© SMPTE 2003 – All rights reserved

Proposed SMPTE Standard for Television
Date: 2003-10-07

SMPTE WD xxxM
SMPTE Technology Committee C24 on Video Compression Technology
Proposed SMPTE Standard for Television: VC-9 Compressed Video Bitstream Format and Decoding Process

Warning

This document is not a SMPTE Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as a SMPTE Standard. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation. Distribution does not constitute publication.

Copyright notice

Copyright 2003 THE SOCIETY OF MOTION PICTURE AND TELEVISION ENGINEERS

595 W. Hartsdale Ave.

White Plains, NY 10607

+1 914 761 1100

Fax +1 914 xxx xxxx

E-mail eng@smpte.org

Web www.smpte.org

Foreword

SMPTE (the Society of Motion Picture and Television Engineers) is an internationally-recognized standards developing organization. Headquartered and incorporated in the United States of America, SMPTE has members in over 80 countries on six continents. SMPTE’s Engineering Documents, including Standards, Recommended Practices and Engineering Guidelines, are prepared by SMPTE’s Technology Committees. Participation in these Committees is open to all with a bona fide interest in their work. SMPTE cooperates closely with other standards-developing organizations, including ISO, IEC and ITU.

SMPTE Engineering Documents are drafted in accordance with the rules given in Part XIII of its Administrative practices.

This document is proposed standard VC-9 submitted to SMPTE Technology Committee C24.

Introduction

This document was prepared for the primary purpose of documenting the bitstream format and decoding process used in the Microsoft Windows Media v9 video codec. It defines the bitstream syntax, semantics and constraints for compressed video bitstreams and describes the complete process required to decode them.

SMPTE Standard for Television: VC-9 Compressed Video Bitstream Format and Decoding Process

Table of Contents
iTable of Contents

vTable of Figures

viiTable of Tables

11
Scope

12
Normative References

13
Notation

13.1
Arithmetic Operators

23.2
Logical operators

23.3
Relational operators

23.4
Bitwise operators

23.5
Assignment

23.6
Mnemonics

23.7
Bitstream Parsing Operations

33.8
Definition of Median3 and Median4 Functions

44
Source Coder/Decoder

44.1
Progressive Coding Mode

44.1.1
Input/output Format

44.1.2
Hierarchical Elements

54.1.3
Coding Description (Informative)

74.2
Interlace Coding Mode

74.2.1
Input/Output Format for 4:2:0 Interlace

74.2.2
Hierarchical Elements

74.3
Decoder Limitations

74.3.1
Minimum and maximum frame sizes

74.4
Memory Requirements (Informative)

74.4.1
Code Memory Size (Informative)

84.4.2
Initialized Data Memory Size (Informative)

84.4.3
Dynamic Memory Size (Informative)

85
Bitstream Syntax and Semantics

95.1
Sequence-level Syntax and Semantics

105.1.1
Profile (PROFILE)(2 bits)

105.1.2
Reserved (RES_SM)(10 bits)

115.1.3
Picture Size Indicator Flag (PIC_SIZE_FLAG)(1 bit)

125.1.4
Level (LEVEL)(2 bits)

135.1.5
Level Extension (LEVEL_EXT)(2 bits)

135.1.6
Interlace (INTERLACE)(1 bit)

135.1.7
Frame Rate FLAG (FRAMERATEFLAG)(1 bit)

145.1.8
Color Format Indicator Flag (COLOR_FORMAT_FLAG)(1 bit)

165.1.9
Hypothetical Reference Decoder Indicator Flag (HRD_PARAM_FLAG)(1 bit)

165.1.10
Loop Filter (LOOPFILTER)(1 bit)

165.1.11
Reserved Coding (RES_X8)(1 bit)

175.1.12
Multiresolution Coding (MULTIRES)(1 bit)

175.1.13
Reserved (RES_FASTTX)(1 bit)

175.1.14
FAST UV Motion Comp (FASTUVMC)(1 bit)

175.1.15
Extended Motion Vectors (EXTENDED_MV)(1 bit)

175.1.16
Extended Differential Motion Vector Range (EXTENDED_DMV)(1 bit)

175.1.17
Macroblock Quantization (DQUANT)(2 bit)

175.1.18
Variable Sized Transform (VSTRANSFORM)(1 bit)

175.1.19
Reserved (RES_TRANSTAB)(1 bit)

175.1.20
Overlapped Transform Flag (OVERLAP) (1 bit)

175.1.21
Syncmarker flag (SYNCMARKER) (1 bit)

185.1.22
Range Reduction Flag (RANGE_RED) (1 bit)

185.1.23
Maximum Number of consecutive B frames (MAXBFRAMES) (3 bits)

185.1.24
Quantizer Specifier (QUANTIZER) (2 bits)

185.1.25
Entropy Coding Method (CODINGMETHOD) (1 bit)

185.1.26
Postprocessing Flag (POSTPROCFLAG) (1 bit)

185.1.27
Frame Skip Flag (FRSKIPFLAG) (1 bit)

185.1.28
Frame Counter Flag (TFCNTRFLAG) (1 bit)

185.1.29
Broadcast Flag (BROADCAST) (1 bit)

185.1.30
Frame Smoothness Flag (FS_FLAG)(1 bit)

196
Progressive Bitstream Syntax and Semantics

196.1
Picture-level Syntax and Semantics

386.1.1
Picture layer

486.1.2
Slice Layer

486.1.3
Macroblock Layer

526.1.4
Block Layer with 3D Huffman Decoding

586.1.5
Block Layer with Advanced 2-Layer Coding (A2LC) Method

606.2
Bitplane Coding Syntax

606.2.1
Invert Flag (INVERT)

606.2.2
Coding Mode (IMODE)

616.2.3
Bitplane Coding Bits (DATABITS)

617
Progressive Decoding Process

617.1
Progressive I Frame Decoding

617.1.1
Progressive I Picture Layer Decode

737.2
Progressive P Frame Decoding

737.2.1
Skipped P Frames

737.2.2
Out-of-bounds Reference Pixels

747.2.3
P Picture Types

747.2.4
P Picture Layer Decode

777.2.5
Macroblock Layer Decode

877.2.6
Block Layer Decode

957.2.7
Rounding Control

957.2.8
Intensity Compensation

967.3
Progressive B Frame Decoding

967.3.1
Skipped and Dropped Frames

977.3.2
B Picture Layer Decode

977.3.3
B Macroblock Layer Decode

1007.3.4
B Block Layer Decode

1007.4
Advanced 2-layer Decoding

1017.4.1
Number of Non-Zero Coefficients (NUMCOEF)

1047.4.2
Number of Zeros (NUMZERO)

1067.4.3
Outline of Level-Layer Decoding

1077.4.4
First Run of ISLs (RUNISL1)

1087.4.5
Number of SLs (NUMSL)

1107.4.6
Values of SLs (VALSL)

1117.4.7
Run of ISLs before Each SL (RUNISL)

1127.4.8
Signs of Coefficients (SIGN)

1127.4.9
Outline of Run-Layer Decoding

1137.4.10
Number of Significant Runs (NUMSR)

1147.4.11
Values of Significant Runs (VALSR)

1157.4.12
Runs of ISRs before Each SR (RUNISR)

1167.5
Overlapped Transform

1177.5.1
Overlap Smoothing in Main and Simple Profiles

1187.5.2
Overlap Smoothing in Advanced Profile

1197.6
In-loop Deblock Filtering

1197.6.1
I Picture In-loop Deblocking

1207.6.2
P Picture In-loop Deblocking

1227.6.3
Filter Operation

1257.7
Bitplane Coding

1257.7.1
INVERT

1257.7.2
IMODE

1267.7.3
DATABITS

1307.8
Sync Markers

1317.9
INVERSETRANSFORM Conformance

1318
Interlace syntax and semantics

1318.1
Picture-level Syntax and Semantics

1438.1.1
Picture layer

1488.1.2
Slice Layer

1488.1.3
Macroblock Layer

1508.1.4
Block Layer Syntax Elements Using 3d Huffman Decoding

1528.1.5
Block Layer Syntax Elements with Advanced 2-Layer Coding (A2LC) Method

1529
Interlace Decoding Process

1529.1
Intelace Field I Picture Decoding

1529.1.1
Macroblock Layer Decode

1529.1.2
Block Layer Decode

1539.2
Interlace Field P Picture Decoding

1539.2.1
Out-of-bounds Reference Pixels

1539.2.2
Reference Pictures

1569.2.3
P Picture Types

1569.2.4
Macroblock Layer Decode

1729.2.5
Block Layer Decode

1749.2.6
Rounding Control

1749.2.7
Intensity Compensation

1749.3
Interlace Field B Picture Decoding

1759.3.1
B Macroblock Layer Decode

1759.3.2
B Block Layer Decode

1759.3.3
MV Prediction in B fields

1799.4
Interlace Frame I Picture Decoding

1799.4.1
Macroblock Layer Decode

1799.4.2
Block Decode

1809.5
Interlace Frame P Picture Decoding

1809.5.1
Out-of-bounds Reference Pixels

1809.5.2
Macroblock Layer Decode

1939.5.3
Block Layer Decode

1949.6
Interlace Frame B Picture Decoding

1949.6.1
B Macroblock Layer Decode

1959.6.2
B Block Layer Decode

1959.7
Overlapped Transform

1969.7.1
Overlap Smoothing

1969.7.2
Overlap Smoothing for Interlace Frame Pictures

1969.8
In-loop Deblock Filtering

1969.8.1
I Picture In-loop Deblocking

1979.8.2
P Picture In-loop Deblocking

1979.8.3
Interlace Frame Pictures In-loop Deblocking

20210
Tables

20210.1
Transform Coefficient Tables For the Advanced 2-Layer Coding Method

23910.2
Interlace Pictures MV Block Pattern VLC Tables

23910.2.1
4MV Block Pattern Tables

24110.2.2
2MV Block Pattern Tables

24210.3
Interlace CBPCY VLC Tables

24710.4
Interlace MV Tables

25610.5
Interlace Pictures MB Mode Tables

25610.5.1
Interlace Field P / B Pictures Mixed MV MB Mode Tables

25810.5.2
Interlace Field P / B Pictures 1-MV MB Mode Tables

25910.5.3
Interlace Frame P / B Pictures 4MV MBMODE Tables

26110.5.4
Interlace Frame P / B Pictures Non 4MV MBMODE Tables

26310.6
I-Picture CBPCY Tables

26410.7
P-Picture CBPCY Tables

26810.8
DC Differential Tables

26810.8.1
Low-motion Tables

27010.8.2
High-motion Tables

27310.9
Transform AC Coefficient Tables

27310.9.1
High Motion Intra Tables

28310.9.2
Low Motion Intra Tables

28710.9.3
Low Motion Inter Tables

29210.9.4
Mid Rate Intra Tables

29510.9.5
Mid Rate Inter Tables

29910.9.6
High Rate Intra Tables

30410.9.7
High Rate Inter Tables

30910.10
Zigzag Tables

30910.10.1
Intra zigzag tables

31010.10.2
Inter zigzag tables

31110.11
Motion Vector Differential Tables

316Annex A Inverse Transform Specification

319Annex B Spatial Alignment of Video Samples in Variable Resolution Coding

320Annex C Hypothetical reference decoder

327Annex D Profile and Levels

331Annex E Start Codes

334Annex F User data

335Annex G System Layer binding for VC-9 simple/main profile: ASF Transport Example

350Bibliography

Table of Figures
4Figure 1: 4:2:0 Luma and chroma sample horizontal and vertical positions

5Figure 2: Coding Hierarchy showing Picture, Slice, Macroblock and Block layers

6Figure 3: Coding of Intra blocks

6Figure 4: Coding of Inter blocks

7Figure 5: 4:2:0 Luma and chroma temporal and vertical sample positions (where from left to right is shown a top field, bottom field, top field, and bottom field)

9Figure 6: Syntax diagram for the sequence layer bitstream for simple and main profiles.

10Figure 7: Syntax diagram for the sequence layer bitstream for the Advanced Profile

20Figure 8: Syntax diagram for the Progressive I picture layer bitstream in simple/main profile

21Figure 9: Syntax diagram for the Progressive I picture layer bitstream in advanced profile.

22Figure 10: Syntax diagram for the Progressive P picture layer bitstream in Simple/Main Profile.

23Figure 11: Syntax diagram for the Progressive P picture layer bitstream in Advanced Profile.

Error! Bookmark not defined.Figure 12: Syntax diagram for the Progressive B picture layer bitstream

26Figure 13: Syntax diagram for the picture header preamble bitstream in Advanced Profile

27Figure 14: Syntax diagram for VOPDQUANT in (Progressive P) picture header

28Figure 15: Syntax diagram for for the Slice-Layer bitstream in the Advanced Profile

29Figure 16: Syntax diagram for macroblock layer bitstream in Progressive I picture for simple/main profile

30Figure 17: Syntax diagram for macroblock layer bitstream in progressive I picture for advanced profile

31Figure 18: Syntax diagram for macroblock layer bitstream in Progressive-P picture

32Figure 19: Syntax diagram for macroblock layer bitstream in Progressive B picture

33Figure 20: Syntax diagram for the Intra-coded block layer bitstream in Progressive mode when 3-D Huffman decoding is used.

34Figure 21: Syntax diagram for the Inter-coded block layer bitstream in Progressive mode when 3-D Huffman decoding is used.

35Figure 22: Syntax diagram for the Intra-coded block layer bitstream in Progressive mode when the advanced 2-layer coding (A2LC) method is used.

36Figure 23: Syntax diagram for the Inter-coded block layer bitstream in Progressive mode when the advanced 2-layer coding (A2LC) method is used.

36Figure 24: Syntax diagram of the advanced 2-layer decoding layer.

37Figure 25: Syntax diagram for the A2LC HUFHD layer bit stream.

37Figure 26: Syntax diagram for the A2LC level layer bit stream.

38Figure 27: Syntax diagram for the A2LC run layer bit stream.

57Figure 28: 4x4 Subblocks

58Figure 29: 8x4 and 4x8 Subblocks

60Figure 30: Syntax diagram for the bitplane coding

63Figure 31: CBP encoding using neighboring blocks

64Figure 32: Intra block reconstruction

65Figure 33: DC Differential Decoding Pseudo-code

65Figure 34: DC predictor candidates

66Figure 35: Prediction selection pseudo-code

68Figure 36: Coefficient decode pseudo-code

69Figure 37: Run-level decode pseudo-code

70Figure 38: 8x8 array with positions labeled

70Figure 39: Example zig-zag scanning pattern

70Figure 40: Zig-zag scan mapping array

71Figure 41: AC prediction candidates

74Figure 42: Horizontal and vertical pixel replication for out-of-bounds reference

80Figure 43: Candidate Motion Vector Predictors in 1MV P Pictures

80Figure 44: Candidate Motion Vectors for 4MV Macroblocks in Mixed-MV P Pictures

81Figure 45: Candidate Motion Vectors for 4MV Macroblocks in Mixed-MV P Pictures

86Figure 46: Bit-position/block correspondence for CBPCY

90Figure 47: Inter block reconstruction

90Figure 48: Transform Types

93Figure 49: Bilinear filter operation

93Figure 50: Quarter pel bicubic filter cases

94Figure 51: Pixel Shifts

95Figure 52: Inter block reconstruction pseudo-code

99Figure 53: Direct Mode Prediction

101Figure 54: VLC Table Format when context and zone are involved.

101Figure 55: Block partitions and the corresponding NUMCOEF of all sub-blocks.

117Figure 56: Example showing overlap smoothing

119Figure 57: Filtered horizontal block boundary pixels in I picture

120Figure 58: Filtered vertical block boundary pixels in I picture

121Figure 59: Example filtered block boundaries in P frames

121Figure 60: Horizontal block boundary pixels in P picture

122Figure 61: Vertical block boundary pixels in P picture

123Figure 62: Four-pixel segments used in loop filtering

123Figure 63: Pixels used in filtering operation

124Figure 64: Pseudo-code illustrating filtering of 3rd pixel pair in segment

125Figure 65: Pseudo-code illustrating filtering of 1st, 2nd and 4th pixel pair in segment

127Figure 66: An example of 3x2 “vertical” tiles (a) and 2x3 “horizontal” tiles (b) – the elongated dark rectangles are 1 pixel wide and encoded using row-skip and column-skip coding.

129Figure 67: Syntax diagram of row-skip coding

131Figure 68: Sync markers in VC9 – (a) shows sequence of entropy coded data with SYNCMARKER set to zero, (b) SYNCMARKER is 1 but no sync markers are actually sent and (c) SYNCMARKER is 1, a long and a short sync marker are sent, some slices do not have sync markers

132Figure 69: Syntax diagram for the picture layer bitstream in Interlace Field/Frame I picture

133Figure 70: Syntax diagram for the picture layer bitstream in Interlace Field/Frame P, B picture

134Figure 71: Syntax diagram for macroblock layer bitstream in interlace field I picture

135Figure 72: Syntax diagram for macroblock layer bitstream in P picture

136Figure 73: Syntax diagram for macroblock layer bitstream in Field B picture

137Figure 74: Syntax diagram for macroblock layer bitstream in Interlace Frame I picture

138Figure 75: Syntax diagram for macroblock layer bitstream in Interlace Frame P picture

139Figure 76: Syntax diagram for macroblock layer bitstream in Interlace Frame B picture

140Figure 77: Intra Block Layer with 3D Huffman decoding in Interlace Frame.

141Figure 78: Inter Block Layer with 3D Huffman decoding in Interlace Frame.

142Figure 79: Intra Block Layer with advanced 2-layer coding (A2LC) method in Interlace picture.

143Figure 80: Inter Block Layer with advanced 2-layer coding method in Interlace picture.

154Figure 81: Example of two reference field pictures (NUMREF = 1)

155Figure 82: Example of one reference field picture (NUMREF = 0) using temporally most recent reference (REFFIELD = 0)

156Figure 83: Example of one reference field picture (NUMREF = 0) using temporally second-most recent reference (REFFIELD = 1)

157Figure 84: Association of bits in 4MVBP to luminance blocks

174Figure 85: B field references

178Figure 86: MV Prediction in B Frames

179Figure 87: Intra Block Decode

181Figure 88: Two Field MV Macroblock

181Figure 89: 4 Frame MV Macroblock

182Figure 90: 4 Field MV Macroblock – Luminance Block

182Figure 91: 4 Field MV Macroblock – Chrominance Block

183Figure 92: Candidate Neighboring Macroblocks for Interlace Frame Picture

195Figure 95: Example showing overlap smoothing

196Figure 96: Filtered horizontal block boundary pixels in I picture

197Figure 97: Filtered vertical block boundary pixels in I picture

198Figure 98: Field based horizontal / vertical block boundaries filtering

316Figure 99: Matrix for 1-D 8-point Inverse Transform

316Figure 100: Matrix for 1-D 4-point Inverse Transform

317Figure 101: Even component of 8-point Inverse Transform

317Figure 102: Even component of 4-point Inverse Transform

317Figure 103: 8x8 Inverse Transform

318Figure 104: 8x4 Inverse Transform

318Figure 105: 4x8 Inverse Transform

319Figure 106: 4x4 Inverse Transform

319Figure 107: Relative Spatial Alignment of the video samples of the Downsampled Frame,

Table of Tables
18Table 1: Quantizer specification

39Table 2: Picture Coding Type VLC

39Table 3: Picture Type FLC if MAXBFRAMES = 0

40Table 4: Picture Type VLC if MAXBFRAMES > 0

40Table 5: BFRACTION VLC Table

41Table 6: PQINDEX to PQUANT/Quantizer Translation (Implicit Quantizer)

41Table 7: PQINDEX to PQUANT Translation (Explicit Quantizer)

42Table 8: Motion Vector Range Signaled by MVRANGE

43Table 9: Progressive picture resolution code-table

43Table 10: P Picture Low rate (PQUANT > 12) motion vector mode codetable

43Table 11: P Picture High rate (PQUANT <= 12) motion vector mode codetable

44Table 12: B Picture High rate (PQUANT <= 12) motion vector mode codetable

44Table 13: B Picture Low rate (PQUANT > 12) motion vector mode codetable

44Table 14: MVTAB code-table

45Table 15: Macroblock Quantization Profile (DQPROFILE) Code Table

46Table 16: Single Boundary Edge Selection (DQSBEDGE) Code Table

46Table 17: Double Boundary Edges Selection (DQDBEDGE) Code Table

47Table 18: Transform type select code-table

48Table 19: Transform AC coding set index code-table

50Table 20: High Rate (PQUANT < 5) TTMB VLC Table

50Table 21: Medium Rate (5 =< PQUANT < 13) TTMB VLC Table

51Table 22: Low Rate (PQUANT >= 13) TTMB VLC Table

52Table 23: B Frame Motion Prediction Type

53Table 24: AC escape decoding mode code-table

54Table 25: Escape mode 3 level codeword size code-table for 1 <= PQUANT <= 7

54Table 26: Escape mode 3 level codeword size code-table for 8 <= PQUANT <= 31

55Table 27: Escape mode 3 run codeword size code-table

55Table 28: High Rate (PQUANT < 5) TTBLK VLC Table

56Table 29: Medium Rate (5 =< PQUANT < 13) TTBLK VLC Table

56Table 30: Low Rate (PQUANT >= 13) TTBLK VLC Table

57Table 31: High Rate (PQUANT < 5) SUBBLKPAT VLC Table

57Table 32: Medium Rate (5 =< PQUANT < 13) SUBBLKPAT VLC Table

57Table 33: Low Rate (PQUANT >= 13) SUBBLKPAT VLC Table

58Table 34: 8x4 and 4x8 Transform sub-block pattern code-table for Progressive pictures

61Table 35: IMODE VLC Codetable

63Table 36: Coded block pattern bit position

69Table 37: Coding Set Correspondence for PQINDEX <= 7

69Table 38: Coding Set Correspondence for PQINDEX > 7

70Table 39: Scan Array Selection

72Table 40: DQScale

75Table 41: Motion vector Huffman table

75Table 42: CBP Huffman table

78Table 43: k_x and k_y specified by MVRANGE

89Table 44: Index/Coding Set Correspondence for PQINDEX <= 7

89Table 45: Index/Coding Set Correspondence for PQINDEX > 7

91Table 46: Index/Coding Set Correspondence for PQINDEX <= 6

91Table 47: Index/Coding Set Correspondence for PQINDEX > 6

101Table 48: Definition of PT (NUMCOEF of a top neighbor)

102Table 49: Definition of PL (NUMCOEF of a left neighbor)

102Table 50: NUMCOEF Context Partition Thresholds

104Table 51: Number of Symbols in Each Huffman Context for Decoding NUMCOEF.

