
© Copyright Khronos Group 2015 - Page 1

Graphics and Compute
Belong Together

GDC, March 2015

© Copyright Khronos Group 2015 - Page 2

The Need for Vulkan

In the twenty two years since OpenGL
was invented – the architecture of GPUs
and platforms has changed radically

Ground-up design of a modern open
standard API for driving high-efficiency

graphics and compute on GPUs
used across diverse devices

GPUs being used for graphics, compute and vision
processing on a rapidly increasing diversity of platforms

– increasing the need for cross-platform standards

© Copyright Khronos Group 2015 - Page 3

Vulkan Explicit GPU Control

GPU

Traditional
graphics

drivers include
significant

context, memory
and error

management

Application

GPU

Direct GPU
Control

Application
responsible for

memory
allocation and

thread
management to

generate
command buffers

Separate APIs for desktop
and mobile markets

Unified API for mobile, desktop,
console and embedded platforms

Error management is
always active

Layered architecture so validation
and debug layers can be unloaded

when not needed

Driver processes full
shading language source

Run-time only has to ingest SPIR-V
intermediate language

Complex drivers lead to driver
overhead and cross vendor

unpredictability

Simpler drivers for low-overhead
efficiency and cross vendor

portability

Vulkan delivers the maximized performance and cross platform
portability needed by sophisticated engines, middleware and apps

© Copyright Khronos Group 2015 - Page 4

Cross Platform Challenge
• An explicit API that is also cross-platform needs careful design

One family
of GPUs

One GPU on
one OS

One OS All Modern Platforms and GPUs
A challenge that needs...
Participation of key players

Proven IP Framework
Battle-tested cooperative model

The drive to not let the 3D industry fragment

© Copyright Khronos Group 2015 - Page 5

Vulkan Multi-threading Efficiency

GPU

Command
Buffer

Command
Buffer

Command
Buffer

Command
Buffer

Command
Buffer

Command
Queue

CPU
Thread

CPU
Thread

CPU
Thread

CPU
Thread

CPU
Thread

CPU
Thread

1. Multiple threads can construct Command Buffers in parallel
Application is responsible for thread management and synch

2. Command Buffers placed in Command
Queue by separate submission thread

© Copyright Khronos Group 2015 - Page 6

Vulkan – Enhancing Driver Reliability

Cross-
vendor

Portability

Streamlined API is
easier to implement

and test

SPIR-V intermediate
language improves shader
program portability and

reduces driver complexity

Open source
conformance test source

components for
community engagement

© Copyright Khronos Group 2015 - Page 7

Vulkan Tools Architecture
• Layered design for cross-vendor tools innovation and flexibility
-  IHVs plug into a common, extensible architecture for code validation, debugging

and profiling during development without impacting production performance

• Common Loader used to enable use of tools layers during debug
-  Cross-vendor API calls provide debug data

Vulkan-based Title

IHV’s Installable Client
Driver

Vulkan’s Common Loader

Production Path
(Performance) Debug Layers can be

installed during Development

Validation Layers

Debug Layers

Interactive
Debugger

Debug information via
standardized API calls

© Copyright Khronos Group 2015 - Page 8

Vulkan Tools Ecosystem
• Extensible modular architecture

encourages many fine-grained layers - new
layers can be added easily

• Khronos encouraging open community of
tools e.g. shader debugging

• Valve, LunarG, Codeplay and others are
already driving the development of open
source Vulkan tools

• Customized interactive debugging and
validation layers will be available together
with first drivers

Prototype Vulkan Debugger from Valve and LunarG

© Copyright Khronos Group 2015 - Page 9

SPIR-V Unleashes Language Innovation
• First open standard cross-API intermediate language for parallel compute and graphics
-  Can natively represent Vulkan and OpenCL source languages
-  Including full flow control, graphics and parallel constructs not in LLVM

• Fully specified Khronos-defined standard
-  Khronos is working on creating SPIR-V <-> LLVM conversion tools

• Splitting the Compiler Chain enables parallel software/hardware innovation
-  Front-ends for languages can access multiple production quality backends
-  Back-ends using multicore, GPU, vector, VLIW or other technologies can reuse production

quality language frontends and abstractions
-  Tooling – encourages innovation in advanced

program analysis and optimization of
programs in SPIR form

Front-end Languages
and Frameworks

Multiple Hardware
Architectures Backends

Tools

 Standard
 Portable
 Intermediate
 Representation

© Copyright Khronos Group 2015 - Page 10

SPIR-V for Developers
• Developers can use same front-end compiler across multiple platforms
-  Eliminating major source of cross-vendor portability

