагаем оценить производительность новинки в играх по сравнению с ее конкурентами. Мы протестировали GeForce GTX 1060 в нашем привычном наборе современных игровых тестов и сравнили ее показатели со скоростью основных конкурентов и предшественников.



Средняя текущая цена (количество предложений) в московской рознице:
Рассматриваемые карты Конкуренты
GTX 1060 6 ГБ — 19500 руб. (на 04.12.17) GTX 980 — 22000 руб. (на 04.12.17)
GTX 1060 6 ГБ — 19500 руб. (на 04.12.17) RX 480 8 ГБ — 22500 руб. (на 04.12.17)
GTX 1060 6 ГБ — 19500 руб. (на 04.12.17) R9 390 8 ГБ — 27 000  (на 03.08.17)
GTX 1060 6 ГБ — 19500 руб. (на 04.12.17) R9 390X 8 ГБ — 33 500  (на 03.08.17)


Благодарим компанию Nvidia Russia
и лично Ирину Шеховцову
за предоставленную на тестирование видеокарту

Блок питания Thermaltake DPS G 1050W для тестового стенда предоставлены компанией Thermaltake

Корпус Corsair Obsidian 800D Full Tower для тестового стенда предоставлен компанией Corsair

Модули памяти G.Skill Ripjaws4 F4-2800C16Q-16GRK для тестового стенда предоставлены компанией G.Skill

Corsair Hydro SeriesT H100i CPU Cooler для тестового стенда предоставлен компанией Corsair

Монитор Dell UltraSharp U3011 для тестовых стендов предоставлен компанией Юлмарт

Системная плата ASRock Fatal1ty X99X Killer для тестового стенда предоставлена компанией ASRock

Жесткий диск Seagate Barracuda 7200.14 3 ТБ для тестового стенда предоставлен компанией Seagate

2 накопителя SSD Corsair Neutron SeriesT 120 ГБ для тестового стенда предоставлены компанией Corsair




Дополнительно