104Table 52: NUMZERO Context Partition Thresholds

105Table 53: Number of zones for NUMZERO

107Table 54: Huffman Table for Inter block Short RUNISL1 (codewords are shown in binary format)

107Table 55: Huffman Table for INTRA block Short RUNISL1 (codewords are shown in binary format)

109Table 56: Context Decision Thresholds for NUMSL

110Table 57: Escape code for Large VALSL

113Table 58: Context Thresholds for Inter-block NUMSR

114Table 59: Context Thresholds for Inter-block VALSR

115Table 60: Context Thresholds for Inter-block RUNISR

125Table 61: IMODE Codetable

126Table 62: Norm-2/Diff-2 Code Table

127Table 63: Code table for 2x3 and 3x2 tiles

144Table 64: DMVRANGE VLC Table

146Table 65: MBMODETAB code-table for interlace field P, B pictures

146Table 66: MBMODETAB code-table for interlace frame P, B pictures

146Table 67: MVTAB code-table

147Table 68: CBPTAB code-table

147Table 69: 2MVBP code-table

148Table 70: 4MVBP code-table

152Table 71: 8x4 and 4x8 Transform sub-block pattern code-table for Interlace pictures

158Table 72: Macroblock Mode in All-1MV Pictures

158Table 73: Macroblock Mode in Mixed-1MV Pictures

159Table 74: k_x and k_y specified by MVRANGE

202Table 79: VLC Table for Inter 8x8 Block NUMCOEF.

203Table 80: VLC Table for Inter 8x4/4x8 Block NUMCOEF.

204Table 81: VLC Table for Inter 4x4 Block NUMCOEF.

204Table 82: VLC Table for Intra 8x8 Block NUMCOEF.

205Table 83: VLC Table for the decoding of NUMZERO for Interlace-Mode Inter 8x8 Blocks.

209Table 84: VLC Table for the decoding of NUMZERO for Interlace-Mode Inter 8x4/4x8 Blocks.

212Table 85: VLC Table for the decoding of NUMZERO for Interlace-Mode Inter 4x4 Blocks.

213Table 86: VLC Table for the decoding of NUMZERO for Interlace-Mode Intra Blocks.

215Table 87: VLC Table for the decoding of NUMZERO for Progressive-Mode Inter 8x8 Blocks.

219Table 88: VLC Table for the decoding of NUMZERO for Progressive-Mode Inter 8x4/4x8 Blocks.

221Table 89: VLC Table for the decoding of NUMZERO for Progressive-Mode Inter 4x4 Blocks.

223Table 90: VLC Table for the decoding of NUMZERO for Progressive-Mode Intra Blocks.

224Table 91: VLC Table for Inter Block RUNISL1.

226Table 92: VLC Table for Intra Block RUNISL1.

227Table 93: VLC Table for Inter Block NUMSL.

228Table 94: VLC Table for Intra Block NUMSL.

229Table 95: VLC Table for Inter Block VALSL.

229Table 96: VLC Table for Intra Block VALSL.

230Table 97: VLC Table for Inter Block RUNISL.

231Table 98: VLC Table for Intra Block RUNISL.

232Table 99: VLC Table for Inter Block NUMSR.

233Table 100: VLC Table for Intra Block NUMSR.

234Table 101: VLC Table for Inter Block VALSR.

236Table 102: VLC Table for Intra Block VALSR.

237Table 103: VLC Table for Inter Block RUNISR.

239Table 104: VLC Table for Intra Block RUNISR.

239Table 105: 4MV Block Pattern Table 0

240Table 106: 4MV Block Pattern Table 1

240Table 107: 4MV Block Pattern Table 2

240Table 108: 4MV Block Pattern Table 3

241Table 109: Interlace Frame 2 MVP Block Pattern Table 0

241Table 110: Interlace Frame 2 MVP Block Pattern Table 1

241Table 111: Interlace Frame 2 MVP Block Pattern Table 2

242Table 112: Interlace Frame 2 MVP Block Pattern Table 3

242Table 113: Interlaced CBPCY Table 0

242Table 114: Interlaced CBPCY Table 1

243Table 115: Interlaced CBPCY Table 2

244Table 116: Interlaced CBPCY Table 3

244Table 117: Interlaced CBPCY Table 4

245Table 118: Interlaced CBPCY Table 5

246Table 119: Interlaced CBPCY Table 6

246Table 120: Interlaced CBPCY Table 7

247Table 121: 2-Field Reference Interlace MV Table 0

248Table 122: 2-Field Reference Interlace MV Table 1

249Table 123: 2-Field Reference Interlace MV Table 2

250Table 124: 2-Field Reference Interlace MV Table 3

250Table 125: 2-Field Reference Interlace MV Table 4

251Table 126: 2-Field Reference Interlace MV Table 5

252Table 127: 2-Field Reference Interlace MV Table 6

253Table 128: 2-Field Reference Interlace MV Table 7

254Table 129: 1-Field Reference Interlace MV Table 0

254Table 130: 1-Field Reference Interlace MV Table 1

255Table 131: 1-Field Reference Interlace MV Table 2

255Table 132: 1-Field Reference Interlace MV Table 3

256Table 133: Mixed MV MB Mode Table 0

256Table 134: Mixed MV MB Mode Table 1

256Table 135: Mixed MV MB Mode Table 2

256Table 136: Mixed MV MB Mode Table 3

257Table 137: Mixed MV MB Mode Table 4

257Table 138: Mixed MV MB Mode Table 5

257Table 139: Mixed MV MB Mode Table 6

257Table 140: Mixed MV MB Mode Table 7

258Table 141: 1-MV MB Mode Table 0

258Table 142: 1-MV MB Mode Table 1

258Table 143: 1-MV MB Mode Table 2

258Table 144: 1-MV MB Mode Table 3

258Table 145: 1-MV MB Mode Table 4

259Table 146: 1-MV MB Mode Table 5

259Table 147: 1-MV MB Mode Table 6

259Table 148: 1-MV MB Mode Table 7

259Table 149: Interlace Frame 4MV MB Mode Table 0

260Table 150: Interlace Frame 4MV MB Mode Table 1

260Table 151: Interlace Frame 4MV MB Mode Table 2

261Table 152: Interlace Frame 4MV MB Mode Table 3

261Table 153: Interlace Frame Non 4MV MB Mode Table 0

262Table 154: Interlace Frame Non 4MV MB Mode Table 1

262Table 155: Interlace Frame Non 4MV MB Mode Table 2

262Table 156: Interlace Frame Non 4MV MB Mode Table 3

263Table 157: I-Picture CBPCY VLC Table

264Table 158: P-Picture CBPCY VLC Table 0

265Table 159: P-Picture CBPCY VLC Table 1

266Table 160: P-Picture CBPCY VLC Table 2

267Table 161: P-Picture CBPCY VLC Table 3

268Table 162: Low-motion Luminance DC Differential VLC Table

269Table 163: Low-motion Chroma DC Differential VLC Table

270Table 164: High-motion Luminance DC Differential VLC Table

271Table 165: High-motion Chroma DC Differential VLC Table

273Table 166: High Motion Intra VLC Table

274Table 167: High Motion Intra Indexed Run and Level Table (Last = 0)

275Table 168: High Motion Intra Indexed Run and Level Table (Last = 1)

276Table 169: High Motion Intra Delta Level Indexed by Run Table (Last = 0)

277Table 170: High Motion Intra Delta Level Indexed by Run Table (Last = 1)

277Table 171: High Motion Intra Delta Run Indexed by Level Table (Last = 0)

278Table 172: High Motion Intra Delta Run Indexed by Level Table (Last = 1)

278Table 173: High Motion Inter VLC Table

279Table 174: High Motion Inter Indexed Run and Level Table (Last = 0)

280Table 175: High Motion Inter Indexed Run and Level Table (Last = 1)

281Table 176: High Motion Inter Delta Level Indexed by Run Table (Last = 0)

282Table 177: High Motion Inter Delta Level Indexed by Run Table (Last = 1)

282Table 178: High Motion Inter Delta Run Indexed by Level Table (Last = 0)

283Table 179: High Motion Inter Delta Run Indexed by Level Table (Last = 1)

283Table 180: Low Motion Intra VLC Table

284Table 181: Low Motion Intra Indexed Run and Level Table (Last = 0)

285Table 182: Low Motion Intra Indexed Run and Level Table (Last = 1)

286Table 183: Low Motion Intra Delta Level Indexed by Run Table (Last = 0)

286Table 184: Low Motion Intra Delta Level Indexed by Run Table (Last = 1)

286Table 185: Low Motion Intra Delta Run Indexed by Level Table (Last = 0)

287Table 186: Low Motion Intra Delta Run Indexed by Level Table (Last = 1)

287Table 187: Low Motion Inter VLC Table

288Table 188: Low Motion Inter Indexed Run and Level Table (Last = 0)

289Table 189: Low Motion Inter Indexed Run and Level Table (Last = 1)

290Table 190: Low Motion Inter Delta Level Indexed by Run Table (Last = 0)

290Table 191: Low Motion Inter Delta Level Indexed by Run Table (Last = 1)

291Table 192: Low Motion Inter Delta Run Indexed by Level Table (Last = 0)

291Table 193: Low Motion Inter Delta Run Indexed by Level Table (Last = 1)

292Table 194: Mid Rate Intra VLC Table

293Table 195: Mid Rate Intra Indexed Run and Level Table (Last = 0)

293Table 196: Mid Rate Intra Indexed Run and Level Table (Last = 1)

294Table 197: Mid Rate Intra Delta Level Indexed by Run Table (Last = 0)

294Table 198: Mid Rate Intra Delta Level Indexed by Run Table (Last = 1)

295Table 199: Mid Rate Intra Delta Run Indexed by Level Table (Last = 0)

295Table 200: Mid Rate Intra Delta Run Indexed by Level Table (Last = 1)

295Table 201: Mid Rate Inter VLC Table

296Table 202: Mid Rate Inter Indexed Run and Level Table (Last = 0)

297Table 203: Mid Rate Inter Indexed Run and Level Table (Last = 1)

298Table 204: Mid Rate Inter Delta Level Indexed by Run Table (Last = 0)

298Table 205: Mid Rate Inter Delta Level Indexed by Run Table (Last = 1)

299Table 206: Mid Rate Inter Delta Run Indexed by Level Table (Last = 0)

299Table 207: Mid Rate Inter Delta Run Indexed by Level Table (Last = 1)

299Table 208: High Rate Intra VLC Table

301Table 209: High Rate Intra Indexed Run and Level Table (Last = 0)

302Table 210: High Rate Intra Indexed Run and Level Table (Last = 1)

302Table 211: High Rate Intra Delta Level Indexed by Run Table (Last = 0)

303Table 212: High Rate Intra Delta Level Indexed by Run Table (Last = 1)

303Table 213: High Rate Intra Delta Run Indexed by Level Table (Last = 0)

304Table 214: High Rate Intra Delta Run Indexed by Level Table (Last = 1)

304Table 215: High Rate Inter VLC Table

306Table 216: High Rate Inter Indexed Run and Level Table (Last = 0)

307Table 217: High Rate Inter Indexed Run and Level Table (Last = 1)

307Table 218: High Rate Inter Delta Level Indexed by Run Table (Last = 0)

308Table 219: High Rate Inter Delta Level Indexed by Run Table (Last = 1)

308Table 220: High Rate Inter Delta Run Indexed by Level Table (Last = 0)

309Table 221: High Rate Inter Delta Run Indexed by Level Table (Last = 1)

309Table 222: Intra Normal Scan

309Table 223: Intra Horizontal Scan

310Table 224: Intra Vertical Scan

310Table 225: Inter 8x8 Scan

310Table 226: Inter 8x4 Scan

310Table 227: Inter 4x8 Scan

311Table 228: Inter 4x4 Scan

311Table 229: Motion Vector Differential VLC Table 0

312Table 230: Motion Vector Differential VLC Table 1

313Table 231: Motion Vector Differential VLC Table 2

313Table 232: Motion Vector Differential VLC Table 3

1 Scope
This document defines the bitstream syntax and semantics for compressed video data in VC9 format, and specifies constraints that are required for conforming bitstreams. It also describes the complete process required to decode the bitstream. The compression algorithm is not specified in this standard.

2 Normative References

No normative references are specified for use by this standard.

3 Notation

The following notation is used in this document.

3.1 Arithmetic Operators

	+
	Addition.

	(
	Subtraction (as a binary operator) or negation (as a unary operator).

	++
	Increment.

	((
	Decrement.

	*
	Multiplication.

	/
	Integer division with truncation towards zero. For example, 7/4 and (7/(4 are truncated to 1 and (7/4 and 7/(4 are truncated to (1.

	//
	Integer division with rounding to the nearest integer. Half-integer values are rounded away from zero unless otherwise specified. For example 3//2 is rounded to 2, and -3//2 is rounded to -2.

	##
	Rest of the line is a comment.

	| |
	Absolute value.

	
	| x | = x , when x > 0

	
	| x | = 0, when x == 0

	
	| x | = (x, when x < 0

	%
	Modulus operator. Defined only for positive numbers.

	Sign()
	Sign.

	
	Sign(x) = 1, when x >= 0

	
	Sign(x) = (1, when x < 0

	INT ()
	Truncation to integer operator. Returns the integer part of the real-valued argument.

	NINT ()
	Nearest integer operator. Returns the nearest integer value to the real-valued argument. Half-integer values are rounded away from zero.

	CLIP ()
	CLIP(n) = 255 if n > 255, CLIP(n) = 0 if n < 0, CLIP(n) = n otherwise

	max
	Maximum of the arguments.

	min
	Minimum of the arguments.

	(
	Square root.

	log2
	Logarithm to base 2.

	median3 ()
	Median of 3 values (see section 3.8 for definition)

	median4 ()
	Median of 4 values (see section 3.8 for definition)

	
	

3.2 Logical operators

	||
	Logical OR.

	&&
	Logical AND.

	!
	Logical NOT

3.3 Relational operators

	>
	Greater than.

	>=
	Greater than or equal to.

	<
	Less than.

	<=
	Less than or equal to.

	==
	Equal to.

	!=
	Not equal to.

3.4 Bitwise operators

A twos complement number representation is assumed where the bitwise operators are used.

	&
	AND

	|
	OR

	^
	XOR.

	>>
	Shift right with sign extension.

	<<
	Shift left with zero fill.

3.5 Assignment

	=
	Assignment operator.

3.6 Mnemonics

The following mnemonics are defined to describe the different data types used in the coded bit stream.

	uimsbf
	Unsigned integer, most significant bit first.

	vlclbf
	Variable length prefix code, left bit first, where "left" refers to the order in which the VLC codes are written.

	VLC
	Variable-length code

	FLC
	Fixed-length code

3.7 Bitstream Parsing Operations

The pseudo-code examples use the following bitstream parsing operations

	get_bits(n)
	Reads n bits from the bitstream and returns the value.

	vlc_decode()
	Decodes the next variable-length codeword in the bitstream and returns the decoded symbol

3.8 Definition of Median3 and Median4 Functions
The functions median3() and median4() are used in some of the pseudocode examples in this spec. The functions median3 and median4 are computed as illustrated in the following pseudocode examples.

median3 (a, b, c)

{

if (a > b)

{

if (b > c)

median = b

else if (a > c)

median = c

else

median = a

}

else if (a > c)

median = a

else if (b > c)

median = c

else

median = b

return median

}

median4 (a, b, c, d)

{

max = min = a

if (b > max)

max = b

else if (b < min)

min = b

if (c > max)

max = c

else if (c < min)

min = c

if (d > max)

max = d

else if (d < min)

min = d

median = (a + b + c + d - max - min) / 2
return median

}
4 Source Coder/Decoder
4.1 Progressive Coding Mode
4.1.1 Input/output Format
The input/output format is YUV 4:2:0. Figure 1 shows the spatial relationship between the luma and chroma samples.
[image: image1.emf]Luma samples

Chroma samples

Figure 1: 4:2:0 Luma and chroma sample horizontal and vertical positions

4.1.2 Hierarchical Elements
The syntax structure decomposes each frame into three hierarchical layers – picture, macroblock and block.
Figure 2
 illustrates the three layers. In the advanced profile, an optional fourth layer, called slice, can be present between the picture layer and the macroblock layer. A slice is defined to contain one or more contiguous rows of macroblocks that are scanned in raster-scan order. Thus, a picture can be decomposed into slices, which in turn can be decomposed into macroblocks. Note that a slice always begins at the first macroblock of a row, and ends at the last macroblock of the same or another row. Thus, a slice contains an integer number of complete rows. Figure 2 also shows how the frames can be divided into slices. Note that slices are present only in the advanced profile.

[image: image2]
Figure 2: Coding Hierarchy showing Picture, Slice, Macroblock and Block layers
4.1.3 Coding Description (Informative)

This section is not an integral part of this standard.
The compression process uses block-based motion predictive coding to reduce temporal redundancy and transform coding to reduce spatial redundancy. Figure 3 and Figure 4 illustrate the basic steps used to compress the video data in the VC9 compression algorithm.

[image: image3]
Figure 3: Coding of Intra blocks

[image: image4]
Figure 4: Coding of Inter blocks
4.2 Interlace Coding Mode

4.2.1 Input/Output Format for 4:2:0 Interlace

Figure 1 shows the spatial relationship between the luma and chroma samples in the YUV 4:2:0 format. Figure 5 shows the relationship between vertical sample position and sampling time instant.

[image: image5.emf]Luma samples

Chroma samples

Figure 5: 4:2:0 Luma and chroma temporal and vertical sample positions
(where from left to right is shown a top field, bottom field, top field, and bottom field)
4.2.2 Hierarchical Elements

The syntax decomposes each frame into three hierarchical layers – picture, macroblocks (MB), and blocks. A picture consists of one field or frame of video, which is then subdivided into macroblocks. In the advanced profile, an optional fourth layer, called slice, can be present between the picture layer and the macroblock layer. A slice is defined to contain one or more contiguous rows of macroblocks that are scanned in raster-scan order. Thus, a picture can be decomposed into slices, which in turn can be decomposed into macroblocks. Note that a slice always begins at the first macroblock of a row, and ends at the last macroblock of the same or another row. Thus, a slice contains an integer number of complete rows.
4.3 Decoder Limitations

4.3.1 Minimum and maximum frame sizes

The decoder must support a minimum frame width of 8 samples and a minimum height of 8 lines. Note that although the codec works with 16x16 pixels per MB, it is able to internally adjust the width and height to “round up” to the next MB boundaries, but still input or output from a source whose width and height are multiples of 8. For progressive pictures, the height and width of the picture shall be a multiple of 2. For interlaced pictures, the height of the picture shall be a multiple of 4, and the width of the picture shall be a multiple of 2. The maximum frame dimensions are limited by the target profile and level of the decoder. The relation of maximum frame sizes to coding tools is presented in Annex D.
4.4 Memory Requirements (Informative)

This section does not form an integral part of this standard.

Memory requirements for the decoder are implementation dependent. The following sections describe the memory usage for core VC9 decoder running on an x86 processor.

4.4.1 Code Memory Size (Informative)

The executable code for the core decoder module requires approximately 410 Kbytes of memory.

4.4.2 Initialized Data Memory Size (Informative)

The initialized data used by the decoder is approximately 160 Kbytes.

4.4.3 Dynamic Memory Size (Informative)

The decoder dynamically allocates memory for frame buffers and other structures. Following are the size requirements.

For the frame buffer, the following formula indicates the memory requirement if “repeat padding” is being performed by duplication of memory:
frame_memory = {(h + 64) x (w + 64) + [(h / 2 + 32) x (w / 2 + 32)] x 2} bytes

where:

w = the width of the frame (in pixels) rounded up to the nearest multiple of 16

h = the height of the frame (in pixels) rounded up to the nearest multiple of 16
Without “repeat padding”, at the expense of increased computational complexity, this memory requirement can be reduced to:

frame_memory = (3/2) x h x w bytes

The VC9 decoder allocates memory for five frame buffers: one for the reconstructed frame, two for the reference frames and two for postfilter processing. Therefore, the total memory allocated for frame buffers is 5 x frame_memory.

5 Bitstream Syntax and Semantics

The syntax diagrams are shown in Figure 6 through Figure 22. A guide for interpretation of the diagrams consists of the following:

1. Arrow paths show the possible flows of syntax elements. Any syntax element which has zero length is considered absent for arrow path diagramming

2. Abbreviations and semantics for each syntax element are as defined in later clauses.

3. Syntax elements shown with square-edged boundaries indicate fixed-length syntax elements; those with rounded boundaries indicate variable-length syntax elements and those with a rounded boundary within an outer rounded boundary indicate a syntax element made up of simpler syntax elements which are elaborated on in another section.
4. A fixed-length syntax element is defined to be a syntax element for which the length of the syntax element is not dependent on the data in the content of the syntax element itself. The length of this syntax element is either always the same, or is determined by the prior data in the syntax flow.

5. The term “layer” is used to refer to any part of the syntax that can be understood and diagrammed as a distinct entity. The next-lower layer element in a layer diagram is indicated by a rectangle within a rectangle.

Unless specified otherwise, the most significant bit is transmitted first. This is bit 1 and is the leftmost bit in the code tables in this Recommendation. Unless specified otherwise, all unused or spare bits are set to “0”. All values of syntax not explicitly defined in this document are, by default, reserved for future use.

Since the following sections describe the contents of the video bitstream, it is often convenient to denote the elements in binary representation. To avoid confusion with decimal representation, whenever a number is expressed in binary format, it is enclosed in square brackets.

5.1 Sequence-level Syntax and Semantics

A sequence-level header contains sequence-level parameters used to decode the sequence of compressed pictures. In simple and main profiles, this header needs to be made available to the decoder either as externally-communicated decoder configuration information or as part of the video data bitstream. In the advanced profile, this header is part of the video data bitstream and may be present just prior to any I picture. Figure 6 shows the bitstream elements that make up the sequence layer for the simple and main profiles. Figure 7 shows the bitstream elements that make up the sequence header for the advanced profile.
[image: image6.emf]PROFILE

RES_SM

LOOPFILTER

RES_X8

SEQUENCE

LAYER

MULTIRES

RES_FASTTX

DQUANT

VSTRANSFORM

RES_TRANSTAB

OVERLAP

FASTUVMC

EXTENDED_MV

SYNCMARKER

RANGE_RED

MAXBFRAMES

QUANTIZER

FS_FLAG

Figure 6: Syntax diagram for the sequence layer bitstream for simple and main profiles.