• Reduces runtime shader compilation time
-  Driver only has to process SPIR-V not full source language

• Don’t have to ship shader source code
-  Provides a measure of IP protection

• SPIR-V is core in OpenCL 2.1 AND Vulkan
-  Exposes machine model for OpenCL 1.2, 2.0, 2.1 and Vulkan
-  Supports OpenCL 1.2, 2.0, 2.1 kernel languages
-  Supports GLSL shader language (under development)

SIGNIFICANT OPPORTUNITY TO LEVERAGE AND CONVERGE
LANGUAGES FOR GRAPHICS AND COMPUTE

© Copyright Khronos Group 2015 - Page 11

Vulkan Language Ecosystem

Device X Device Y Device Z

GLSL
Shader Source

GLSL to SPIR-V
Translator

Future diversity in domain-
specific languages,

frameworks and tools

Khronos is considering
open sourcing compiler

front-ends

E.g. C++
Shading Language

Game Engines
Can flexibly target
SPIR-V and Vulkan

back-ends
GLSL will be first
shading language
supported by Vulkan

Vulkan Runtime

SPIR-V supported in
Vulkan core

© Copyright Khronos Group 2015 - Page 12

Ground-up Explicit API Redesign

Originally	
 architected	
 for	
 graphics	
 worksta5ons	
 	

with	
 direct	
 renderers	
 and	
 split	
 memory	

Matches	
 architecture	
 of	
 modern	
 pla9orms	

including	
 mobile	
 pla9orms	
 with	
 unified	
 memory,	
 5led	
 rendering

Driver	
 does	
 lots	
 of	
 work:	
 state	
 valida5on,	
 dependency	
 tracking,	

error	
 checking.	
 	
 Limits	
 and	
 randomizes	
 performance

Explicit	
 API	
 –	
 the	
 applica5on	
 has	
 direct,	
 predictable	
 control	
 	

over	
 the	
 opera5on	
 of	
 the	
 GPU

Threading	
 model	
 doesn’t	
 enable	
 genera5on	
 of	
 graphics	

commands	
 in	
 parallel	
 to	
 command	
 execu5on

Mul5-­‐core	
 friendly	
 with	
 mul5ple	
 command	
 buffers	

that	
 can	
 be	
 created	
 in	
 parallel

Syntax	
 evolved	
 over	
 twenty	
 years	
 –	
 complex	
 API	
 choices	
 can	

obscure	
 op5mal	
 performance	
 path

Removing	
 legacy	
 requirements	
 simplifies	
 API	
 design,	
 	

reduces	
 specifica5on	
 size	
 and	
 enables	
 clear	
 usage	
 guidance

Shader	
 language	
 compiler	
 built	
 into	
 driver.	

Only	
 GLSL	
 supported.	
 	
 Have	
 to	
 ship	
 shader	
 source

SPIR-­‐V	
 as	
 compiler	
 target	
 simplifies	
 driver	
 and	
 enables	
 front-­‐end	

language	
 flexibility	
 and	
 reliability

Despite	
 conformance	
 tes5ng	
 developers	
 must	
 oUen	
 handle	

implementa5on	
 variability	
 between	
 vendors

Simpler	
 API,	
 common	
 language	
 front-­‐ends,	
 more	
 rigorous	

tes5ng	
 increase	
 cross	
 vendor	
 func5onal/performance	
 portability

© Copyright Khronos Group 2015 - Page 13

Vulkan Status
• Rapid progress since June 2014
-  Significant proposals and IP contributions received from members

• Participants come from all segments of the graphics industry
-  Including an unprecedented level of participation from game engine ISVs

• Initial specs and implementations expected this year
-  Will work on any platform that supports OpenGL ES 3.1 and up

Working Group Participants

© Copyright Khronos Group 2015 - Page 14

Khronos Open Standards for Graphics and Compute

Portable intermediate representation
for graphics and parallel compute

High-efficiency GPU graphics and compute
API for performance critical apps

Workhorse cross-platform API for professional 3D apps and gaming

Ubiquitous API for mobile gaming and general purpose graphics

Heterogeneous parallel computation

A comprehensive family of APIs to address the full spectrum of developer requirements

2000’s

2008

1990’s

2014

2015

All APIs will be evolved and maintained to meet industry needs.
Rich mix of open technologies for future innovation