[image: image7.emf]PIC_HORIZ_SIZE

PIC_VERT_SIZE

SEQUENCE

LAYER

ASPECT_RATIO 0

PROFILE

PIC_SIZE_FLAG

DISP_SIZE_FLAG

DISP_HORIZ_SIZE

DISP_VERT_SIZE

ASPECT_RATIO_FLAG

LEVEL

LEVEL_EXT

INTERLACE

FRAMERATE

FRAMERATEFLAG

CHROMA_FORMAT

COLOR_PRIM

COLOR_FORMAT_FLAG

TRANSFER_CHAR

MATRIX_COEF

HRD_PARAM

HRD_PARAM_FLAG

LOOPFILTER

FASTUVMC

EXTENDED_MV

EXTENDED_DMV

DQUANT

VSTRANSFORM

OVERLAP

MAXBFRAMES

QUANTIZER

CODINGMETHOD

POSTPROC

FRSKIPFLAG

TFCNTRFLAG

BROADCAST

FS_FLAG

Figure 7: Syntax diagram for the sequence layer bitstream for the Advanced Profile
5.1.1 Profile (PROFILE)(2 bits)

PROFILE is a 2-bit syntax element that specifies the encoding profile used to produce the sequence. The three profiles are simple, main, and advanced profile, and they correspond to PROFILE = 0, 1, and 3, respectively. The value 2 is reserved for future use. The simple profile is designed to ease the computation load for the codec by placing restrictions on certain compression tools. The relation of profiles to coding tools is presented in Annex D.
5.1.2 Reserved (RES_SM)(10 bits)

RES_SM is a 10-bit syntax element, that is present only in simple and main profiles, and shall be set to zero. All other values are reserved.
5.1.3 Picture Size Indicator Flag (PIC_SIZE_FLAG)(1 bit)

PIC_ SIZE_FLAG is a 1-bit syntax element, present only in the advanced profile, that specifies if the size of the coded picture is sent in the bitstream. If PIC_ SIZE_FLAG is 0, the size is communicated through external means. If PIC_SIZE_FLAG is 1, the size is indicated by the following syntax elements.

5.1.3.1 Horizontal Size of Picture (PIC_HORIZ_SIZE)(12 bits)

PIC_HORIZ_SIZE is a fixed-length syntax element that is present only in advanced profile, and only if PIC_SIZE_FLAG takes the value 1, and specifies the horizontal size of the coded picture in units of 2 pixels. This syntax element is a 12-bit binary encoding of sizes ranging from 2 to 8192 in units of 2.

5.1.3.2 Vertical Size of Picture (PIC_VERT_SIZE)(12 bits)

PIC_VERT_SIZE is a fixed-length syntax element that is present only in advanced profile, and only if PIC_SIZE_FLAG takes the value 1, and specifies the vertical size of the coded picture in units of 2 pixels. This syntax element is a 12-bit binary encoding of sizes ranging from 2 to 8192 in units of 2.

5.1.3.3 Display Size Indicator Flag (DISP_SIZE_FLAG)(1 bit)

DISP_ SIZE_FLAG is a 1-bit syntax element that is present only in advanced profile, and only if PIC_SIZE_FLAG takes the value 1, and specifies if the display size of the picture is sent in the bitstream. If DISP_ SIZE_FLAG is 0, the display size is taken to be identical to the coded picture size. If DISP_SIZE_FLAG is 1, the display size is indicated by the following syntax elements.
5.1.3.3.1 Horizontal Display Size of Picture (DISP_HORIZ_SIZE)(14 bits)

DISP_HORIZ_SIZE is a 14-bit syntax element that is present only in advanced profile, and only if DISP_SIZE_FLAG is 1, and specifies the horizontal display size of the picture in pixels. This syntax element is a 14-bit binary encoding of sizes ranging from 1 to 16384.

5.1.3.3.2 Vertical Display Size of Picture (DISP_VERT_SIZE)(14 bits)

DISP_VERT_SIZE is a 14-bit syntax element that is present only in advanced profile, and only if DISP_SIZE_FLAG is 1, and specifies the vertical display size of the picture in pixels. This syntax element is a 14-bit binary encoding of sizes ranging from 1 to 16384.
5.1.3.4 Aspect Ratio Indicator Flag (ASPECT_RATIO_FLAG)(1 bit)

ASPECT_RATIO_FLAG is a 1-bit syntax element that is present only in advanced profile, and only if PIC_SIZE_FLAG takes the value 1, and specifies if the aspect ratio is sent in the bitstream. If ASPECT_RATIO_FLAG is 0, the aspect ratio is not transmitted. If ASPECT_RATIO_FLAG is 1, the aspect ratio of the sequence is transmitted in the following syntax element.

5.1.3.4.1 Aspect Ratio (ASPECT_RATIO)(4 bits)

ASPECT_RATIO is a 4-bit syntax element that is present only in advanced profile, and only if the ASPECT_RATIO_FLAG takes the value 1, and it specifies the Sample Aspect Ratio (SAR) for the sequence.
The table below specifies the value of the Sample Aspect Ratio for each value of the ASPECT_RATIO syntax element.
	ASPECT_RATIO
	SAR

	0
	Unspecified

	1
	1:1

	2
	12:11

	3
	10:11

	4
	16:11

	5
	40:33

	6
	24:11

	7
	20:11

	8
	32:11

	9
	80:33

	10
	18:11

	11
	15:11

	12
	64:33

	13
	160:99

	14
	Reserved

	15
	Aspect width and height transmitted.

If ASPECT_RATIO takes the value ‘15’, the aspect width and aspect height are transmitted as the following 2 syntax elements.

5.1.3.4.2 Aspect Width (ASPECT_HORIZ_SIZE)(8 bits)

ASPECT_HORIZ_SIZE is an 8-bit syntax element that is present only in advanced profile, and only if ASPECT_RATIO_FLAG is 1 and ASPECT_RATIO takes the value ‘15’, and specifies the horizontal aspect size of the picture. This syntax element is a binary encoding of sizes ranging from 1 to 256.

5.1.3.4.3 Aspect Height (ASPECT_VERT_SIZE)(8 bits)

ASPECT_VERT_SIZE is an 8-bit syntax element that is present only in advanced profile, and only if ASPECT_RATIO_FLAG is 1 and ASPECT_RATIO takes the value ‘15’, and specifies the vertical aspect size of the picture. This syntax element is a binary encoding of sizes ranging from 1 to 256. The SAR is defined as the ratio of ASPECT_HORIZ_SIZE to ASPECT_VERT_SIZE.
5.1.4 Level (LEVEL)(2 bits)

LEVEL is a 2-bit syntax element that is present only if the PROFILE takes the value corresponding to advanced profile, and specifies the encoding level for the clip in the advanced profile. The codes that are used to signal the levels in the advanced profile are defined as follows:

	LEVEL
	Meaning

	00
	Low Level

	01
	Middle Level

	10
	High Level

	11
	Reserved

The levels for Simple and Main profile shall be communicated to the decoder by external means. See Annex D on the use of this syntax element.
5.1.5 Level Extension (LEVEL_EXT)(2 bits)

LEVEL_EXT is a reserved 2-bit syntax element, which is present only if PROFILE takes the value corresponding to advanced profile. This syntax element will have the value 00. See Annex D on the use of this syntax element.

5.1.6 Interlace (INTERLACE)(1 bit)

INTERLACE is a 1-bit syntax element that is present only if the PROFILE flag corresponds to advanced profile, and specifies whether the video data is coded in interlaced mode. If INTERLACE = 0, then all the video frames are coded in progressive mode. If INTERLACE = 1, then the video frames may be coded either in progressive mode or in interlaced mode. If PROFILE does not correspond to advanced profile, the video is assumed to be coded in progressive mode.

5.1.7 Frame Rate FLAG (FRAMERATEFLAG)(1 bit)

The syntax element FRAMERATEFLAG is a 1-bit syntax element that is present only in advanced profile, and indicates that frame rate information is present. If FRAMERATEFLAG = 0, no frame rate information is present. If FRAMERATEFLAG = 1, frame rate information may be obtained from subsequent syntax elements.
If the video sequence is signaled as progressive (either implicitly by means of the PROFILE syntax element or explicitely by means of the profile and interlace syntax element), the period between two successive frames at the output of the decoding process is the reciprocal of the frame rate indicated by the FRAME_RATE syntax element.

If the video sequence is signaled as interlace (by means of the PROFILE and INTERLACE syntax elements), the period between two successive fields at the output of the decoding process is half the reciprocal of the frame rate indicated by the FRAME_RATE syntax element.

5.1.7.1 Frame Rate Indicator (FRAMERATEIND)(1 bit)

The syntax element FRAMERATEIND is a 1-bit syntax element that is present only in advanced profile, and only if FRAMERATEFLAG = 1. If FRAMERATEIND = 0, the frame rate is signaled by transmitting a numerator field (FRAMERATENR) and a denominator field (FRAMERATEDR), and the ratio of the two fields is taken to be the frame rate. If FRAMERATEIND = 1, the frame rate is signaled explicitly by a 16 bit FRAMERATEEXP field.
5.1.7.2 Frame Rate Numerator (FRAMERATENR)(8bits)

The syntax element FRAMERATENR is an 8-bit syntax element that is present only in advanced profile, and only if FRAMERATEIND = 0, and it indicates the frame rate numerator of the encoded video sequence. The following table gives the meaning of the FRAMERATENR syntax element.

	FRAMERATENR
	Value of Frame Rate Numerator

	0
	Forbidden

	1
	24 * 1000

	2
	25 * 1000

	3
	30 * 1000

	4
	50 * 1000

	5
	60 * 1000

	6-255
	Reserved

5.1.7.3 Frame Rate Denominator (FRAMERATEDR)(4 bits)

The syntax element FRAMERATEDR is a 4-bit syntax element that is present only in advanced profile, and only if FRAMERATEIND = 0, and it indicates the frame rate denominator of the encoded video sequence. The following table gives the meaning of the FRAMERATEDR syntax element. The frame rate of the sequence is the ratio of the Frame rate Numerator to the Frame rate Denominator.
	FRAMERATEDR
	Value of Frame Rate Denominator

	0
	Forbidden

	1
	1000

	2
	1001

	3-15
	Reserved

5.1.7.4 Frame Rate Explicit (FRAMERATEEXP)(16bits)

The syntax element FRAMERATEEXP is a 16-bit syntax element that is present only in advanced profile, and only if FRAMERATEIND = 1. FRAMERATEEXP explicitly indicates the frame rate of the encoded video sequence. This element is used signal frame rate ranging from 0.03125 Hz to 2048 Hz in uniform steps of 0.03125 Hz.
5.1.8 Color Format Indicator Flag (COLOR_FORMAT_FLAG)(1 bit)

COLOR_FORMAT_FLAG is a 1-bit syntax element that is present only in advanced profile, and indicates if color format information is present. If COLOR_FORMAT_FLAG is 0, no color format information is present. If COLOR_FORMAT_FLAG is 1, color format information, such as Chroma Format, Color Primaries, Transfer Characteristics, and Matrix Coefficients, may be obtained from subsequent syntax elements.

5.1.8.1 Chroma Format (CHROMA_FORMAT)(2 bits)

The CHROMA_FORMAT syntax element is a 2-bit syntax element that is present only in advanced profile, indicating the chrominance/luminance format used to represent each picture. The formats are defined as follows:

	CHROMA_FORMAT
	Format

	0
	Reserved

	1
	4:2:0

	2
	4:2:2

	3
	4:4:4

Only the value 1 corresponding to format 4:2:0 is permitted for this field. All other values are forbidden.

5.1.8.2 Color Primaries (COLOR_PRIM)(8 bits)

COLOR_PRIM is an 8-bit syntax element that is present only in advanced profile, and only if COLOR_FORMAT_FLAG is 1, and describes the chromaticity coordinates of the color primaries. The table below defines the syntax element values indicating the technical specifications where the chromaticity coordinates are specified.

	COLOR_PRIM
	Color Primaries Specification

	0
	Forbidden

	1
	Recommendation ITU-R- BT.709

	2
	Unspecified color primaries

	3
	Reserved

	4
	Recommendation ITU-R BT.470-2 System M

	5
	Recommendation ITU-R BT.470-2 System B,G

	6
	SMPTE 170M

	7
	SMPTE 240M (1987)

	8-255
	Reserved

5.1.8.3 Transfer Characteristics (TRANSFER_CHAR)(8 bits)

TRANSFER_CHAR is an 8-bit syntax element that is present only in advanced profile, and only if COLOR_FORMAT_FLAG is 1, and describes the opto-electronic transfer characteristics of the source picture. The table below defines the syntax element values indicating the technical specification where the transfer characteristics are specified.

	TRANSFER_CHAR
	Transfer Characteristics Specification

	0
	Forbidden

	1
	Recommendation ITU-R BT.709

	2
	Unspecified Transfer Characteristics

	3
	Reserved

	4
	Recommendation ITU-R BT.470-2 System M

	5
	Recommendation ITU-R BT.470-2 System B,G

	6
	SMPTE 170M

	7
	SMPTE 240M (1987)

	8
	Linear Transfer Characteristrics

	9-255
	Reserved

5.1.8.4 Matrix Coefficients (MATRIX_COEF)(8 bits)

MATRIX_COEF is an 8-bit syntax element that is present only in advanced profile, and only if COLOR_FORMAT_FLAG is 1, and describes the matrix coefficients used to derive Y, U and V signals from the color primaries. The table below defines the syntax element values indicating the technical specification where the matrices are specified.

	MATRIX_COEF
	Matrix Coefficients Specification

	0
	Forbidden

	1
	Recommendation ITU-R BT.709

	2
	Unspecified Matrix

	3
	Reserved

	4
	FCC

	5
	Recommendation ITU-R BT.470-2 System B,G

	6
	SMPTE 170M

	7
	SMPTE 240M (1987)

	8-255
	Reserved

5.1.9 Hypothetical Reference Decoder Indicator Flag (HRD_PARAM_FLAG)(1 bit)

The HRD_PARAM_FLAG is a 1-bit flag that is present only in advanced profile, and indicates the presence of HRD parameters in the bitstream. If this flag is 0, HRD parameters are not present. If HRD_PARAM_FLAG is 1, syntax elements of the HRD are present as detailed next.

5.1.9.1 Hypothetical Reference Decoder (HRD)(Variable size)

The HRD syntax elements are present only in advanced profile, and only if HRD_PARAM_FLAG is 1, and are as follows. See Annex C for additional details on the semantics and use of HRD parameters.

	hrd_parameters()
	Descriptor
	Range

	{
	
	

	
hrd_num_leaky_buckets
	FLC-5
	(1, 32)

	
bit_rate_exponent
	FLC-4
	(6,21)

	
buffer_size_exponent
	FLC-4
	(4,19)

	
for(n=1; n <= hrd_num_leaky_buckets; n++)
	
	

	 {
	
	

	

hrd_rate[n]
	FLC-16
	(1,216)

	

hrd_buffer[n]
	FLC-16
	(1,216)

	

hrd_fullness[n]
	FLC - 8
	(0, 255)

	
}
	
	

hrd_num_leaky_buckets – A number between 1 and 32 that specifies the number of leaky buckets N. The value of N-1 is encoded as a fixed length code in binary using 5 bits.
hrd_rate[n] and bit_rate_exponent – These syntax elements define the peak transmission rate Rn in bits per second for the nth leaky bucket. The mantissa of Rn is encoded in the syntax element hrd_rate[n] using a fixed-length code of 16 bits, and has the range from 1 to 216 . The base-2 exponent of Rn is encoded in the syntax element bit_rate_exponent in fixed length using 4 bits , and takes the range from 6 to 21.

The rates must be ordered from smallest to largest, i.e., hrd_rate[n] < hrd_rate[n+1].

hrd_buffer[n] and buffer_size_exponent – These syntax elements define the buffer size Bn in bits for the nth leaky bucket. The mantissa of Bn is encoded in the syntax element hrd_buffer[n], using a fixed length code of 16 bits, and has the range 1 to 216. The value of the base-2 exponent of Bn is encoded in the syntax element buffer_size_exponent using a fixed length of 4 bits, and takes the range from 4 to 19.

The buffer sizes must be ordered from largest to smallest, i.e., hrd_buffer[n] >= hrd_buffer[n+1].

hrd_fullness[n] – This syntax element defines the decoder buffer fullness as an upwards rounded fraction of the buffer size Bn, in units of Bn/256. This element may take values in the range 1 to 256 and is encoded in binary using the 8 bit values 0 through 255 to uniformly cover the range.
5.1.10 Loop Filter (LOOPFILTER)(1 bit)

LOOPFILTER is a 1-bit syntax element that indicates whether loop filtering is enabled for the sequence. If LOOPFILTER = 0, then loop filtering is not enabled. If LOOPFILTER = 1, then loop filtering is enabled. See section 7.5 for a description of loop filtering.

5.1.11 Reserved Coding (RES_X8)(1 bit)

RES_X8 is a 1-bit syntax element that is present only in simple and main profiles, and must be set to zero. The value 1 is reserved.
5.1.12 Multiresolution Coding (MULTIRES)(1 bit)

MULTIRES is a 1-bit syntax element that is present only in simple and main profiles, and indicates whether the frames can be coded at smaller resolutions than the specified frame resolution. Resolution changes are allowed only on I pictures. If MULTIRES = 1, then a frame level syntax element is present which indicates the resolution for that frame. See sections 7.1.1.4 for a description of multiresolution decoding in I pictures.

5.1.13 Reserved (RES_FASTTX)(1 bit)

RES_FASTTX is a 1-bit syntax element that is present only in simple and main profiles, and must be set to the value 1. The value 0 is reserved.
5.1.14 FAST UV Motion Comp (FASTUVMC)(1 bit)
FASTUVMC is a 1-bit syntax element that controls the subpixel interpolation and rounding of chroma motion vectors. If FASTUVMC = 1, then the chroma motion vectors that are at quarter pel offsets will be rounded to the nearest full pel positions and bilinear filtering will be used for all chroma interpolation (see section 7.2.6.5.1). If FASTUVMC = 0, then no special rounding or filtering is done for chroma. (Informative – The purpose of this mode is speed optimization of the decoder).

FASTUVMC is always 1 for the Simple Profile.
5.1.15 Extended Motion Vectors (EXTENDED_MV)(1 bit)

EXTENDED_MV is a 1-bit syntax element that indicates whether extended motion vectors is turned on (value 1) or off (value 0). The extended motion vector mode is turned off for the Simple Profile, regardless of this bit. For the Main and Advanced Profiles, the extended motion vector mode indicates the possibility of extended motion vectors in P and B pictures.
5.1.16 Extended Differential Motion Vector Range (EXTENDED_DMV)(1 bit)
EXTENDED_DMV is a 1-bit syntax element that is present in Advanced Profile sequence headers if EXTENDED_MV = 1. This bit indicates whether extended differential motion vector range is signaled at the picture layer for P and B pictures.
5.1.17 Macroblock Quantization (DQUANT)(2 bit)

DQUANT is a 2-bit syntax element that indicates whether or not the quantization step size can vary within a frame. There are three possible values for DQUANT. If DQUANT = 0, then only one quantization step size (i.e. the frame quantization step size) can be used per frame. If DQUANT = 1 or 2, then we allow the possibility to quantize each macroblocks in the frame differently. More details are described in section 6.1.1.24.
5.1.18 Variable Sized Transform (VSTRANSFORM)(1 bit)

VSTRANSFORM is a 1-bit syntax element that indicates whether variable-sized transform coding is enabled for the sequence. If VSTRANSFORM = 0, then variable-sized transform coding is not enabled. If VSTRANSFORM = 1, then variable-sized transform coding is enabled. See section 7.2.6.2 for a description of variable-sized transform coding.

5.1.19 Reserved (RES_TRANSTAB)(1 bit)

RES_TRANSTAB is a 1-bit syntax element that is present only in simple and main profiles, and must be set to 0. The value 1 is reserved.
5.1.20 Overlapped Transform Flag (OVERLAP) (1 bit)

OVERLAP is a 1-bit flag that indicates whether Overlapped Transforms (Section 7.4) are used. If OVERLAP = 1, then Overlapped Transforms are used, otherwise they are not used.

5.1.21 Syncmarker flag (SYNCMARKER) (1 bit)
SYNCMARKER is a 1-bit flag that is present only in simple and main profiles, and indicates whether synchronization markers may be present in the bitstream. If SYNCMARKER =1, then the markers may be present, otherwise they are not present.

5.1.22 Range Reduction Flag (RANGE_RED) (1 bit)

RANGE_RED is a 1-bit syntax element that is present only in simple and main profiles, and indicates whether range reduction is used for each frame. If RANGE_RED = 1, then there is a syntax element in each frame header (RANGE_RED_FRM) that indicates whether range reduction is used for that frame. If RANGE_RED = 0, the syntax element RANGE_RED_FRM is absent, and range reduction is not used.
5.1.23 Maximum Number of consecutive B frames (MAXBFRAMES) (3 bits)
MAXBFRAMES is a 3-bit syntax element that indicates the maximum number of consecutive B frames between I or P frames. If MAXBFRAMES = 0, then there are no B frames in the sequence. Sequences with more than 7 consecutive B frames set MAXBFRAMES to 7.
5.1.24 Quantizer Specifier (QUANTIZER) (2 bits)
QUANTIZER is a 2-bit syntax element that indicates the quantizer used for the sequence. The quantizer types are encoded according to Table 1.

 Table 1: Quantizer specification

	FLC
	Quantizer specification

	00
	Quantizer implicitly specified at frame level

	01
	Quantizer explicitly specified at frame level

	10
	Uniform quantizer used for all frames

	11
	Nonuniform quantizer used for all frames

5.1.25 Entropy Coding Method (CODINGMETHOD) (1 bit)

CODINGMETHOD is a 1-bit syntax element that is present only in advanced profile, and indicates which entropy coding method is used to decode the transform coefficients. CODINGMETHOD = 0 indicates that the 3-D method is used. CODINGMETHOD = 1 indicates that the advanced 2-layer coding (A2LC) method is used.
5.1.26 Postprocessing Flag (POSTPROCFLAG) (1 bit)

POSTPROCFLAG is a 1-bit syntax element that is present only in advanced profile, and indicates at the sequence level whether frame based post processing is used.

5.1.27 Frame Skip Flag (FRSKIPFLAG) (1 bit)

FRSKIPFLAG is a 1-bit syntax element that is present only in advanced profile. FRSKIPFLAG = 1 indicates that information about whether a frame is skipped is signaled in the picture preamble via the FRSKIP. FRSKIPFLAG = 0 indicates that frameskip is signaled externally.

5.1.28 Frame Counter Flag (TFCNTRFLAG) (1 bit)

TFCNTRFLAG is a 1-bit syntax element that is present only in advanced profile. TFCNTRFLAG = 1 indicates that the syntax element TFCNTR is present in the picture preamble. TFCNTRFLAG = 0 indicates that TFCNTR is not present in the picture preamble.

5.1.29 Broadcast Flag (BROADCAST) (1 bit)

BROADCAST is a 1-bit syntax element that is present only in advanced profile, and indicates if interlace syntax element flag TFF and RFF are present in picture header preamble.
5.1.30 Frame Smoothness Flag (FS_FLAG)(1 bit)

FS_FLAG is a 1-bit syntax element that indicates if smoothness level of progressives frame are signaled on a per-frame basis. If FS_FLAG = 0, smoothness of frames is not signaled. If FS_FLAG = 1, smoothness of progressive frames is signaled by the INTERP syntax element in the picture header.
6 Progressive Bitstream Syntax and Semantics

6.1 Picture-level Syntax and Semantics

Each compressed video frame is made up of data structured into three hierarchical layers. This section describes the syntax and semantics of these layers. From top to bottom the layers are:


Picture


Macroblock


Block

In addition to these three layers, the Advance Profile bitstream may insert an optional slice-layer between the picture layer and the macroblock layer. In the advanced profile, pictures and slices are always byte-aligned, and are transmitted in an independent decodable unit (IDU) as described in Annex E. In the advanced profile, a new picture, or a slice, is detected via start-codes as outlined in Annex E. In the main and simple profiles, the start of a new picture is detected via external means.
Figure 8 through Figure 28 show the bitstream elements that make up each layer.

[image: image8]
Figure 8: Syntax diagram for the Progressive I picture layer bitstream in simple/main profile

[image: image9.emf]Picture Layer

(Progressive I Advanced Profile)

ACPRED

PIC_PREAMB

REPSEQHDR

PTYPE

SEQHEADER

PROGUV

PQINDEX

HALFQP

PQUANTIZER

POSTPROC

CONDOVER

OVERFLAGS

TRANSACFRM

TRANSACFRM2

TRANSDCTAB

VOPDQUANT

MB LAYER

Figure 9: Syntax diagram for the Progressive I picture layer bitstream in advanced profile.
[image: image10.emf]PICTURE LAYER

(Progressive P Simple/Main)

TTMBF

TTFRM

TRANSACFRM

TRANSDCTAB

RESPIC

MVMODE

MVTAB

LUMSCALE

LUMSHIFT

MVMODE2

SKIPMB

MVTYPEMB

CBPTAB

VOPDQUANT

FRMCNT

PTYPE

HALFQP

MVRANGE

PQINDEX

PQUANTIZER

INTERPFRM

PREPROCFRM

 MB LAYER

Figure 10: Syntax diagram for the Progressive P picture layer bitstream in Simple/Main Profile.

[image: image11.emf]Picture Layer

(Progressive P Advanced Profile)

MVRANGE

PIC_PREAMB

PTYPE

PROGUV

PQINDEX

HALFQP

PQUANTIZER

POSTPROC

MVMODE2

TRANSDCTAB

VOPDQUANT

MB LAYER

INTERPFRM

MVMODE

LUMSCALE

LUMSHIFT

MVTYPEMB

SKIPMB

MVTAB

CBPTAB

TTMBF

TTFRM

TRANSACFRM

Figure 11: Syntax diagram for the Progressive P picture layer bitstream in Advanced Profile.

[image: image12.emf]PICTURE LAYER

(Simple/Main

B Picture)

TTMBF

TTFRM

DCTACMBF

DCTACFRM

MB LAYER

DCTDCTAB

RESPIC

MVMODE

DIRECTMB

MVTYPEMB

FRMCNT

INTERPFRM

PREPROCFRM

PTYPE

HALFQP

MVRANGE

PQINDEX

PQUANTIZER

BFRACTION

SKIPMB

MVTAB

CBPTAB

VOPDQUANT

Figure 12: Syntax diagram for the Progressive B picture layer bitstream in Simple/Main Profile.

[image: image13.emf]PICTURE LAYER

(Advanced Profile

B Picture)

TTMBF

TTFRM

DCTACMBF

DCTACFRM

MB LAYER

DCTDCTAB

MVMODE

DIRECTMB

MVTYPEMB

INTERPFRM

PTYPE

HALFQP

MVRANGE

PQINDEX

PQUANTIZER

BFRACTION

SKIPMB

MVTAB

CBPTAB

VOPDQUANT

PIC_PREAMB

POSTPROC

PROGUV

PQINDEX

Figure 13: Syntax diagram for the Progressive B picture layer bitstream in Advanced Profile.
[image: image14.emf]FCM

TFF

Picture Header

Preamble

RFF

TFCNTR

FRSKIP

Figure 14: Syntax diagram for the picture header preamble bitstream in Advanced Profile

[image: image15.emf]PQDIFF

VOPDQUANT

DQUANT = 2

DQUANTFRM

DQPROFILE

DQSBEDGE

DQDBEDGE

DQUANT = 1

DQBILEVEL

ABSPQ

PQDIFF

ABSPQ

Figure 15: Syntax diagram for VOPDQUANT in (Progressive P) picture header

[image: image16]
Figure 16: Syntax diagram for for the Slice-Layer bitstream in the Advanced Profile

[image: image17]
Figure 17: Syntax diagram for macroblock layer bitstream in Progressive I picture for simple/main profile

[image: image18]
Figure 18: Syntax diagram for macroblock layer bitstream in progressive I picture for advanced profile

[image: image19.emf]TTMB

MVDATA

BLOCK LAYER

MB LAYER

(P Picture)

BLKMVDATA

TTMB

CBPCY

BLOCK LAYER

1 MV Mode

4 MV Mode

HYBRIDPRED

HYBRIDPRED

HYBRIDPRED

Non-skipped MB Skipped MB

HYBRIDPRED

Non-skipped MB Skipped MB

ACPRED

SKIPMBBIT

MVMODEBIT

SKIPMBBIT

MVMODEBIT

SKIPMBBIT

MVMODEBIT

CBPCY

ABSMQ

MQDIFF

ABSMQ

MQDIFF

SKIPMBBIT

MVMODEBIT

Figure 19: Syntax diagram for macroblock layer bitstream in Progressive-P picture
[image: image20.emf]DIRECTBBIT

SKIPMBBIT

BMV1

BMVTYPE

BMV2

DCTCOEFFPRED

CBP

DQUANT

TTMB

BLOCK LAYER

MB Layer

(B Picture)

Figure 20: Syntax diagram for macroblock layer bitstream in Progressive B picture

[image: image21]
Figure 21: Syntax diagram for the Intra-coded block layer bitstream in Progressive mode when 3-D Huffman decoding is used.

[image: image22]
Figure 22: Syntax diagram for the Inter-coded block layer bitstream in Progressive mode when 3-D Huffman decoding is used.

[image: image23.emf]Block LAYER

(INTRA)

DCCOEF

ACPREDBLK

DCCOEFESC

DCSIGN

Advanced 2-Layer

Decoding LAYER

Figure 23: Syntax diagram for the Intra-coded block layer bitstream in Progressive mode when the advanced 2-layer coding (A2LC) method is used.

[image: image24.emf]Block LAYER

(INTER)

TTBLK

SUBBLKPAT

Advanced 2-Layer

Decoding LAYER

Figure 24: Syntax diagram for the Inter-coded block layer bitstream in Progressive mode when the advanced 2-layer coding (A2LC) method is used.

[image: image25.emf]Advanced 2-layer

Decoding Layer

LEVEL LAYER

RUN LAYER

HUFHD LAYER

Figure 25: Syntax diagram of the advanced 2-layer decoding layer.

[image: image26.emf]HUFHD

LAYER

NUMCOEF

NUMZERO

Figure 26: Syntax diagram for the A2LC HUFHD layer bit stream.

[image: image27.emf]LEVEL LAYER

NUMSL

VALSL

RUNISL

SIGN

RUNISL1

Figure 27: Syntax diagram for the A2LC level layer bit stream.

[image: image28.emf]RUN LAYER

VALSR

RUNISR

NUMSR

Figure 28: Syntax diagram for the A2LC run layer bit stream.
6.1.1 Picture layer

Data for each picture consists of a picture header followed by data for the macroblock layer. Figure 8 and Figure 9 show the bitstream elements that make up the I progressive picture layer in simple/main profile and advanced profile, respectively, and Figure 10 and Figure 11 show the bitstream elements that make up the P progressive picture layer in simple/main profile and advanced profile, respectively. The following sections give a short description of each of the bitstream elements in the picture layer.

6.1.1.1 Picture Preamble (PICPREAM) (Variable size)

PICPREAM is present only in advanced profile. It has the following syntax elements.

6.1.1.1.1 Frame Skip (FRSKIP) (1 bit)

FRSKIP is present only in advanced profile, and only if the sequence level syntax element FRSKIPFLAG has the value 1. FRSKIP = 1 indicates that the frame should be skipped. If the frame is skipped, then only the syntax element TFCNTR may be present, and no other syntax elements are present for that frame. See Section 7.2.1 on skipped frames. FRSKIP = 0 indicates that the frame is not skipped.
6.1.1.1.2 Temporal Reference Frame Counter (TFCNTR) (8 bits)

TFCNTR is present only in advanced profile, and only if the sequence level syntax element TFCNTRFLAG is 1. TFCNTR is an 8-bit fixed length field. When the sequence header includes a set of HRD parameters (HRD_flag set to ‘1’), TFCNTR of each coded frame shall increment by one modulo 256 when examined in display order at the output of the decoding process, except when a sequence header occurs. Among the frames coded immediately after the sequence header, the temporal reference of the coded frame that is displayed first shall be set to zero.
When a coded frame is in the form of two field pictures, the temporal reference associated with each picture shall be the same (it is called the temporal reference of the coded frame).
6.1.1.1.3 Picture Coding Type (FCM) (Variable size)

FCM is present only in advanced profile, and only if the sequence level syntax element INTERLACE has the value 1, and it indicates whether the picture is coded as progressive, interlace-field or interlace-frame. Table 2 shows the VLC codewords used to indicate the picture coding type.

Table 2: Picture Coding Type VLC

	FCM
	Picture Coding Type

	0
	Progressive

	10
	Field-Interlace

	11
	Frame-Interlace

6.1.1.1.4 Top Field First (TFF) (1 bit)

TFF is present only in advanced profile, and if the frame is coded as interlace, and if the BROADCAST flag in the sequence header is set to ‘1’ . If TFF has the value 1, it indicates that the top field is the first coded field. If TFF has the value 0, it indicates that the bottom field is the first coded field.
6.1.1.1.5 Repeat First Field (RFF) (1 bit)

RFF is present only in advanced profile, and if the frame is coded as interlace, and if the broadcast flag in the sequence header has the value ‘1’. If RFF has the value 1, it indicates that the first field is to be repeated. If RFF has the value 0, it indicates that the first field should not be repeated.

6.1.1.2 Frame Smoothness Interpolate (INTERPFRM) (1 bit)

INTERPFRM is a 1-bit syntax element present in all progressive frame types, if the syntax element FS_FLAG in the sequence header takes the value 1. This syntax element shall indicate the smoothness of the frame.
6.1.1.3 Frame Count (FRMCNT) (2 bits)

FRMCNT is a 2-bit syntax element present in I and P picture headers. This syntax element shall have the value 0.
6.1.1.4 Range Reduction Frame (RANGE_RED_FRM) (1 bit)

RANGE_RED_FRM is a 1-bit syntax element present in all frame types if the sequence level flag RANGE_RED = 1 (see section 5.1.22). If RANGE_RED_FRM = 1, then range reduction is used for the frame. If RANGE_RED_FRM = 0, then range reduction is not used for the frame. See sections 7.1.1.5 and 7.2.4.12 for a description of range reduction decoding.
6.1.1.5 Picture Type (PTYPE) (Variable size)

Depending on the value of the sequence level syntax element MAXBFRAMES, PTYPE is either a 1-bit or variable sized syntax element. If MAXBFRAMES = 0, then only I and P frames are present in the sequence, and PTYPE is encoded according to Table 3.

Table 3: Picture Type FLC if MAXBFRAMES = 0

	PTYPE FLC
	Picture Type

	0
	I

	1
	P

If MAXBFRAMES is greater than 0, then B frames are present in the sequence, and PTYPE is a variable sized syntax element indicating the picture type of the frame. Table 4 shows the VLC codewords used to indicate the picture type.

Table 4: Picture Type VLC if MAXBFRAMES > 0
	PTYPE VLC
	Picture Type

	1
	P

	01
	I

	00
	B

6.1.1.6 B Picture Fraction (BFRACTION)(Variable size)

BFRACTION is a VLC symbol that is sent only for B frames. This signals a fraction that can take on a limited set of values between 0 and 1, denoting the relative temporal position of the B frame within the interval formed by its anchors. This fraction is used to scale collocated motion vectors for deriving the direct motion vectors.

The mapping of BFRACTION is shown in Table 5. One symbol is unused in the codetable. When BFRACTION is 1111111, this means that the entire B frame is coded independent of its anchors, i.e. as an “Intra” frame. This frame is referred to as an Intra B frame. This is not a true I frame, since there is no temporal dependency on the Intra B frame, nor does this represent the start of an independently decodable segment.

Table 5: BFRACTION VLC Table

	BFRACTION VLC
	Fraction
	BFRACTION VLC
	Fraction

	000
	1/2
	1110101
	2/7

	001
	1/3
	1110110
	3/7

	010
	2/3
	1110111
	4/7

	011
	1/4
	1111000
	5/7

	100
	3/4
	1111001
	6/7

	101
	1/5
	1111010
	1/8

	110
	2/5
	1111011
	3/8

	1110000
	3/5
	1111100
	5/8

	1110001
	4/5
	1111101
	7/8

	1110010
	1/6
	1111110
	Invalid

	1110011
	5/6
	1111111
	INTRA

	1110100
	1/7
	
	

6.1.1.7 Buffer Fullness (BF) (7 bits)

BF is a 7-bit syntax element that is only present in I-picture headers. Refer to section 7.1.1.1 for a description of this syntax element.

6.1.1.8 Repeat Sequence Header (REPSEQHDR)(1 bit)

REPSEQHDR is a 1 bit syntax element that is only present in I advanced profile picture headers. If REPSEQHDR is 1, then a new sequence header will be sent directly after it to update the sequence level information for decoding future frames. If REPSEQHDR is 0, then the sequence level information remains the same as before.
6.1.1.9 Progressive UV (PROGUV)(1 bit)

PROGUV is a 1 bit syntax element that is only present in progressive advanced profile picture headers (I, P, B). The flag is used to indicate the type of chroma subsampling used for the current frame. If PROGUV = 1, then progressive subsampling of the chroma is used, otherwise, interlace subsampling of the chroma is used.
6.1.1.10 Picture Quantizer Index (PQINDEX) (5 bits)

PQINDEX is a 5-bit syntax element that signals the quantizer scale index for the entire frame. It is present in all picture types. If the implicit quantizer is used (signaled by sequence syntax element QUANTIZER = 00, see section 5.1.24), then PQINDEX specifies both the picture quantizer scale (PQUANT) and the quantizer (uniform or nonuniform) used for the frame. Table 6 shows how PQINDEX is translated to PQUANT and the quantizer for implicit mode.
Table 6: PQINDEX to PQUANT/Quantizer Translation (Implicit Quantizer)
	PQINDEX
	PQUANT
	Quantizer
	PQINDEX
	PQUANT
	Quantizer

	0
	NA
	NA
	16
	13
	Nonuniform

	1
	1
	Uniform
	17
	14
	Nonuniform

	2
	2
	Uniform
	18
	15
	Nonuniform

	3
	3
	Uniform
	19
	16
	Nonuniform

	4
	4
	Uniform
	20
	17
	Nonuniform

	5
	5
	Uniform
	21
	18
	Nonuniform

	6
	6
	Uniform
	22
	19
	Nonuniform

	7
	7
	Uniform
	23
	20
	Nonuniform

	8
	8
	Uniform
	24
	21
	Nonuniform

	9
	6
	Nonuniform
	25
	22
	Nonuniform

	10
	7
	Nonuniform
	26
	23
	Nonuniform

	11
	8
	Nonuniform
	27
	24
	Nonuniform

	12
	9
	Nonuniform
	28
	25
	Nonuniform

	13
	10
	Nonuniform
	29
	27
	Nonuniform

	14
	11
	Nonuniform
	30
	29
	Nonuniform

	15
	12
	Nonuniform
	31
	31
	Nonuniform

If the quantizer is signaled explicitly at the sequence or frame level (signaled by sequence syntax element QUANTIZER = 01, 10 or 11, see section 5.1.24), then PQINDEX is translated to the picture quantizer stepsize PQUANT as indicated by Table 7.
Table 7: PQINDEX to PQUANT Translation (Explicit Quantizer)
	PQINDEX
	PQUANT

Uniform
	PQUANT

Nonuniform
	PQINDEX
	PQUANT

Uniform
	PQUANT

Nonuniform

	0
	NA
	NA
	16
	16
	14

	1
	1
	1
	17
	17
	15

	2
	2
	1
	18
	18
	16

	3
	3
	1
	19
	19
	17

	4
	4
	2
	20
	20
	18

	5
	5
	3
	21
	21
	19

	6
	6
	4
	22
	22
	20

	7
	7
	5
	23
	23
	21

	8
	8
	6
	24
	24
	22

	9
	9
	7
	25
	25
	23

	10
	10
	8
	26
	26
	24

	11
	11
	9
	27
	27
	25

	12
	12
	10
	28
	28
	26

	13
	13
	11
	29
	29
	27

	14
	14
	12
	30
	30
	29

	15
	15
	13
	31
	31
	31

6.1.1.11 Half QP Step (HALFQP) (1 bit)

HALFQP is a 1-bit syntax element present in all frame types if PQINDEX is less than or equal to 8. The HALFQP syntax element allows the picture quantizer to be expressed in half step increments over the low PQUANT range. If HALFQP = 1, then the picture quantizer stepsize is PQUANT + ½. If HALFQP = 0, then the picture quantizer stepize is PQUANT. Therefore, if the uniform quantizer is used, then half stepsizes are possible up to PQUANT = 9 (i.e., PQUANT = 1, 1.5, 2, 2.5 … 8.5, 9), and then only integer stepsizes are allowable above PQUANT = 9. For the nonuniform quantizer, half stepsizes are possible up to PQUANT = 7 (i.e., 1, 1.5, 2, 2.5 … 6.5, 7).
6.1.1.12 Picture Quantizer Type (PQUANTIZER) (1 bit)

PQUANTIZER is a 1 bit syntax element present in all frame types if the sequence level syntax element QUANTIZER = 01 (see section 5.1.24). In this case, the quantizer used for the frame is specified by PQUANTIZER. If PQUANTIZER = 0, then the nonuniform quantizer is used for the frame. If PQUANTIZER = 1, then the uniform quantizer is used.
6.1.1.13 Extended MV Range Flag (MVRANGE) (Variable size)

MVRANGE is a variable-sized syntax element present for sequences coded using the main and advanced profiles when the sequence-layer EXTENDED_MV bit is set to 1. For the main profile, it is present in I, P and B pictures. For the advanced profile, it is present in P, and B pictures. The default range of motion vectors is [-64 63.f] X [-32 31.f], where f is the fractional motion vector ¾ for ¼ pixel motion and ½ for ½ pixel motion resolution. In other words, the default range for quarter-pixel motion modes is [-64 63¾] along the horizontal (X) axis and [-32 31¾] along the vertical (Y) axis. The default range is chosen under Simple Profile, and when EXTENDED_MV is 0 under Main Profile encoding.

Table 8 lists the four possible binary codewords for MVRANGE and the corresponding motion vector range signaled by the codeword. Section 7.2.5.2 details the decoding of differential motion vectors for different ranges specified by MVRANGE.
Table 8: Motion Vector Range Signaled by MVRANGE
	Codeword in binary
	MV range in full pixel units (horiz x vert)

	0 (also default)
	[-64, 63.f] x [-32, 31.f]

	10
	[-128, 127.f] x [-64, 63.f]

	110
	[-512, 511.f] x [-128, 127.f]

	111
	[-1024,1023.f] x [-256, 255.f]

6.1.1.14 Progressive Picture Resolution Index (RESPIC) (2 bits)

The RESPIC syntax element is present in progressive I and P pictures, in simple and main profiles, if MULTIRES =1 in the sequence layer. This syntax element specifies the scaling factor of the current frame relative to the full resolution frame. Table 9 shows the possible values of the RESPIC syntax element. Refer to section 7.1.1.4 for a description of variable resolution coding. NOTE: Although the RESPIC syntax element is present in P picture headers, it is not used.
Table 9: Progressive picture resolution code-table

	RESPIC FLC
	Horizontal Scale
	Vertical Scale

	00
	Full
	Full

	01
	Half
	Full

	10
	Full
	Half

	11
	Half
	Half

6.1.1.15 Skipped Macroblock Bit Syntax Element (SKIPMB)(Variable size)

The SKIPMB syntax element is present only in P or B pictures. The SKIPMB syntax element encodes the skipped macroblocks using a bitplane coding method. Refer to section 7.7 for a description of the bitplane coding method.
6.1.1.16 B Frame Direct Mode Macroblock Bit syntax element (DIRECTMB)(Variable size)

The DIRECTMB syntax element is present only in B pictures. The DIRECTMB syntax element uses bitplane coding to indicate the macroblocks in the B picture that are coded in direct mode. The DIRECTMB syntax element may also signal that the direct mode is signaled in raw mode, in which case the direct mode is signaled at the macroblock level (see section 6.1.3.12). Refer to section 7.7 for a description of the bitplane coding method.
6.1.1.17 Motion Vector Mode (MVMODE) (Variable size)

The MVMODE syntax element is present in P and B picture headers. For P Pictures, the MVMODE syntax element signals one of four motion vector coding modes or one intensity compensation mode. Depending on the value of PQUANT, either Table 10 or Table 11 is used to decode the MVMODE syntax element.

Table 10: P Picture Low rate (PQUANT > 12) motion vector mode codetable

	MVMODE VLC
	Mode

	1
	1 MV Half-pel bilinear

	01
	1 MV

	001
	1 MV Half-pel

	0001
	Mixed MV

	0000
	Intensity Compensation

Table 11: P Picture High rate (PQUANT <= 12) motion vector mode codetable

	MVMODE VLC
	Mode

	1
	1 MV

	01
	Mixed MV

	001
	1 MV Half-pel

	0001
	1 MV Half-pel bilinear

	0000
	Intensity Compensation

Intensity compensation is not signaled for B Pictures, and only two motion modes are valid. Table 12 and Table 13 show the tables used to code the motion vector mode for B Pictures.
Table 12: B Picture High rate (PQUANT <= 12) motion vector mode codetable

	MVMODE VLC
	Mode

	1
	Quarter-pel Bicubic

	000
	Half-pel Bilinear

Table 13: B Picture Low rate (PQUANT > 12) motion vector mode codetable

	MVMODE VLC
	Mode

	1
	Half-pel Bilinear

	01
	Quarter-pel Bicubic

6.1.1.18 Motion Vector Mode 2(MVMODE2) (Variable size)

The MVMODE2 syntax element is only present in P pictures, and only if the picture header syntax element MVMODE signals intensity compensation. Refer to section 7.2.4.3 for a description of motion vector mode/intensity compensation. Table 10 and Table 11 are used to decode the MVMODE2 syntax element, with the codeword 000 being used to signal Mixed MV and 1MV half-pel bilinear for the two tables, respectively.

6.1.1.19 Luminance Scale (LUMSCALE)(6 bits)

The LUMSCALE syntax element is only present in P pictures, and only if the picture header syntax element MVMODE signals intensity compensation. Refer to section 7.2.8 for a description of intensity compensation.

6.1.1.20 Luminance Shift (LUMSHIFT)(6 bits)

The LUMSHIFT syntax element is only present in P pictures, and only if the picture header syntax element MVMODE signals intensity compensation. Refer to section 7.2.8 for a description of intensity compensation.

6.1.1.21 Motion Vector Type Bitplane (MVTYPEMB)(Variable size)

The MVTYPEMB syntax element is present in P pictures if MVMODE or MVMODE2 indicates that Mixed MV motion vector mode is used. The MVTYPEMB syntax element uses bitplane coding to signal the motion vector type (1 or 4 MV) for each macroblock in the frame. Refer to section 7.7 for a description of the bitplane coding method. Refer to section 7.2.5.2 for a description of the motion vector decode process.
6.1.1.22 Motion Vector Table (MVTAB) (2 bits)

The MVTAB syntax element is a 2-bit value present only in P and B frames. The MVTAB syntax element indicates which of four Huffman tables is used to encode the motion vector data. Refer to section 7.2.5.2 for a description of the motion vector decoding process.

Table 14: MVTAB code-table
	FLC
	Motion Vector Huffman Table

	00
	Huffman Table 0

	10
	Huffman Table 1

	01
	Huffman Table 2

	11
	Huffman Table 3

The motion vector Huffman tables are listed in section 10.11.
6.1.1.23 Coded Block Pattern Table (CBPTAB) (2 bits)

The CBPTAB syntax element is a 2-bit value present only in P and B frames. This syntax element signals the Huffman table used to decode the CBPCY syntax element (described in section 7.2.5.5) for each coded macroblock in P-pictures. Refer to section 7.2.4.6 for a description of how the CBP Huffman table is used in the decoding process.
The CBPCY Huffman tables are listed in sections 10.6 and 10.7.
6.1.1.24 Macroblock Quantization (VOPDQUANT) (Variable size)

The VOPDQUANT syntax element is made up of several bitstream syntax elements as shown in Figure 15. VOPDQUANT is present in Progressive P pictures when the sequence header DQUANT syntax element is nonzero. VOPDQUANT is present in Progressive I pictures only in advanced profile when the sequence header DQUANT syntax element is nonzero. The syntax of VOPDQUANT is dependent on the picture type (whether it’s an I picture or a P picture) and the value of DQUANT.

Case 1: DQUANT = 1.

There are four possibilities in this case:

1. The macroblocks located on the boundary are quantized with a second quantization step size (ALTPQUANT), while the rest of the macroblocks are quantized with the frame quantization step size (PQUANT).
2. Two adjacent edges are signaled (see Table 17), and those macroblocks located on the two edges are quantized with ALTPQUANT while the rest of the macroblocks are quantized with PQUANT.

3. One edge is signaled and those macroblock located on the edge are quantized with ALTPQUANT while the rest of the macroblocks are quantized with PQUANT.

4. Every single macroblock can be quantized differently. In this case, it will be indicated whether each macroblock can select from two quantization steps (PQUANT or ALTPQUANT), or each macroblock can be arbitrarily quantized using any step size.
Case 2: DQUANT = 2.
The macroblocks located on the boundary are quantized with ALTPQUANT while the rest of the macroblocks are quantized with PQUANT.

6.1.1.25 VOPDQUANT Syntax Elements
The syntax elements are as follows:
· DQUANTFRM (1 bit)
The DQUANTFRM syntax element is a 1-bit value that is present only when DQUANT = 1. If DQUANTFRM = 0, then the current picture is only quantized with PQUANT.
· DQPROFILE (2 bits)
The DQPROFILE syntax element is a 2-bits value that is present only when DQUANT = 1 and DQUANTFRM = 1. It indicates where we are allowed to change quantization step sizes within the current picture.

Table 15: Macroblock Quantization Profile (DQPROFILE) Code Table

	FLC
	Location

	00
	All four Edges

	01
	Double Edges

	10
	Single Edges

	11
	All Macroblocks

· DQSBEDGE (2 bits)
The DQSBEDGE syntax element is a 2-bits value that is present when DQPROFILE = Single Edge. It indicates which edge will be quantized with ALTPQUANT.
Table 16: Single Boundary Edge Selection (DQSBEDGE) Code Table

	FLC
	Boundary Edge

	00
	Left

	01
	Top

	10
	Right

	11
	Bottom

· DQDBEDGE (2 bits)
The DQDBEDGE syntax element is a 2-bits value that is present when DQPROFILE = Double Edge. It indicates which two edges will be quantized with ALTPQUANT.

Table 17: Double Boundary Edges Selection (DQDBEDGE) Code Table

	FLC
	Boundary Edges

	00
	Left and Top

	01
	Top and Right

	10
	Right and Bottom

	11
	Bottom and Left

· DQBILEVEL (1 bit)

The DQBILEVEL syntax element is a 1-bit value that is present when DQPROFILE = All Macroblock. If DQBILEVEL = 1, then each macroblock in the picture can take one of two possible values (PQUANT or ALTPQUANT). If DQBILEVEL = 0, then each macroblock in the picture can take on any quantization step size.
· PQDIFF (3 bits)
PQDIFF is a 3 bit syntax element that encodes either the PQUANT differential or an escape code.

If PQDIFF does not equal 7, then PQDIFF encodes the differential, and the ABSPQ syntax element does not follow in the bitstream. In this case:

ALTPQUANT = PQUANT + PQDIFF + 1

If PQDIFF equals 7, then the ABSPQ syntax element follows in the bitstream, and ALTPQUANT is decoded as:

ALTPQUANT = ABSPQ
· ABSPQ (5 bits)

ABSPQ is present in the bitstream if PQDIFF equals 7. In this case, ABSPQ directly encodes the value of ALTPQUANT as described above.

6.1.1.26 Macroblock-level Transform Type Flag (TTMBF) (1 bit)

This syntax element is present only in P- and B- picture headers and only if the sequence-level syntax element VSTRANSFORM = 1 (described in section 5.1.18). If TTMBF = 0, then the TTFRM syntax element is also present in the picture layer. See section 7.2.4.8 for a description.

6.1.1.27 Frame-level Transform Type (TTFRM) (2 bits)

This syntax element is present in P- and B- picture headers if VSTRANSFORM = 1 and TTMBF = 0. The TTFRM syntax element is decoded using Table 18. See section 7.2.4.9 for a description.

Table 18: Transform type select code-table

	FLC
	Transform type

	00
	8x8 Transform

	01
	8x4 Transform

	10
	4x8 Transform

	11
	4x4 Transform

6.1.1.28 AC Prediction (ACPRED)(Variable size)
For advanced profile I pictures, the 1-bit ACPRED syntax elements present in all macroblocks are jointly coded using a bitplane coded syntax element that indicates the AC prediction status for each macroblock in the picture. The decoded bitplane represents the AC prediction status for each macroblock as a syntax element of 1-bit values in raster scan order from upper left to lower right. Refer to section 6.2 for a description of the bitplane coding. See secion 6.1.3.5 for a description of AC prediction.
6.1.1.29 Conditional Overlap Flag (CONDOVER) (Variable size)
This syntax element is present only in I pictures, and only in advanced profile, and only when OVERLAP is on and PQUANT is within a certain range.

6.1.1.30 Conditional Overlap Macroblock Pattern Flags (OVERFLAGS) (Variable size)
This syntax element is present only in I pictures, and only in advanced profile, and only when CONDOVER has the binary value 11. OVERFLAGS is coded as a bitplane, which in raw mode requires that each macroblock carry its local information, OVERFLAGMB.

6.1.1.31 Post Processing (POSTPROC)(2 bits)

POSTPROC is a 2-bits syntax element that occurs in all pictures in advanced profile when the sequence level flag POSTPROCFLAG is set to 1. It is used to suggest to the decoder on the level of post processing that should be used for the current frame. The four suggested modes are tabulated below:
	POSTPROC
	Suggested Post processing

	00
	No Post Processing

	01
	De-blocking

	10
	De-ringing

	11
	De-block + De-ringing

Post processing is outside the decoding loop and is therefore not a normative part of the VC-9 specification
.

6.1.1.32 Frame-level Transform AC Coding Set Index (TRANSACFRM) (Variable size)
This syntax element is always present in I and P pictures, except when the A2LC method is used in advanced profile (CODINGMETHOD=1). Table 19 is used to decode the TRANSACFRM syntax element. See section 7.2.4.10 for a description of the TRANSACFRM syntax element.

Table 19: Transform AC coding set index code-table

	VLC
	Coding set index

	0
	0

	10
	1

	11
	2

See section 7.1.1.11 for a description of the Transform AC coding sets.

6.1.1.33 Frame-level Transform AC Table-2 Index (TRANSACFRM2) (Variable size)

This syntax element is always present in I pictures, except when the A2LC method is used in advanced profile (CODINGMETHOD=1). Table 19 is used to decode the TRANSACFRM2 syntax element. See section 7.1.1.11 for a description of the Transform AC coding sets.

6.1.1.34 Intra Transform DC Table (TRANSDCTAB) (1 bit)

This syntax element is always present in P pictures and baseline I pictures. See section 7.1.1.3 for a description.
6.1.2 Slice Layer

A slice represents one or more contiguous rows of macroblocks that are scanned in raster-scan order. Slice-layer is present only in the advanced profile. Even in advanced profile, slice layer is optional, and can be skipped by coding a picture as a single independent decodable unit (IDU). When a picture is coded in multiple IDUs, slices are used. Note that a slice always begins at the first macroblock in a row, and ends at the last macroblock in the same or another row. Thus, a slice contains an integer number of complete rows. A slice is always byte-aligned, and each slice is transmitted in a different IDU. The beginning of a new slice is detected through search for start-codes as outlined in Annex E.
When a new slice begins, motion vector predictors, predictors for AC and DC coefficients, and the predictors for quantization parameters are reset. In other words, with respect to prediction, the first row of macroblocks in the slice is considered to be the first row of macroblocks in the picture. This ensures that there is no inter-slice dependency in predictors. Further, when slices are used, all bitplane information is carried in raw mode which ensures that each macroblock carries its own local information.
Figure 16 shows the structure for the slice layer. The elements that make up the slice layer are described in the following sections.
6.1.2.1 Slice Address (SLICE_ADDR)(9 bits)
SLICE_ADDR is a fixed-length 9-bit syntax element. The row address of the first macroblock row in the slice is binary encoded in this syntax element. The range of this syntax element is from 1 to 512. (Informative – The maximum picture size of 8192 corresponds to a maximum of 512 macroblock rows).
6.1.2.2 Picture Header Present Flag (PIC_HEADER_FLAG)(1 bit)
PIC_HEADER_FLAG is a 1-bit syntax element that is present in the slice header. If PIC_HEADER_FLAG = 0, then the picture header information is not repeated in the slice header. If the PIC_HEADER_FLAG = 1, the picture header information is repeated in the slice header.

6.1.3 Macroblock Layer

Data for each macroblock consists of a macroblock header followed by the block layer. Figure 17 –Figure 20 show the macroblock layer structure for I picture and P picture macroblocks. The elements that make up the macroblock layer are described in the following sections. The picture types that the macroblock layer syntax elements occur in, are indicated in the square brackets.
6.1.3.1 Conditional Overlap Macroblock Pattern Flag (OVERFLAGMB) (1 bit) [I]

This syntax element is present only in I pictures, only in advanced profile, and only when CONDOVER has the binary value 11, and when the raw mode is chosen to encode the OVERFLAGS plane. In this case, one bit is sent in the macroblock header to indicate whether or not to perform overlap filtering to edge pixels within the block and neighboring blocks. See Section 7.4.2 for a description.

6.1.3.2 Skip MB Bit (SKIPMBBIT)(1 bit)[P,B]

SKIPMBBIT is a 1-bit syntax element present in P and B frame macroblocks if the frame level syntax element SKIPMB (see section 6.1.1.15) indicates that raw mode is used. If SKIPMBBIT = 1, then the macroblock is skipped.
6.1.3.3 MV Mode Bit (MVMODEBIT)(1 bit)[P]
MVMODEBIT is a 1-bit syntax element present in P frame macroblocks if the frame level syntax element MVTYPEMB (see section 6.1.1.21) indicates that raw mode is used. If MVMODEBIT = 0, then the macroblock is coded in 1MV mode, and if MVMODEBIT = 1, then the macroblock is coded in 4MV mode.
6.1.3.4 Coded Block Pattern (CBPCY) (Variable size)[I, P]

CBPCY is a variable-length syntax element present in both I picture and P picture macroblock layers. Section 7.1.1.6 describes the CBPCY syntax element in I picture macroblocks and section 7.2.5.5 describes the CBPCY syntax element in P picture macroblocks.
6.1.3.5 AC Prediction Flag (ACPRED)(1 bit)[I, P]

The ACPRED syntax element is present in all I picture macroblocks and in 1MV Intra macroblocks in P pictures (see section 7.2.5.1 for a description of the macroblock types). In advanced profile I pictures, this bit could be jointly coded using bitplane coding and sent at the picture layer instead of being sent at the macroblock level. This is a 1-bit syntax element that specifies whether the blocks were coded using AC prediction. ACPRED = 0 indicates that AC prediction is not used. ACPRED = 1 indicates that AC prediction is used. See section 7.1.1.7 for a description of the ACPRED syntax element in I pictures and section 7.2.6.1 for a description of the ACPRED syntax element in P pictures.
6.1.3.6 Macroblock Quantizer Differential (MQDIFF)(Variable size)[I,P]

MQDIFF is a variable-sized syntax element present in Progressive P pictures. MQDIFF is also present in progressive I pictures in advanced profile. It is present only if the picture layer syntax element DQPROFILE = All Macroblocks. The syntax depends on the DQBILEVEL syntax element as described below.

If DQBILEVEL = 1, then MQDIFF is a 1 bit syntax element and the ABSMQ syntax element does not follow in the bitstream. If MQDIFF = 0, then MQUANT = PQUANT (meaning that PQUANT is used as the quantization step size for the current macroblock). If MQDIFF = 1, then MQUANT = ALTPQUANT.

If DQBILEVEL = 0, then MQDIFF is a 3 bit syntax element. In this case MQDIFF decodes either to an MQUANT differential or to an escape code as follows:

If MQDIFF does not equal 7, then MQDIFF encodes the differential, and the ABSMQ syntax element does not follow in the bitstream. In this case:

MQUANT = PQUANT + MQDIFF
If MQDIFF equals 7, then the ABSMQ syntax element follows in the bitstream, and MQUANT is decoded as:

MQUANT = ABSMQ
6.1.3.7 Absolute Macroblock Quantizer Scale (ABSMQ)(5 bits)[I,P]

ABSMQ is present in the bitstream if MQDIFF equals 7. In this case, ABSMQ directly encodes the value of MQUANT as described above.
6.1.3.8 Motion Vector Data (MVDATA)(Variable size)[P]

MVDATA is a variable sized syntax element present in P picture macroblocks. This syntax element encodes the motion vector(s) for the macroblock. See section 7.2.5.2 for a description of the motion vector decode process.

6.1.3.9 Block-level Motion Vector Data (BLKMVDATA)(Variable size)[P]

BLKMVDATA is a syntax element that contains motion information for the block. It is a variable sized syntax element and is only present in certain situations. See section 7.2.5.1 for a description of when the BLKMVDATA syntax element is present and how it is used.

6.1.3.10 Hybrid Motion Vector Prediction (HYBRIDPRED)(1 bit)[P]

HYBRIDPRED is a 1-bit syntax element per motion vector, present in P picture macroblocks. Section 7.2.5.2 describes how HYBRIDPRED is used in the decoding process.
6.1.3.11 MB-level Transform Type (TTMB)(Variable size)[P,B]

The TTMB syntax element is a variable length syntax element present in P and B picture macroblocks if the picture layer syntax element TTMBF = 1. As shown in Table 20, Table 21 and Table 22, the TTMB syntax element specifies the transform type, the signal level and the subblock pattern. If the signal type specifies macroblock mode, the transform type decoded from the TTMB syntax element is used to decode all coded blocks in the macroblock. If the signal type signals block mode, then the transform type decoded from the TTMB syntax element is used to decode the first coded block in the macroblock. The transform type of the remaining blocks is coded at the block level. If the transform type is 8x4 or 4x8, then the subblock pattern indicates the subblock pattern of the first block.
The table used to decode the TTMB syntax element depends on the value of PQUANT. For PQUANT less than or equal to 4, Table 20 is used. For PQUANT greater than 4 and less than or equal to 12, Table 21 is used. For PQUANT greater than 12, Table 22 is used.
The subblock pattern indicates which of 8x4 or 4x8 subblocks have at least one non-zero coefficient.

Table 20: High Rate (PQUANT < 5) TTMB VLC Table

	TTMB VLC
	Transform Type
	Signal Level
	Subblock Pattern

	00
	8x4
	Block
	Both

	01
	8x8
	Block
	NA

	11
	4x8
	Block
	Both

	100
	4x4
	Block
	NA

	10100
	8x8
	Macroblock
	NA

	10101
	4x8
	Block
	Left

	10110
	4x8
	Block
	Right

	101110
	8x4
	Block
	Bottom

	1011111
	8x4
	Block
	Top

	101111001
	8x4
	Macroblock
	Top

	101111010
	4x4
	Macroblock
	NA

	101111011
	8x4
	Macroblock
	Both

	1011110001
	8x4
	Macroblock
	Bottom

	10111100001
	4x8
	Macroblock
	Both

	101111000000
	4x8
	Macroblock
	Right

	101111000001
	4x8
	Macroblock
	Left

Table 21: Medium Rate (5 =< PQUANT < 13) TTMB VLC Table
	TTMB VLC
	Transform Type
	Signal Level
	Subblock Pattern

	10
	8x8
	Macroblock
	NA

	000
	4x8
	Block
	Both

	010
	4x4
	Block
	NA

	110
	8x8
	Block
	NA

	0011
	8x4
	Block
	Top

	0110
	8x4
	Block
	Bottom

	0111
	8x4
	Block
	Both

	1110
	4x8
	Block
	Left

	1111
	4x8
	Block
	Right

	001001
	4x8
	Macroblock
	Left

	001011
	8x4
	Macroblock
	Both

	0010001
	8x4
	Macroblock
	Top

	0010100
	8x4
	Macroblock
	Bottom

	0010101
	4x8
	Macroblock
	Both

	00100000
	4x8
	Macroblock
	Left

	00100001
	4x4
	Macroblock
	NA

Table 22: Low Rate (PQUANT >= 13) TTMB VLC Table
	TTMB VLC
	Transform Type
	Signal Level
	Subblock Pattern

	10
	8x8
	Macroblock
	NA

	000
	8x4
	Block
	Bottom

	010
	4x8
	Block
	Right

	011
	4x8
	Block
	Left

	110
	8x8
	Block
	NA

	0011
	4x8
	Block
	Both

	1110
	8x4
	Block
	Top

	1111
	4x4
	Block
	NA

	00101
	8x4
	Block
	Both

	001001
	8x4
	Macroblock
	Both

	0010001
	4x8
	Macroblock
	Both

	00100001
	8x4
	Macroblock
	Top

	001000001
	4x8
	Macroblock
	Left

	0010000001
	8x4
	Macroblock
	Bottom

	00100000000
	4x4
	Macroblock
	NA

	00100000001
	4x8
	Macroblock
	Right

6.1.3.12 Direct B Frame Coding Mode (DIRECTBBIT)(1 bit)[B]

DIRECTBBIT is a 1-bit syntax element present in B frame macroblocks if the frame level syntax element DIRECTMB (see section 6.1.1.16) indicates that raw mode is used. If DIRECTBBIT = 1, then the macroblock is coded using direct mode.
6.1.3.13 B Macroblock Motion Vector 1 (BMV1)(Variable size)[B]

BMV1 is a variable sized syntax element present in B picture macroblocks. This syntax element encodes the first motion vector for the macroblock. See section 7.2.5.2 for a description of the motion vector decode process.
6.1.3.14 B Macroblock Motion Vector 2 (BMV2)(Variable size)[B]

BMV2 is a variable sized syntax element present in B picture macroblocks if the Interpolation mode is used. This syntax element encodes the second motion vector for the macroblock. See section 7.2.5.2 for a description of the motion vector decode process.

6.1.3.15 B Macroblock Motion Prediction Type (BMVTYPE)(Variable size)[B]
BMVTYPE is a variable sized syntax element present in B frame macroblocks that indicates whether the macroblock uses forward, backward or interpolated prediction. As Table 23 shows, the value of BFRACTION (in the picture header, see section 6.1.1.6) along with BMVTYPE determine which type is used.
Table 23: B Frame Motion Prediction Type

	BMVTYPE VLC
	Motion Prediction Type

	
	BFRACTION <= 1/2
	BFRACTION > 1/2

	0
	Backward
	Forward

	10
	Forward
	Backward

	11
	Interpolated
	Interpolated

6.1.4 Block Layer with 3D Huffman Decoding
Figure 21 and Figure 22 show the block layer syntax elements for intra and inter-coded blocks respectively. This 3D Huffman coding method is used in the simple profile, main profile as well as when CODINGMETHOD = 0 in the advanced profile. The elements that make up the block layer are described in the following sections. Specified in square brackets are the types (intra, inter or both) in which the block elements occur. See section 6.1.5 for the block layer elements for intra and inter-coded blocks when CODINGMETHOD = 1 in the advanced profile.
6.1.4.1 Block AC Prediction Flag (ACPREDBLK)(Variable size)[intra]
The ACPREDBLK syntax element is only present in P picture intra-coded blocks and only under certain conditions. See section 7.2.6.1 for a description of when and how the ACPREDBLK syntax element is used.
6.1.4.2 Transform DC Coefficient (DCCOEF)(Variable size)[intra]

The DCCOEF syntax element is only present in intra-coded blocks. This is a variable-length codeword that encodes the Transform DC differential. Refer to section 7.1.1.8 for a description of the Transform DC decoding process. One of two code tables is used to encode the DC differentials (the table is signaled in the TRANSDCTAB syntax element in the picture header as described in section 7.1.1.3). Section 10.8 lists the DC Huffman tables.

6.1.4.3 Transform DC Coefficient (DCCOEFESC)(variable size)[intra]

The DCCOEFESC syntax element is only present in intra-coded blocks and only if DCCOEF decodes to the escape code. The size of DCCOEFESC syntax element can be 8, 9 or 10 bits, depending on the quantization step size of the block. Refer to section 7.1.1.8 for a description of the Transform DC decoding process.

6.1.4.4 Transform DC Sign (DCSIGN)(1 bit)[intra]

DCSIGN is a one-bit value that indicates the sign of the DC differential. If DCSIGN = 0, then the DC differential is positive. If DCSIGN = 1, then the DC differential is negative.

6.1.4.5 Transform AC Coefficient 1 (ACCOEF1)(Variable size)[both]

ACCOEF1 is present in both intra and inter blocks. This is a variable-length codeword that encodes the run, level and last flag for each non-zero AC coefficient. Refer to section 7.1.1.11 for a description of the Transform AC decoding process. One of three code tables is used to encode ACCOEF1. The table is signaled in the picture or macroblock headers. Section 10.9 lists the AC Huffman tables.

6.1.4.6 Transform AC Coefficient 2 (ACCOEF2)(Variable size)[both]

ACCOEF2 can be present in both intra and inter blocks. It is only present if ACCOEF1 decodes to the escape code and if the ESCMODE syntax element (described in section 6.1.4.7) specifies AC decoding escape mode 1 or 2 (refer to section 7.1.1.11 for a description of the Transform AC decoding process). One of three code tables is used to encode ACCOEF2. The table is signaled in the picture or macroblock headers. Section 10.9 lists the AC Huffman tables.

6.1.4.7 Transform AC Escape Decoding Mode (ESCMODE)(Variable size)[both]

ESCMODE can be present in both intra and inter blocks. It is only present if ACCOEF1 decodes to the escape code. ESCMODE is a variable-length codeword that signals which of three escape decoding methods are used to decode the AC coefficient. Table 24 shows the code-table used to encode the escape modes.

Table 24: AC escape decoding mode code-table

	ESCMODE VLC
	AC Escape Decoding Mode

	1
	Mode 1

	01
	Mode 2

	00
	Mode 3

If mode 1 or mode 2 decoding is specified, then the bitstream contains the ACCOEF2 element as described in section 6.1.4.6. If mode 3 is specified, then the bitstream contains the ESCLR, ESCRUN, ESCLVL and LVLSIGN2 elements and may contain the ESCLVLSZ and ESCRUNSZ elements, as described in sections 6.1.4.9 - 6.1.4.14.

6.1.4.8 Transform AC Level Sign (LVLSIGN)(1 bit)[both]

LVLSIGN can be present in both intra and inter blocks. It will always be present unless ESMODE specifies AC decoding mode 3. LVLSIGN is a one-bit value that specifies the sign of the AC level. Refer to section 7.1.1.11 for a description of the Transform AC decoding process. If LVLSIGN = 0, then the level is positive. If LVSIGN = 1, then the level is negative.

6.1.4.9 Escape Mode 3 Last Run (ESCLR)(1 bit)[both]

ESCLR can be present in both intra and inter blocks. It is only present if ESMODE specifies AC decoding escape mode 3. ESCLR is a one-bit value that specifies whether this coefficient is the last non-zero coefficient in the block. If ESCLR = 1, then this is the last non-zero coefficient. If ESCLR = 0, then this is not the last non-zero coefficient.

6.1.4.10 Escape Mode 3 Run (ESCRUN)(Calculated size)[both]

ESCRUN can be present in both intra and inter blocks. It is only present if ESMODE specifies AC decoding escape mode 3. The size of the ESCRUN codeword is fixed throughout the frame, with the size being specified in the ESCRUNSZ syntax element described in section 6.1.4.14. ESCRUN directly encodes the run value for the coefficient. For example, if the size (from ESCRUNSZ) is 4 bits and the value is [0101], then the run is decoded as 5.

6.1.4.11 Escape Mode 3 Level (ESCLVL)(Calculated size)[both]

ESCLVL can be present in both intra and inter blocks. It is only present if ESMODE specifies AC decoding escape mode 3. The size of the ESCLVL codeword is fixed throughout the frame, with the size being specified in the ESCLVLSZ syntax element described in section 6.1.4.13. ESCLVL directly encodes the level value for the coefficient. For example, if the size (from ESCLVLSZ) is 3 bits and the value is [110], then the run is decoded as 6.

6.1.4.12 Escape Mode 3 Level Sign (LVLSGN2)(1 bit)[both]

LVLSGN2 can be present in both intra and inter blocks. It is only present if ESMODE specifies AC decoding escape mode 3. LVLSGN2 is a one-bit value that specifies the sign of the decoded level value (ESCLVL). If LVLSGN2 = 0, then the level is positive. If LVLSGN2 = 1, then the level is negative.

6.1.4.13 Escape Mode 3 Level Size (ESCLVLSZ)(Variable size)[both]

ESCLVLSZ can be present in both intra and inter blocks. It is only present if ESMODE specifies AC decoding escape mode 3 and if this is the first time mode 3 has been signaled within the current frame (in other words, all subsequent instances of escape mode 3 coding within this frame do not have this syntax element). ESCLVLSZ is used to specify the codeword size for the mode 3 escape-coded level values for the entire frame. Two different VLC tables are used to encode ESCLVLSZ, depending on the value of PQUANT. The two tables are as follows:

Table 25: Escape mode 3 level codeword size code-table for 1 <= PQUANT <= 7

	1 <= PQUANT <= 7

	ESCLVLSZ VLC
	Level codeword size

	001
	1

	010
	2

	011
	3

	100
	4

	101
	5

	110
	6

	111
	7

	00000
	8

	00001
	9

	00010
	10

	00011
	11

Table 26: Escape mode 3 level codeword size code-table for 8 <= PQUANT <= 31

	8 <= PQUANT <= 31

	ESCLVLSZ VLC
	Level codeword size

	1
	2

	01
	3

	001
	4

	0001
	5

	00001
	6

	000001
	7

	000000
	8

6.1.4.14 Escape Mode 3 Run Size (ESCRUNSZ)(2 bits)[both]

ESCRUNSZ can be present in both intra and inter blocks. It is only present if ESMODE specifies AC decoding escape mode 3 and is only present the first time escape mode 3 is signaled within the frame. ESCRUNSZ is used to specify the codeword size for the mode 3 escape-coded run values for the entire frame. The run codeword size is encoded according to Table 27:

Table 27: Escape mode 3 run codeword size code-table

	ESCRUNSZ FLC
	Run codeword size

	00
	3

	01
	4

	10
	5

	11
	6

6.1.4.15 Block-level Transform Type (TTBLK)(Variable size)[inter]

The TTBLK syntax element is present only in inter-coded blocks and only if the macroblock level syntax element TTMB (see section 6.1.3.11) indicates that the signaling level is Block. The 8x8 error blocks can be transformed using an 8x8 Transform, two 8x4 Transforms, two 4x8 Transforms or four 4x4 Transforms. The TTBLK syntax element codes the transform type for the block as well as the subblock pattern if the transform type is 8x4 or 4x8. The table used to decode the TTBLK syntax element depends on the value of PQUANT. If PQUANT is less than or equal to 4, then Table 28 is used. If PQUANT is greater than 4 and less than or equal to 12, then Table 29 is used. If PQUANT is greater than 12, then Table 30 is used. The TTBLK syntax element is not present for the first block in each macroblock since the transform type and subblock pattern decoded in TTMB is used for the first block. TTBLK is present for each coded block after the first. The subblock pattern indicates which of 8x4 or 4x8 subblocks have at least one non-zero coefficient.
Table 28: High Rate (PQUANT < 5) TTBLK VLC Table

	TTBLK VLC
	Transform Type
	Subblock Pattern

	00
	8x4
	Both

	01
	4x8
	Both

	11
	8x8
	NA

	101
	4x4
	NA

	10000
	8x4
	Top

	10001
	8x4
	Bottom

	10010
	4x8
	Right

	10011
	4x8
	Left

Table 29: Medium Rate (5 =< PQUANT < 13) TTBLK VLC Table
	TTBLK VLC
	Transform Type
	Subblock Pattern

	11
	8x8
	NA

	000
	4x8
	Right

	001
	4x8
	Left

	010
	4x4
	NA

	011
	8x4
	Both

	101
	4x8
	Both

	1000
	8x4
	Bottom

	1001
	8x4
	Top

Table 30: Low Rate (PQUANT >= 13) TTBLK VLC Table
	TTBLK VLC
	Transform Type
	Subblock Pattern

	01
	8x8
	NA

	000
	4x8
	Both

	001
	4x4
	NA

	100
	8x4
	Bottom

	110
	4x8
	Right

	111
	4x8
	Left

	1010
	8x4
	Both

	1011
	8x4
	Top

6.1.4.16 Transform sub-block pattern (SUBBLKPAT)(Variable size)[inter]

The SUBBLKPAT syntax element is only present in inter-coded blocks and only if the transform type for the block is 8x4, 4x8 or 4x4.
For 4x4 transform types, the SUBBLKPAT syntax element indicates which of the 4 4x4 subblocks have at least one non-zero coefficient.
[image: image29.emf]SB0 SB1

SB2 SB3

}

8x8 block

}

4x4

subblock

Figure 29: 4x4 Subblocks

The subblock pattern is coded as a 4 bit syntax element where each bit indicates whether the corresponding subblock contains at least one non-zero coefficient. Figure 29 shows the labeling of the 4 subblocks that make up an 8x8 block. The subblock pattern is coded is coded as follows:

Subblock pattern = 8 * SB0 + 4 * SB1 + 2 * SB2 + SB3

Where:

SBx = 0 if the corresponding subblock does not contain any non-zero coefficients, and

SBx = 1 if the corresponding subblock contains at least one non-zero coefficient.

The following tables show the VLC codewords used to encode the subblock pattern. The table used depends on the value of PQUANT. If PQUANT is less than or equal to 4, then Table 31 is used. If PQUANT is greater than 4 and less than or equal to 12, then Table 32 is used. If PQUANT is greater than 12, then Table 33 is used.
Table 31: High Rate (PQUANT < 5) SUBBLKPAT VLC Table

	SUBBLKPAT VLC
	Subblock Pattern
	SUBBLKPAT VLC
	Subblock Pattern

	1
	15
	01010
	8

	0000
	11
	01011
	4

	0001
	13
	01100
	2

	0010
	7
	01110
	1

	00110
	12
	01111
	14

	00111
	3
	011010
	6

	01000
	10
	011011
	9

	01001
	5
	
	

Table 32: Medium Rate (5 =< PQUANT < 13) SUBBLKPAT VLC Table
	SUBBLKPAT VLC
	Subblock Pattern
	SUBBLKPAT VLC
	Subblock Pattern

	01
	15
	1111
	4

	000
	2
	00100
	6

	0011
	12
	00101
	9

	1000
	3
	10110
	14

	1001
	10
	10111
	7

	1010
	5
	11000
	13

	1101
	8
	11001
	11

	1110
	1
	
	

Table 33: Low Rate (PQUANT >= 13) SUBBLKPAT VLC Table
	SUBBLKPAT VLC
	Subblock Pattern
	SUBBLKPAT VLC
	Subblock Pattern

	010
	4
	1111
	15

	011
	8
	00000
	6

	101
	1
	00001
	9

	110
	2
	10010
	14

	0001
	12
	10011
	13

	0010
	3
	11100
	7

	0011
	10
	11101
	11

	1000
	5
	
	

 8x8 Transform 8x4 Transform 4x8 Transform
Figure 30: 8x4 and 4x8 Subblocks

For 8x4 or 4x8 transform types, the SUBBLKPAT syntax element specifies which of the two sub-blocks have at least one non-zero coefficient. The data is encoded with the following VLC table (an X indicates that the sub-block contains at least one non-zero coefficient):
Table 34: 8x4 and 4x8 Transform sub-block pattern code-table for Progressive pictures
	SUBBLKPAT VLC
	8x4 Sub-block pattern
	4x8 Sub-block pattern

	
	Top
	Bottom
	Left
	Right

	0
	
	X
	
	X

	10
	X
	X
	X
	X

	11
	X
	
	X
	

6.1.5 Block Layer with Advanced 2-Layer Coding (A2LC) Method
This section describes the syntax for reconstructing transform coefficients when CODINGMETHOD = 1 in the advanced profile. An advanced 2-layer coding (A2LC) method is used in this case to reconstruct the ordered run-level pairs. The results are then processed by other components such as run-level decode, zig-zag scan and dequantization. The same method can also be used in the advanced profile for interlace mode. Figure 23 and Figure 24 show the block layer elements for intra and inter-coded blocks respectively.

To improve the coding efficiency, both the run sequence and the level sequence are coded separately in the advanced 2-layer coding method. The run values are divided into Insignificant Runs (ISR) and Significant Runs (SR), depending on whether a run value is zero or not. The value of the SR and the number of ISRs between neighboring SRs are coded. Similarly, all level values are classified as Insignificant Levels (ISL) or Significant Levels (SL), corresponding to levels whose absolute values equal to one or greater than one, respectively. The absolute values of SLs and the number of ISLs between neighboring SLs are coded by a run-level approach.

The syntax diagrams for the advanced 2-layer coding are shown in Figure 25 through Figure 28. Figure 25 shows the overall structure of the decoding part, which consists of three components:

1. HUFHD layer

2. Level layer

3. Run layer

The HUFHD layer contains block-level information, including the number of non-zero coefficients and the number of zeros up to the last non-zero coefficients in the original zig-zag scanned sequence. See section 7.4.1 and section 7.4.2 for the decoding of HUFHD layer.

The values of all non-zero coefficients are decoded by the level layer, whereas the number of zeros before each non-zero coefficients is decoded by the run layer.

Figure 27 shows the bitstream elements that make up the level layer. The level information is decoded backwards in a run-level manner. In general, each group of symbols contains the absolute value of a significant level (SL), followed by the number of insignificant levels (ISL) before this SL. See section 7.4.3 for the outline of level-layer decoding.

Figure 28 shows the bitstream elements that make up the run layer. This part is not present in the bitstream if NUMCOEF = 1. See section 7.4.9 for the outline of run-layer decoding.

6.1.5.1 Number of Non-Zero Coefficients (NUMCOEF) (Variable size)

The first symbol in the bitstream specifies the number of non-zero coefficients (NUMCOEF) in a coded block. NUMCOEF covers both DC and AC coefficients for Inter blocks and only covers AC coefficients for Intra blocks. It also signals four ISL-only cases, where the block has up to four non-zero coefficients and all of their absolute values equal to one. In these cases, only the signs of these coefficients are decoded in the level layer. See section 7.4.1 for the decoding of NUMCOEF.

6.1.5.2 Number of Zeros (NUMZERO) (Variable size)

NUMZERO specifies the number of zeros up to the last non-zero coefficient in the zig-zag scanned sequence. This symbol is skipped when NUMCOEF shows that all coefficients in a block are non-zero. See section 7.4.2 for a description of NUMZERO.

6.1.5.3 First Run of ISLs (RUNISL1) (Variable size)

If NUMCOEF does not imply ISL-only block and NUMCOEF is not 1, the next symbol in the bitstream is RUNISL1, which specifies the number of ISLs (with absolute values of one) at the end of the level sequence, i.e., after the last SL. The signs of all coefficients will be decoded next if RUNISL1 = NUMCOEF. See section 7.4.4 for a description of RUNISL1.

6.1.5.4 Number of Significant Levels (NUMSL) (Variable size)

When RUNISL1 < NUMCOEF, the next symbol is NUMSL, which specifies the number of significant levels in the block. See section 7.4.5 for the decoding of NUMSL.

6.1.5.5 Absolute Values of Significant Levels (VALSL) (Variable size)

The absolute value of a significant level is denoted as VALSL. See section 7.4.6 for the decoding of VALSL.

6.1.5.6 Run of ISLs before Each SL (RUNISL) (Variable size)

RUNISL specifies the number of insignificant levels (ISL) before each significant level. Given NUMCOEF, RUNISL1, and NUMSL, the number of ISLs up to the last SL can be derived as NUMCOEF - RUNISL1 - NUMSL. This information is used to select suitable Huffman table to decode RUNISL. See section 7.4.7 for the decoding of RUNISL.

In general, the symbol NUMSL is followed by several groups of symbols. Each group specifies the absolute value of a SL and the number of ISLs before this SL.

A special value of NUMSL indicates that there is only one SL and whose absolute value is 2. In this case, the parts of VALSL and RUNISL are not present in the bitstream.

The decoder also keeps track of the number of SLs and ISLs that have been decoded. If these data show that all remaining coefficients are SLs, then RUNISL is skipped and only the remaining SLs are decoded.

6.1.5.7 Signs of Coefficients (SIGN) (1 bit)

The last part of level layer contains the signs of all non-zero coefficients, from the last one to the first one. Each sign is represented by one bit, 0 for positive and 1 for negative. If NUMCOEF indicates that all coefficients of the current block are ISLs, the level layer only contains sign information.

6.1.5.8 Number of Significant Runs (NUMSR) (Variable size)

NUMSR specifies the number of significant runs (with run value greater than 0). NUMSR is not present in the bitstream if NUMZERO = 1, since NUMSR must be 1 in this case. See section 7.4.10 for a description of NUMSR.

6.1.5.9 Value of Significant Runs (VALSR) (Variable size)

VALSR specifies the value of each significant run. All VALSRs are sent backwards. VALSR is not present in the bitstream if NUMZERO = 1, since there must be only one SR and its value must be one in this case. See section 7.4.11 for a description of VALSR.

6.1.5.10 Run of ISRs before Each SR (RUNISR) (Variable size)

RUNISR specifies the number of insignificant runs before each significant run. All RUNISRs are sent forwards. This is because most ISRs are at the beginning of a run list. RUNISR is not present if NUMSR = NUMCOEF, i.e., all run values are non-zero. See section 7.4.12 for a description of RUNISR.

6.2 Bitplane Coding Syntax

Various frame-level syntax elements use a bitplane coding scheme to indicate the status of the macroblocks that make up the frame. For example, in P and B frames, the presence of skipped macroblocks is signaled with a bit set to 0 and the presence of a non-skipped macroblock is signaled with a bit set to 1. These bits are coded as a frame-level bitplane. The following diagram shows the elements that make up the bitplane.
[image: image30.emf]INVERT

IMODE

DATABITS

Bitplane Syntax

Figure 31: Syntax diagram for the bitplane coding
6.2.1 Invert Flag (INVERT)
The INVERT syntax element is a 1-bit value. Refer to section 7.7.1 for a description of how the INVERT value is used in decoding the bitplane.
6.2.2 Coding Mode (IMODE)

The IMODE syntax element is a variable length value that indicates the coding mode used to encode the bitplane. Table 35 shows the codetable used to encode the IMODE syntax element. Refer to section 7.6.2 for a description of how the IMODE value is used in decoding the bitplane.

Table 35: IMODE VLC Codetable
	IMODE VLC
	Coding Mode

	10
	Norm-2

	11
	Norm-6

	010
	Rowskip

	011
	Colskip

	001
	Diff-2

	0001
	Diff-6

	0000
	Raw

6.2.3 Bitplane Coding Bits (DATABITS)
The DATABITS syntax element is variable sized syntax element that encodes the bitplane. The method used to encode the bitplane is determined by the value of IMODE. Refer to section 7.7.3 for a description the different coding methods.
7 Progressive Decoding Process

This section describes the decoding process for progressive I pictures, and Progressive P pictures.
7.1 Progressive I Frame Decoding

The following sections describe the process for decoding progressive I pictures.

7.1.1 Progressive I Picture Layer Decode

Figure 8 shows the elements that make up the I picture layer header for simple and main profiles. Figure 9 shows the elements that make up the I picture layer header for advanced profile. Some of the elements are self-explanatory. The following sections provide extra detail for some of the elements.

7.1.1.1 Buffer Fullness

The BF syntax element is currently undefined.

7.1.1.2 Frame-level Transform AC Table Index

TRANSACFRM and TRANSACFRM2 are variable-length syntax elements that are present in the picture layer, except when the A2LC method is used in advanced profile (CODINGMETHOD=1). The TRANSACFRM and TRANSACFRM2 syntax elements provide the indices that select the coding sets used to decode the Transform AC coefficients for the Y and Cr/Cb blocks, respectively, when the 3D coding method is used. Table 19 is used to decode the TRANSACFRM and TRANSACFRM2 syntax elements. Refer to section 7.1.1.11 for a description of 3D AC coefficient decoding.

7.1.1.3 Intra Transform DC Table

TRANSDCTAB is a one-bit syntax element that signals which of two Huffman tables is used to decode the Transform DC coefficients in intra-coded blocks. If TRANSDCTAB = 0, then the low motion huffman table is used. If TRANSDCTAB = 1, then the high motion huffman table is used. Section 10.8 lists the Transform DC Huffman tables.

7.1.1.4 Picture Resolution Index

The RESPIC syntax element in I pictures, in simple and main profiles, specifies the scaling factor of the decoded I picture relative to a full resolution frame. The decoded picture may be full resolution or half the original resolution in either the horizontal or vertical dimensions or half resolution in both dimensions. Table 9 shows how the scaling factor is encoded in the RESPIC syntax element.

The resolution encoded in the I picture RESPIC syntax element also applies to all subsequent P pictures until the next I picture. In other words, all P pictures are encoded at the same resolution as the first I picture. Although the RESPIC syntax element is also present in P picture headers, it is not used.

The following pseudo-code illustrates how the new frame dimensions are calculated if a downsampled resolution is indicated.

X = full resolution horizontal dimension in samples

Y = full resolution vertical dimension in samples

x = new horizontal resolution

y = new vertical resolution

hscale = horizontal scaling factor (0 = full resolution, 1= half resolution)

vscale = vertical scaling factor (0 = full resolution, 1= half resolution)

x = X

y = Y

if (hscale == 1)

{

x = X / 2

if ((x & 15) != 0)

x = x + 16 – (x & 15)
}

if (vscale == 1)

{

y = Y / 2
 if ((y & 15) != 0)

y = y + 16 – (y & 15)
}

If the decoded frame is one of the subsampled resolutions, then it must be upsampled to full resolution prior to display. Since this upsampling process is outside the decoding loop, the implementer is free to use any upsampling filter. However, attention should be paid to the relative spatial positioning of the samples produced from the upsampling and downsampling processes. In particular, spatial alignment of the video samples of the downsampled frame with respect to the video samples of the frame at the original resolution should follow the specification in Annex B.
7.1.1.5 Range Reduction Frame - I Frame (RANGE_RED_FRM)
The RANGE_RED_FRM is only signaled when RANGE_RED is signaled at the sequence level.

When RANGE_RED_FRM is signaled for the current I Frame, we have to scale up the current decoded frame prior to display while keeping the actual reconstructed frame for the possibility of use in future motion compensation. Let Y, U, V denote the YUV planes of the output frame. We scale them up according to the following formula:
Y[n] = CLIP ((Y[n] – 128) * 2 + 128);

U[n] = CLIP ((U[n] – 128) * 2 + 128);

V[n] = CLIP ((V[n] – 128) * 2 + 128);
Macroblock Layer Decode
Figure 2
 shows how the frame is composed of macroblocks. The macroblocks are coded in raster scan order form left to right. Figure 17 shows the elements that make up the I picture macroblock layer.

7.1.1.6 Coded Block Pattern

The coded block pattern specifies which of the six blocks that make up the macroblock have AC coefficient information coded within the bitstream. The coded block pattern is derived from the six-bit value obtained from decoding the variable-length CBPCY syntax element in the macroblock header (the Huffman table used to decode CBPCY is listed in section 10.6). The coded block pattern (cbpcy) is derived from the six-bit value decoded from the CBPCY syntax element (decoded_cbpcy) as follows:

cbpcy = decoded_cbpy ^ predicted_cbpy
where predicted_cbpy is calculated as follows:

predicted_cbpy = (predicted_Y1<< 5) | (predicted_Y2 << 4) | (predicted_Y3 << 3) | (predicted_Y4 << 2)

where predicted_Y1 .. predicted_Y4 are each one-bit values calculated as follows:

predicted_Y1 =

L2, if LT4 equals T3

T3 otherwise
predicted_Y2 =

predicted_Y1, if T3 equals T4

T4 otherwise
predicted_Y3 =

L4, if L2 equals predicted_Y1

predicted_Y1 otherwise
predicted_Y4 =

predicted_Y3, if predicted_Y1 equals predicted_Y2

predicted_Y2 otherwise

L1, L2, L3, L4, LT4, T1, T2, T3 and T4 are one-bit values representing the coded status of the neighboring luminance blocks as illustrated in Figure 32. The figure shows the four luminance blocks which make up the current macroblock outlined in a heavy border along with blocks from the neighboring macroblocks. The values of T1, T2, etc indicate whether the corresponding block was coded or not. For example, if L1 = 1, then block Y1 in the macroblock to the immediate left of the current macroblock was coded. If L1 = 0, then the block was not coded.

[image: image31.wmf]T1

T2

T3

T4

L1

L2

L3

L4

LT4

Current

Macroblock

(Y Blocks)

Figure 32: CBP encoding using neighboring blocks
The six-bit coded block pattern (cbpcy) specifies which of the six blocks that make up the macroblock have at least one non-zero AC coefficient coded in the block layer bitstream. The bit positions in the six-bit coded block pattern syntax element correspond to the six blocks as shown in Table 36 (bit position 0 is the rightmost bit):

Table 36: Coded block pattern bit position

	
	Coded Block Pattern Bit Position

	
	5
	4
	3
	2
	1
	0

	Block
	Y1
	Y2
	Y3
	Y4
	Cr
	Cb

A bit value of 1 in the coded block pattern indicates that the corresponding block has at least one non-zero AC coefficient coded in the block layer bitstream. A value of zero indicates that there are no AC coefficients coded in the block layer bitstream.

7.1.1.7 AC Prediction Flag

The ACPRED syntax element in the macroblock header is a one-bit syntax element that specifies whether AC prediction is used to decode the AC coefficients for all the blocks in the macroblock. Section 7.1.1.14 describes the AC prediction process. If ACPRED is 1, then AC prediction is used, otherwise it is not used.

Block Decode
Figure 2
 illustrates how each macroblock is made up of 6 blocks. As the figure shows, the 4 blocks that make up the Y component of the macroblock are coded first followed by the Cr and Cb blocks. This section describes the process used to reconstruct the blocks.

Figure 3 shows the forward intra-coding steps used to encode the 8x8 pixel blocks. Figure 33 shows the inverse process used to reconstruct the 8x8 blocks.

[image: image32]
Figure 33: Intra block reconstruction
As Figure 33 shows, the DC and AC Transform coefficients are coded using separate techniques. The DC coefficient is coded differentially. An optional differential coding of the left or top AC coefficients can be used. The following sections describe the process for reconstructing intra blocks in I pictures

7.1.1.8 DC Differential Bitstream Decode

The DC coefficient is coded differentially with respect to an already-decoded DC coefficient neighbor. This section describes the process used to decode the bitstream to obtain the DC differential.

Figure 21 shows the bitstream elements used to encode the DC differential. DCCOEF is decoded using one of two VLC code tables. The table is specified by the TRANSDCTAB syntax element in the picture header (see section 7.1.1.3). Based on the value of TRANSDCTAB, one of the two Huffman tables listed in section 10.8 is used to decode DCCOEF. This will yield either:

1) Zero, or

2) the absolute value of the DC differential, or

3) The escape code.
If DCOEF decodes to zero, the value of the DC differential is also zero. Other wise, further decoding is necessary to determine the value of DC differential. If the DCCOEF decodes to the escape code, the absolute value of the DC differential is encoded in the DCCOEFESC syntax element (section 6.1.4.3). The size of the DCCOEFESC syntax element can be 8, 9 or 10 bits depending on the quantization step size of the block. The sign of the DC differential is obtained from the DCSIGN syntax element (section 6.1.4.4).

The following pseudo-code illustrates the DC differential decoding process:

DCDifferential = vlc_decode()

if(DCDifferential != 0) {

 if(DCDifferential == ESCAPECODE) {

 if(QUANT == 1)

 DCDifferential = flc_decode(10);

 else if(QUANT == 2)

 DCDifferential = flc_decode(9);

 else // QUANT is > 2

 DCDifferential = flc_decode(8);

 }

 else { // DCDifferential is not ESCAPECODE

 if(QUANT == 1)

 DCDifferential = DCDifferential*4 + flc_decode(2) – 3;

 else if(QUANT == 2)

 DCDifferential = DCDifferential*2 + flc_decode(1) – 1;

 }
 DCSign = flc_decode(1)

 if (DCSign == 1)

DCDifferential = -DCDifferential

}

Figure 34: DC Differential Decoding Pseudo-code

7.1.1.9 DC Predictor

[image: image33.wmf]Current

Block

B

C

A

Figure 35: DC predictor candidates
The quantized DC value for the current block is obtained by adding the DC predictor to the DC differential obtained as described in section 7.1.1.8. The DC predictor is obtained from one of the previously decoded adjacent blocks. Figure 35 shows the current block and the candidate predictors from the adjacent blocks. The values A, B and C represent the quantized DC values for the top-left, top and left adjacent blocks respectively.

In the following cases there are no adjacent blocks:

1) The current block is in the first block row of the frame. In this case there are no A or B (and possibly C) blocks

2) The current block is in the first block column in the frame. In this case there are no A and C (and possibly B) blocks.

For these cases the DC predictor is set to:

DCPredictor = (1024 + (DCStepSize >> 1)) / DCStepSize

Refer to section 7.1.1.10 for a description of how to compute DCStepSize.

A prediction direction is formed based on the values of A, B and C and either the B or C predictor is chosen. The prediction direction is calculated as follows:

If the absolute value of (A - B) is less than or equal to the absolute value of (A – C), then the prediction is made from the left (C is the predictor). Otherwise the prediction is made from the top (B is the predictor). In pseudo-code, the process is as follows:

if (|A – B| <= |A – C|)

{

PredDirection = left;

DCPredictor = C;

}

else

{

PredDirection = top;

DCPredictor = B;

}

Figure 36: Prediction selection pseudo-code

The quantized DC coefficient is then calculated by adding the DC differential and the DC predictor as follows:

DCCoeffQ = DCPredictor + DCDifferential

7.1.1.10 DC Inverse-quantization

The quantized DC coefficient is reconstructed by performing the following de-quantization operation:

DCCoefficient = DCCoeffQ * DCStepSize

The value of DCStepSize is based on the value of PQUANT (obtained in the picture header and described in section 6.1.1.8) as follows:

For PQUANT equal to 1 or 2:

 DCStepSize = 2 * PQUANT

For PQUANT equal to 3 or 4:

DCStepSize = 8

For PQUANT greater than or equal to 5:

DCStepSize = PQUANT / 2 + 6
7.1.1.11 AC Coefficient Bitstream Decode with 3D Huffman Coding Method
Except for the case of CODINGMETHOD = 1 in advanced profile, the non-zero quantized AC coefficients are coded using a 3D run-level method. A set of tables and constants are used to decode the run, level and last-flag values. For descriptive purposes, the set of tables and constants is called an AC coding set. Following is a description of the tables and constants that make up an AC coding set. See section 7.4 for the description of transform coefficient decoding when CODINGMETHOD = 1 in advanced profile.
Tables: The first step in reconstructing the AC Transform coefficients is to decode the bitstream to obtain the run, level and last-flag triplets that represent the location and quantized level for each non-zero AC coefficient.
Huffman table (HuffTable): The code table used to decode the ACCOEF1 and ACCOEF2 variable-length encoded syntax elements.

Run table (RunTable): The table of run values indexed by the value decoded in the ACCOEF1 or ACCOEF2 syntax elements

Level table (LevelTable): The table of level values indexed by the value decoded in the ACCOEF1 or ACCOEF2 syntax elements.

Not-last delta run table (NotLastDeltaRunTable): The table of delta run values indexed by the level value as illustrated in pseudo-code of Figure 37. Used in escape coding mode 2.

Last delta run table (LastDeltaRunTable): The table of delta run values indexed by the level value as illustrated in pseudo-code of Figure 37. Used in escape coding mode 2.

Not-last delta level table (NotLastDeltaLevelTable): The table of delta level values indexed by the run value as illustrated in pseudo-code of Figure 37. Used in escape coding mode 1.

Last delta level table (LastDeltaLevelTable): The table of delta level values indexed by the run value as illustrated in pseudo-code of Figure 37. Used in escape coding mode 1.

Constants
Start index of last coefficient (StartIndexOfLast): The HuffTable encodes index values from 0 to N. The index values are used to obtain the run and level values from RunTable and LevelTable respectively. The first (StartIndexOfLast-1) of these index values correspond to run, level pairs that are not the last pair in the block. The next StartIndexOfLast to N-1 index values correspond to run, level pairs that are the last pair in the block. The last value, N, is the Escape Index (see next).

Escape Index (EscapeIndex): The last in the set of indices encoded by HuffTable. See the description above and the pseudo-code of Figure 37 for a description of how this constant is used.

The following pseudo-code illustrates how the tables and constants are used to decode a run, level and last-flag triplet.

last_flag = 0;

index = vlc_decode();
Use HuffTable to decode VLC codeword (ACCOEF1)

If (index != EscapeIndex)

{

run = RunTable[index];

level = LevelTable[index];

sign = get_bits(1);

if (sign == 1)

level = -level;

if (index >= StartIndexOfLast)

last_flag = 1;

}

else

{

escape_mode = vlc_decode();
Use HuffTable to decode ESCMODE syntax element

if (escape_mode == mode1)

{

index = vlc_decode();
Use HuffTable to decode VLC codeword (ACCOEF2)

run = RunTable[index];

level = LevelTable[index];

if (index >= StartIndexOfLast)

last_flag = 1;

if (last_flag == 0)

level = level + NotLastDeltaLevelTable[run];

else

level = level + LastDeltaLevelTable[run];

sign = get_bits(1);

if (sign == 1)

level = -level;

}

else if (escape_mode == mode2)

{

index = vlc_decode();
Use HuffTable to decode VLC codeword (ACCOEF2)

run = RunTable[index];

level = LevelTable[index];

if (index >= StartIndexOfLast)

last_flag = 1;

if (last_flag == 0)

run = run + NotLastDeltaRunTable[level];

else

run = run + LastDeltaLevelTable[level];

sign = get_bits(1);

if (sign == 1)

level = -level;

}

else if escape_mode == mode3 (fixed-length encoding)

{

if (first_mode3_in_frame == 1)

{

first_mode3_in_frame = 0;

level_code_size = vlc_decode();
Use Table 25 or Table 26 to decode

run_code_size = 3 + get_bits(2);

}

run = get_bits(run_code_size);

sign = get_bits(1);

level = get_bits(level_code_size);

if (sign == 1)

level = -level;

}

}

Figure 37: Coefficient decode pseudo-code

The process illustrated in Figure 37 above for decoding the non-zero AC is repeated until last_flag = 1. This flag indicates the last non-zero coefficient in the block.

To improve coding efficiency, there are eight AC coding sets. The eight coding sets are divided into two groups of four, nominally called intra and inter coding sets. For Y blocks, one of the four intra coding sets is used. For Cr and Cb blocks one of the four inter coding sets is used. Section 10.9 lists the tables that make up each coding set. The particular set used to decode a block is signaled by an index value in either the picture or macroblock header. The following two tables shows how the index corresponds to the coding set for Y and Cr/Cb blocks. As the tables show, if the value of PQINDEX (see section 6.1.1.8) is less than or equal to 7, then the high rate coding set is used for index 0. If PQINDEX is greater than 7, then the low motion coding set is used for index 0.

Table 37: Coding Set Correspondence for PQINDEX <= 7
	Y blocks
	Cr and Cb blocks

	Index
	Table
	Index
	Table

	0
	High Rate Intra
	0
	HighRate Inter

	1
	High Motion Intra
	1
	High Motion Inter

	2
	Mid Rate Intra
	2
	Mid Rate Inter

Table 38: Coding Set Correspondence for PQINDEX > 7
	Y blocks
	Cr and Cb blocks

	Index
	Table
	Index
	Table

	0
	Low Motion Intra
	0
	Low Motion Inter

	1
	High Motion Intra
	1
	High Motion Inter

	2
	Mid Rate Intra
	2
	Mid Rate Inter

The value decoded from the TRANSACFRM2 syntax element is used as the coding set index for Y blocks and the value decoded from the TRANSACFRM syntax element is used as the coding set index for Cr and Cb blocks.

7.1.1.12 AC Run-level Decode

The ordered run and level pairs obtained as described in section 7.1.1.11 or section 7.4 are used to form an array of 63 elements by employing a run-level decode process as illustrated in the pseudo-code of Figure 38.

array[63]

63 element array

curr_position = 0;

do {

 decode_symbol(&run, &level, &last_flag);
decode the bitstream as described in Figure 37 to

obtain run, level and last_flag values for coefficient

 array[curr_position + run] = level;

 curr_postion = curr_postion + run + 1;
} while (last_flag != 1)

Figure 38: Run-level decode pseudo-code

7.1.1.13 Zig-zag Scan of AC Coefficients

Decoding the run-level pairs as described in section 7.1.1.12 produces a one-dimensional array of 63 quantized AC coefficients. The elements in the array are scanned out into an 8x8 two-dimension array in preparation for the Inverse Transform. Figure 39 shows the elements in an 8x8 array labeled in raster scan order from 0 to 63. The DC coefficient is in position 0. A mapping array is used to scan out the remaining 63 AC coefficients in the one-dimensional array to the 8x8 array. As an example, Figure 41 shows the mapping array used to produce the one-dimensional to two-dimensional scan out pattern shown in Figure 40.
[image: image34.wmf]0

18

17

16

26

25

24

34

33

32

42

41

40

50

49

48

56

57

58

59

51

43

35

27

19

15

14

13

12

20

21

22

23

28

29

30

31

36

37

38

39

44

45

46

47

52

53

54

55

63

62

61

60

11

10

9

8

7

6

5

4

3

2

1

Figure 39: 8x8 array with positions labeled

[image: image35.wmf]
Figure 40: Example zig-zag scanning pattern

[image: image36.wmf]1

33

26

19

12

5

4

11

18

25

32

24

17

10

3

2

9

16

8

6

13

20

27

34

41

40

7

21

58

51

44

37

30

23

15

22

29

36

43

50

57

56

49

42

35

28

46

39

31

38

45

52

59

53

48

14

61

63

62

55

47

54

60

Figure 41: Zig-zag scan mapping array

One of three scan arrays is used to scan out the one-dimensional array depending on the AC prediction status for the block (see section 7.1.1.14 for description of AC prediction). Table 39 shows how the AC prediction status determines which scan array is used.

Table 39: Scan Array Selection

	AC Prediction
	AC Scan Array

	Top prediction
	Horizontal scan

	Left prediction
	Vertical scan

	No prediction
	Normal scan

The tables for the horizontal, vertical and normal scan arrays are listed in section 10.10.1.

7.1.1.14 AC Prediction

If the ACPRED syntax element in the macroblock layer specifies that AC prediction is used for the blocks, then the top row or left column of AC coefficients in the decoded block are treated as differential values from the coefficients in the corresponding row or column in a predicted block. The predicted block is either the block immediately above or to the left of the current block. For each block, the direction chosen for the DC predictor is used for the AC predictor (see section 7.1.1.9). Figure 42 shows that for top prediction the first row of AC coefficients in the block immediately above is used as the predictor for the first row of AC coefficients in the current block. For left prediction the first column of AC coefficients in the block to the immediate left is used as the predictor for the first column of AC coefficients in the current block.

 Top Prediction Left Prediction

Figure 42: AC prediction candidates

If a block does not exist in the predicted direction, then the predicted values for all 7 coefficients are set to zero. For example, if the prediction is up but the block is in the top row, then there is no adjacent block in the up direction.

The AC coefficients in the predicted row or column are added to the corresponding decoded AC coefficients in the current block to produce the fully reconstructed quantized Transform coefficient block.

7.1.1.15 Inverse AC Coefficient Quantization

Depending on whether the uniform or nonuniform quantizer is used (see section 6.1.1.8), the non-zero quantized AC coefficients reconstructed as described in the sections above are inverse quantized according to the following formula:

dequant_coeff = quant_coeff * double_quant (if uniform quantizer), or
dequant_coeff = quant_coeff * double_quant + sign(quant_coeff) * quant_scale (if nonuniform quantizer)
where:

quant_coeff is the quantized coefficient

dequant_coeff is the inverse quantized coefficient

double_quant = 2 * PQUANT + HalfStep
quant_scale = PQUANT

PQUANT is encoded in the picture layer as described in section 6.1.1.8. HalfStep is encoded in the picture layer as described in section 6.1.1.11.
7.1.1.16 Coefficient Scaling

For DC and AC prediction, in the advanced profile, the coefficients in the predicted blocks are scaled if the macroblocks quantizers are different than that of the current block. The scaling process is described below.

[image: image37.wmf]18

)

20000

0

]

[

*

(

>>

+

*

=

x

DCSTEP

DQScale

DCSTEP

DC

DC

c

p

p

p

,

[image: image38.wmf]18

)

20000

0

]

[

*

(

>>

+

*

=

x

STEP

DQScale

STEP

AC

AC

c

p

p

p

where

[image: image39.wmf]p

DC

 is the scaled DC coefficient in the predictor block

[image: image40.wmf]p

DC

 is the original DC coefficient in the predictor block

[image: image41.wmf]p

DCSTEP

 is the DC quantizer step size in the predictor block

[image: image42.wmf]c

DCSTEP

 is the DC quantizer step size in the current block

[image: image43.wmf]p

AC

 is the scaled AC coefficient in the predictor block

[image: image44.wmf]p

AC

 is the original AC coefficient in the predictor block

[image: image45.wmf]p

STEP

 is the quantizer step size in the predictor block

[image: image46.wmf]c

STEP

 is the quantizer step size in the current block

[image: image47.wmf]DQScale

 is an integer look up table with inputs from 1 to 31.

Table 40: DQScale

	Index
	DQScale[Index]

	1
	262144

	2
	131072

	3
	87381

	4
	65536

	5
	52429

	6
	43691

	7
	37449

	8
	32768

	9
	29127

	10
	26214

	11
	23831

	12
	21845

	13
	20165

	14
	18725

	15
	17476

	16
	16384

	17
	15420

	18
	14564

	19
	13797

	20
	13107

	21
	12483

	22
	11916

	23
	11398

	24
	10923

	25
	10486

	26
	10082

	27
	9709

	28
	9362

	29
	9039

	30
	8738

	31
	8456

7.1.1.17 Inverse TRANSFORM

After reconstruction of the TRANSFORM coefficients, the resulting 8  8 blocks are processed by a separable two‑dimensional inverse transform of size 8 by 8. The inverse transform output has a dynamic range of 10 bits. See section 7.8 regarding INVERSETRANSFORM conformance.

Subsequent to the inverse transform, the process of overlap smoothing is carried out if signaled. This is covered in Section 7.5. Finally, the constant value of 128 is added to the reconstructed and possibly overlap smoothed intra block. This result is clamped to the range [0 255] and forms the reconstruction prior to loop filtering.
For simple and main profile I frames where overlap smoothing is not used, the constant 128 is not added prior to clamping to [0 255].

7.2 Progressive P Frame Decoding

Figure 48 shows the steps required to decode and reconstruct blocks in P frames when the 3D Huffman coding method is used. If the advance 2-layer coding is used, the only difference is to replace the 3D decoding by the A2LC decoding. The following sections describe the process for decoding P pictures.

7.2.1 Skipped P Frames

In the main and simple profiles, frame skipping is signaled through external means via the total length of data comprising a compressed frame. As a coded frame will always contain more than 8 bits of data, if the total length of the data comprising a compressed frame is 8 bits, this signals that the frame was coded as a P frame with no motion or residual error information present (a non-coded frame). Note that the decoder does not decode the 8 bits used for frameskipping as they do not represent an actual codeword. In the advanced profile, the syntax element FRSKIP in the picture preamble is used to signal skipped frames. If FRSKIP = 1, the frame is a skipped frame with no motion or residual information present. If the sequence contains only I and P frames, then the decoder does not need to do anything else in the decoding process. If the sequence contains B frames, then the decoder must assume that the non-coded frame is identical to the current reference frame and update the reference frames for the subsequent B frames accordingly.
In the this case the decoder would first check the total length of the compressed frame, and if it was 8 bits it would treat the frame as a non-coded frame.

7.2.2 Out-of-bounds Reference Pixels

The previously decoded frame is used as the reference for motion-compensated predictive coding of the current P frame. The motion vectors used to locate the predicted blocks in the reference frame may include pixel locations that are outside the boundary of the reference frame. In these cases, the out-of-bounds pixel values are the replicated values of the edge pixel. Figure 43 illustrates pixel replication for the upper-left corner of the frame.

[image: image48.wmf]28 32 36 34 33 ...

28 32 36 34 33 ...

28 32 36 34 33 ...

28 32 36 34 33 ...

28 32 36 34 33 ...

.... 28 28 28

.... 28 28 28

.... 28 28 28

.... 28 28 28

.... 28 28 28

.

.

.

.

.

.

32 34 33 36 39 ...

.... 32 32 32

Horizontal pixel padding

Vertical pixel padding

Figure 43: Horizontal and vertical pixel replication for out-of-bounds reference

7.2.3 P Picture Types

P pictures can be one of 2 types: 1-MV and Mixed-MV. The following sections describe each P picture type.

7.2.3.1 1-MV P Picture

In 1-MV P pictures, a single motion vector is used to indicate the displacement of the predicted blocks for all 6 blocks in the macroblock. The 1-MV mode is signaled by the MVMODE and MVMODE2 picture layer syntax elements as described in section 7.2.4.3.
7.2.3.2 Mixed-MV P Picture
In Mixed-MV P pictures, each macroblock can be encoded as a 1-MV or a 4-MV macroblock. In 4-MV macroblocks, each of the 4 luminance blocks has a motion vector associated with it. The 1-MV or 4-MV mode for each macroblock is indicated by the MVTYPEMB bitplane syntax element in the picture layer as described in section 7.2.4.3. The Mixed-MV mode is signaled by the MVMODE and MVMODE2 picture layer syntax elements as described in section 7.2.4.3.
7.2.4 P Picture Layer Decode

Figure 10 shows the elements that make up the progressive P picture layer header. Some of the elements are self-explanatory. The following sections provide extra detail for some of the elements.

7.2.4.1 Picture-level Quantizer Scale

The frame level quantizer scale PQUANT is decoded from the 5-bit picture layer syntax element PQINDEX as described in section 6.1.1.8. PQUANT specifies the frame level quantizer scale (a value between 1 and 31) for the macroblocks in the current picture. When the seq. header DQUANT = 0, then PQUANT is used as the quantization step size for every macroblock in the current picture. When DQUANT != 0, then PQUANT is used as described in section 6.1.1.24. The PQINDEX syntax element also specifies whether the uniform or nonuniform quantizer is used for all macroblocks in the frame.
7.2.4.2 Picture Resolution Index

The RESPIC syntax element in P pictures, in simple and main profiles, is unused. The resolution of a P picture is determined by the resolution of the first I picture in the current sequence. Specifically, the resolution of an I picture determines the resolution of all subsequent P pictures until the next I picture. For example, if an I picture speficies a resolution index of 1 (full vertical resolution, half horizontal resolution), then all subsequent P pictures will have the same resolution until the next I picture.
All P pictures that are coded at less than full resolution must be upsampled to full resolution prior to display. Since this upsampling process is outside the reconstruction loop the implementer is free to use whatever upsampling process he or she choses. The spatial alignment of video samples of the downsampled frame with respect to the video samples of the original frame is described in Annex B.
7.2.4.3 Picture Layer Motion Compensation and Intensity Compensation Decoding

The P picture layer contains syntax elements that control the motion compensation mode and intensity compensation for the frame. The MVMODE syntax element is a variable sized value that signals either: 1) one of four motion vector modes for the frame or 2) that intensity compensation is used in the frame. If intensity compensation is signaled, then the MVMODE2, LUMSCALE and LUMSHIFT syntax elements follow in the picture layer. In this case, MVMODE2 signals the motion vector mode and LUMSCALE and LUMSHIFT are 6-bit values which specify parameters used in the intensity compensation process. Refer to section 7.2.8 for a description of intensity compensation decode.

Table 10 and Table 11 show the codetables used to decode the MVMODE and MVMODE2 syntax elements. Table 10 is used if PQUANT is greater than 12 and Table 11 is used if PQUANT is less than or equal to 12. Either MVODE or MVMODE2 will signal one of four motion vector modes. If the motion vector mode is mixed MV mode, then the MVTYPEMB syntax element is present in the picture layer. MVTYPEMB is a bitplane coded syntax element that indicates the 1-MV/4-MV motion vector status for each macroblock in the picture. The decoded bitplane represents the motion vector status for each macroblock as a syntax element of 1-bit values in raster scan order from upper left to lower right. Refer to section 7.7 for a description of the bitplane coding. A value of 0 indicates that the macroblock is coded in 1-MV mode. A value of 1 indicates that the macroblock is coded in 4-MV mode. Refer to section 7.2.5.2 for a description of the motion vector decoding process.

7.2.4.4 Skipped Macroblock Decoding

The P picture layer contains the SKIPMB syntax element which is a bitplane coded syntax element that indicates the skipped/not-skipped status of each macroblock in the picture. The decoded bitplane represents the skipped/not-skipped status for each macroblock as a syntax element of 1-bit values in raster scan order from upper left to lower right. Refer to section 7.7 for a description of the bitplane coding. A value of 0 indicates that the macroblock is not skipped. A value of 1 indicates that the macroblock is coded as skipped. A skipped status for a macroblock means that the macroblock may only contain the HYBRIDPRED syntax element as a qualifier to the predicted motion vector(s). Refer to section 7.2.5.2 for a description of how the HYBRIDPRED syntax element is used in the decoding process.
7.2.4.5 Motion Vector Huffman Table

MVTAB is 2-bit syntax element in the picture layer that indicates the Huffman table used to decode the motion vector differentials for the macroblocks in the picture. The Huffman tables are encoded as shown in Table 41. Section 10.11 contains the Motion Vector Differential Huffman tables. Refer to section 7.2.5.2 for a description of the motion vector decode process.
Table 41: Motion vector Huffman table

	MVTAB FLC
	Huffman table

	00
	Motion Vector Table 0

	01
	Motion Vector Table 1

	10
	Motion Vector Table 2

	11
	Motion Vector Table 3

7.2.4.6 Coded Block Pattern Huffman Table

CBPTAB is 2-bit syntax element in the picture layer that indicates the Huffman table used to decode the coded block pattern (CBPCY) for the macroblocks in the picture. The Huffman tables are encoded as shown in Table 42. Section 10.7 contains the CBP Huffman tables. See section 7.2.5.2 for a description of how CBPCY is used.
Table 42: CBP Huffman table

	CBPTAB FLC
	Huffman table

	00
	CBP Table 0

	01
	CBP Table 1

	10
	CBP Table 2

	11
	CBP Table 3

7.2.4.7 Macroblock-level Quantizer Mode Flag

See section 6.1.3.6.
7.2.4.8 Macroblock-level Transform Type Flag

TTMBF is a one-bit syntax element that signals whether transform type coding is enabled at the frame or macroblock level. If TTMBF = 0, then the same transform type is used for all blocks in the frame. In this case, the transform type is signaled in the TTFRM syntax element that follows. If TTMBF = 1, then the transform type can vary throughout the frame and is signaled at the macroblock or block levels.

7.2.4.9 Frame-level Transform Type

TTFRM is a variable-length syntax element that is present in the picture layer if TTMBF = 1. TTFRM is decoded using Table 18 and signals the Transform type used to transform the 8x8 pixel error signal in predicted blocks. The 8x8 error blocks can be transformed using an 8x8 Transform, two 8x4 Transforms, two 4x8 Transforms or four 4x4 Transforms.

7.2.4.10 Frame-level Transform AC Coding Set Index

TRANSACFRM is a variable-length syntax element that is present in the picture layer, except when the A2LC method is used in advanced profile (CODINGMETHOD=1). This syntax element indexes the coding set used to decode the Transform AC coefficients for the intra- and inter-coded blocks when the 3D method is used. Table 19 is used to decode the TRANSACFRM syntax element.

7.2.4.11 Intra Transform DC Table

The TRANSDCTAB syntax element has the same meaning as the TRANSDCTAB syntax element in baseline I pictures. See section 7.1.1.3 for a description.
7.2.4.12 Range Reduction Frame - P Frame (RANGE_RED_FRM)
The RANGE_RED_FRM is only signaled when RANGE_RED is signaled at the sequence level.

When RANGE_RED_FRM is signaled for the current P Frame, we have to scale up the current decoded frame prior to display, similar to I Frame, while keeping the current reconstructed frame intact. Let Y, U, V denote the YUV planes of the output frame. We scale them up according to the following formula:

Y[n] = CLIP ((Y[n] – 128) * 2 + 128);

U[n] = CLIP ((U[n] – 128) * 2 + 128);

V[n] = CLIP ((V[n] – 128) * 2 + 128);

In addition, we need to scale the previous reconstructed frame prior to using it for motion compensation if the current frame and previous frame are operating at different range. We note that the process will be applied to the recon frame as the first stage of decoding prior to Intensity compensation, motion compensation, and macroblock level decoding.
More specifically, there are two cases that require scaling the previous reconstructed frame. Let Y, U, V denote the YUV planes of the previously reconstructed frame.
· Current frame’s RANGE_RED_FRM is signaled and the previous frame’s RANGE_RED_FRM is not signaled. In this case, we need to scale down the previous reconstructed frame as follows:

Y[n] = ((Y[n] – 128) >> 1) + 128;

U[n] = ((U[n] – 128) >> 1) + 128;

V[n] = ((V[n] – 128) >> 1) + 128;
· Current frame’s RANGE_RED_FRM is not signaled and the previous frame’s RANGE_RED_FRM is signaled. In this case, we need to scale up the previous reconstructed frame as follows:
Y[n] = CLIP((Y[n] – 128) * 2 + 128);

U[n] = CLIP((U[n] – 128) * 2 + 128);

V[n] = CLIP((V[n] – 128) * 2 + 128);
7.2.5 Macroblock Layer Decode

7.2.5.1 Macroblock Types

Macroblocks in P pictures can be one of 3 possible types: 1MV, 4MV, and Skipped. The macroblock type is indicated by a combination of picture and macroblock layer syntax elements. The following sections describe each type and how they are signaled.
7.2.5.1.1 1MV Macroblocks
1MV macroblocks can occur in 1-MV and Mixed-MV P pictures. A 1MV macroblock is one where a single MVDATA syntax element is associated with all blocks in the macroblock. The MVDATA syntax element signals whether the blocks are coded as Intra or Inter type. If they are coded as Inter, then the MVDATA syntax element also indicates the motion vector differential. See section 7.2.6.1 for a description of how to decode Intra blocks in P pictures and see section 7.2.6.2 for a description of how to decode Inter blocks.
If the P picture is of type 1MV, then all the macroblocks in the picture are of type 1MV so there is no need to individually signal the macroblock type.

If the P picture is of type Mixed-MV, then the macroblocks in the picture can be of type 1MV or 4MV. In this case the macroblock type (1MV or 4MV) is signaled in the MVTYPEMB syntax element in the picture layer. See section 7.2.4.3 for a description of how the MVTYPEMB syntax element signals the 1MV/4MV macroblock type.

7.2.5.1.2 4MV Macroblocks
4MV macroblocks can only occur in Mixed-MV P pictures. A 4MV macroblock is indicated by signaling that the macroblock is 4-MV in the MVTYPEMB picture layer syntax element. Individual blocks within a 4MV macroblock can be coded as Intra blocks. For the 4 luminance blocks, the Intra/Inter state is signaled by the BLKMVDATA syntax element associated with that block. The CBPCY syntax element that indicates which blocks have BLKMVDATA syntax elements present in the bitstream. See section 7.2.5.2 for a description of how the CBPCY syntax element is used in 4MV macroblocks.

The Inter/Intra state for the chroma blocks is derived from the luminance Inter/Intra states. If 2 or more of the luminance blocks are coded as Intra, then the chroma blocks are also coded as Intra.
7.2.5.1.3 Skipped Macroblocks
Skipped macroblocks can occur in 1-MV, and Mixed-MV P pictures. In all cases, a skipped macroblock is signaled by the SKIPMB bitplane syntax element in the picture layer. See section 7.2.4.4 for a description of the SKIPMB syntax element.
7.2.5.2 Macroblock Decoding Process
The following sections describe the macroblock layer decoding process for P picture macroblocks.

Refer to section 7.2.6.2 for a description of the inverse quantization process.
7.2.5.2.1 Decoding Motion Vector Differential

The MVDATA or BLKMVDATA syntax elements encode motion information for the blocks in the macroblock. 1MV macroblocks have a single MVDATA syntax element, and 4MV macroblocks can have between zero and four BLKMVDATA syntax elements (see section 7.2.5.2 for a description of how the CBPCY syntax element is used to encode the number of MVDATA syntax elements in 4MV macroblocks).
Each MVDATA or BLKMVDATA syntax element in the macroblock layer jointly encodes three things: 1) the horizontal motion vector differential component, 2) the vertical motion vector differential component and 3) a binary flag indicating whether any Transform coefficients are present. Whether the macroblock (or block for 4MV) is Intra or Inter-coded is coded as one of the horizontal/vertical motion vector possibilities.
The MVDATA or BLKMVDATA syntax element is a variable length Huffman codeword followed by a fixed length codeword. The value of the Huffman codeword determines the size of the fixed length codeword. The MVTAB syntax element in the picture layer specifies the Huffman table used to decode the variable sized codeword.

The following psuedocode illustrates how the motion vector differential, Inter/Intra type and last-flag information are decoded.

The values: last_flag, intra_flag, dmv_x and dmv_y are computed in the following pseudocode. The values are defined as follows:
last_flag: binary flag indicating whether any Transform coefficients are present (0 = coefficients present, 1 = coefficients not present)

intra_flag: binary flag indicating whether the block or macroblock is intra-coded (0 = inter-coded, 1 = intra-coded)

dmv_x: differential horizontal motion vector component

dmv_y: differential vertical motion vector component

k_x, k_y: fixed length for long motion vectors

k_x and k_y depend on the motion vector range as defined by the MVRANGE symbol (section 6.1.1.11) according to Table 43.
Table 43: k_x and k_y specified by MVRANGE

	MVRANGE
	k_x
	k_y
	range_x
	range_y

	0 (default)
	9
	8
	256
	128

	10
	10
	9
	512
	256

	110
	12
	10
	2048
	512

	111
	13
	11
	4096
	1024

The value halfpel_flag used in the following pseudocode is a binary value indicating whether half-pel or quarter-pel precision is used for the picture. The value of halfpel_flag is determined by the picture layer syntax element MVMODE (see section 7.2.4.3). If MVMODE specifies the mode as 1MV or Mixed MV, then halfpel_flag = 0 and quarter-pel precision is used. If MVODE specifies the mode as 1MV Half-pel or 1MV Half-pel Bilinear, then halfpel_flag = 1 and half-pel precision is used.

The tables size_table and offset_table are arrays used in the following pseudocode and are defined as follows:

size_table[6] = {0, 2, 3, 4, 5, 8}
offset_table[6] = {0, 1, 3, 7, 15, 31}

index = vlc_decode()
// Use the Huffman table indicated by MVTAB in the picture layer
index = index + 1

if (index >= 37)
{

last_flag = 1

index = index - 37
}

else

last_flag = 0
intra_flag = 0
if (index == 0)

{

dmv_x = 0

dmv_y = 0
}

else if (index == 35)

{

dmv_x = get_bits(k_x – halfpel_flag)

dmv_y = get_bits(k_y – halfpel_flag)

}

else if (index == 36)

{

intra_flag = 1

dmv_x = 0

dmv_y = 0
}

else

{

index1 = index % 6
if (halfpel_flag == 1 && index1 == 5)

hpel = 1

else

hpel = 0

 val = get_bits (size_table[index1] - hpel)

 sign = 0 - (val & 1)

 dmv_x = sign ^ ((val >> 1) + offset_table[index1])

 dmv_x = dmv_x - sign
index1 = index / 6

if (halfpel_flag == 1 && index1 == 5)

hpel = 1

else

hpel = 0

 val = get_bits (size_table[index1] - hpel)

 sign = 0 - (val & 1)

 dmv_y = sign ^ ((val >> 1) + offset_table[index1])

 dmv_y = dmv_x - sign

}

7.2.5.3 Motion Vector Predictors
Motion vectors are computed by adding the motion vector differential computed in the previous section to a motion vector predictor. The predictor is computed from three neighboring motion vectors. The following sections describe how the predictors are calculated for macroblocks in 1MV P pictures, and Mixed-MV P pictures.

7.2.5.3.1 Motion Vector Predictors In 1MV P Pictures

Figure 44 shows the three motion vectors used to compute the predictor for the current macroblock. As the figure shows, the predictor is taken from the left, top and top-right macroblocks, except in the case where the macroblock is the last macroblock in the row. In this case, Predictor B is taken from the top-left macroblock instead of the top-right.
For the special case where the frame is one macroblock wide, the predictor is always Predictor A (the top predictor).

[image: image49.emf]Current

Macroblock

Predictor A Predictor B

Predictor C

Current

Macroblock

Predictor A Predictor B

Predictor C

Last macroblock in macroblock row Not last macroblock in macroblock row

Figure 44: Candidate Motion Vector Predictors in 1MV P Pictures
7.2.5.3.2 Motion Vector Predictors In Mixed-MV P Pictures

Figure 45 and Figure 46 show the 3 candidate motion vectors for 1MV and 4MV macroblocks in Mixed-MV P pictures. In the following figures, the larger rectangles are macroblock boundaries and the smaller rectangles are block boundaries.

For the special case where the frame is one macroblock wide, the predictor is always Predictor A (the top predictor).
[image: image50.emf]Current

Macroblock

Predictor

A

Predictor

C

Predictor

B

Current

Macroblock

Predictor

A

Predictor

C

Predictor

B

Not last macroblock in macroblock row Last macroblock in macroblock row

Figure 45: Candidate Motion Vectors for 4MV Macroblocks in Mixed-MV P Pictures

Figure 45 shows the candidate motion vectors for 1MV macroblocks. The neighboring macroblocks may 1MV or 4 MV macroblocks. The figure shows the candidate motion vectors assuming the neighbors are 4MV (i.e., predictor A is the motion vector for block 2 in the macroblock above the current and predictor C is the motion vector for block 1 in the macroblock immediately to the left of the current). If any of the neighbors are 1MV macroblocks, then the motion vector predictors shown in Figure 45 are taken to be the vectors for the entire macroblock. As the figure shows, if the macroblock is the last macroblock in the row, then Predictor B is from block 3 of the top-left macroblock instead of from block 2 in the top-right macroblock as is the case otherwise.
[image: image51.emf]Predictor

A

Predictor

C

Predictor

B

Current

block

Predictor

A

Predictor

C

Predictor

B

Current

block

Predictor

C

Predictor

A

Predictor

B

Current

block

Predictor

A

Predictor

C

Predictor

B

Current

block

Predictors for Block 0 if not

the first macroblock in row

Predictors for Block 1 if not

last macroblock in row

Predictors for

Block 2

Predictors for

Block 3

Predictor

A

Predictor

C

Predictor

B

Current

block

Predictors for Block 1 if last

macroblock in row

Predictor

B

Current

block

Predictor

A

Predictors for Block 0 if first

macroblock in row

Predictor

C = 0

Figure 46: Candidate Motion Vectors for 4MV Macroblocks in Mixed-MV P Pictures

Figure 46 shows the predictors for each of the 4 luminance blocks in a 4MV macroblock. For the case where the macroblock is the first macroblock in the row, Predictor B for block 0 is handled differently than the remaining blocks in the row. In this case, Predictor B is taken from block 3 in the macroblock immediately above the current macroblock instead of from block 3 in the macroblock above and to the left of current macroblock as is the case otherwise. Similarly, for the case where the macroblock is the last macroblock in the row Predictor B for block 1 is handled differently. In this case, the predictor is taken from block 2 in the macroblock immediately above the current macroblock instead of from block 2 in the macroblock above and to the right of the current macroblock as is the case otherwise. If the macroblock is in the first macroblock column, then Predictor C for blocks 0 and 2 are set equal to 0.
7.2.5.3.3 Calculating the Motion Vector Predictor
Given the 3 motion vector predictor candidates, the following pseudocode illustrates the process for calculating the motion vector predictors.

if (predictorA is not out of bound) {

if (predictorC is out of bound && predictorB is out of bound) { // picture consists of one MB

predictor_x = predictorA_x;

predictor_y = predictorA_y;

} else {

if (predictorC is out of bound) {

predictorC_x = predictorC_y = 0;

}

numIntra = 0;

if (predictorA is intra) {

predictorA_x = predictoA_y = 0;

numIntra ++;

}

if (predictorB is intra) {

predictorB_x = predictoB_y = 0;

numIntra ++;

}

if (predictorC is intra) {

predictorC_x = predictoC_y = 0;

numIntra ++;

}

// calculate predictor from A, B and C predictor candidates
predictor_x = median3(predictorA_x, predictorB_x, predictorC_x);

predictor_y = median3(predictorA_y, predictorB_y, predictorC_y);

}
} else if (predictorC is not out of bound) {

predictor_x = predictorC_x;

predictor_y = predictorC_x;

} else {

predictor_x = predictor_y = 0;

}
See section 3.8 for the definition of median3.

After the predictor is computed, we further check to see if the predictor is pointed an area outside of the reference frame. If it is is completely outside of the reference frame, we will pull it back towards the reference frame so that at least one line of the reference frame is inside the block/macroblock referenced by the predictor.

1. For 16x16 mv: We restrict the top-left point of the 16x16 area pointed to by the predictor to be -15 to picture width -1.

2. For 8x8 mv: We restrict the top-left point of the 8x8 area pointed to by the predictor to be -7 to picture width – 1.
7.2.5.3.4 Hybrid Motion Vector Prediction

If the P picture is 1MV or Mixed-MV, then the motion predictor calculated in the previous section is tested relative to the A and C predictors to see if the predictor is explicitly coded in the bitstream. If so, then a bit is decoded that indicates whether to use predictor A or predictor C as the motion vector predictor. Hybrid motion vectors may exist even for skipped MBs, i.e. macroblocks which have zero differential motion vectors. The following pseudocode illustrates hybrid motion vector prediction decoding.

The variables are defined as follows in the pseudocode:

predictor_pre_x: The horizontal motion vector predictor as calculated in the above section

predictor_pre_y: The vertical motion vector predictor as calculated in the above section

predictor_post_x: The horizontal motion vector predictor after checking for hybdrid motion vector prediction

predictor_post_y: The vertical motion vector predictor after checking for hybdrid motion vector prediction

if ((predictorA is out of bounds) || (predictorC is out of bounds))

{

predictor_post_x = predictor_pre_x

predictor_post_y = predictor_pre_y

}

else

{

if (predictorA is intra)

sum = abs(predictor_pre_x) + abs(predictor_pre_y)

else

sum = abs(predictor_pre_x – predictorA_x) + abs(predictor_pre_y – predictorA_y)

if (sum > 32)

{

// read next bit to see which predictor candidate to use

if (get_bits(1) == 0)

// HYBRIDPRED syntax element

{

// use top predictor

predictor_post_x = predictorA_x

predictor_post_y = predictorA_y

}

else

{

// use left predictor

predictor_post_x = predictorC_x

predictor_post_y = predictorC_y

}

}

else

{

if (predictorC is intra)

sum = abs(predictor_pre_x) + abs(predictor_pre_y)

else

sum = abs(predictor_pre_x – predictorC_x) + abs(predictor_pre_y – predictorC_y)

if (sum > 32)

{

// read next bit to see which predictor candidate to use

if (get_bits(1) == 0)

{

// use top predictor

predictor_post_x = predictorA_x

predictor_post_y = predictorA_y

}

else

{

// use left predictor

predictor_post_x = predictorC_x

predictor_post_y = predictorC_y

}

}

}

}

7.2.5.3.5 Motion Vector Predictors in Skipped Macroblocks

If a macroblock is coded as skipped, then the predicted motion vector computed as described above is used as the motion vector for the block, macroblock or syntax element. The block, syntax element or macroblock referenced by the motion vector is used as the current block or macroblock in the current picture. A single bit may be present in the macroblock layer indicating which of the predictor candidates to use. A macroblock with 4 motion vectors may have upto 4 hybrid motion predictor (HYBRIDPRED) syntax elements, i.e. upto 4 bits.
7.2.5.4 Reconstructing Motion Vectors

The following sections describe how to reconstruct the luminance and chroma motion vectors for 1MV and 4MV macroblocks.

7.2.5.4.1 Luminance Motion Vector Reconstruction

In all cases (1MV and 4MV macroblocks) the luminance motion vector is reconstructed by adding the differential to the predictor as follows:

mv_x = (dmv_x + predictor_x) smod range_x
mv_y = (dmv_y + predictor_y) smod range_y
The modulus operation “smod” is a signed modulus, defined as follows:

A smod b = ((A + b) % 2 b) - b

ensures that the reconstructed vectors are valid. (A smod b) lies within –b and b – 1. range_x and range_y depend on MVRANGE and are specified in Table 43.
Following are the notes about luminance motion vectors in 1MV and 4MV macroblocks.

1MV Macroblock Notes

In 1MV macroblocks there will be a single motion vector for the 4 blocks that make up the luminance component of the macroblock.

If dmv_x decodes to indicate that the macroblock is Intra-coded (as described in the section “Decoding Motion Vector Differential” above), then no motion vectors are associated with the macroblock.
If the SKIPMB syntax element in the picture layer indicates that the macroblock is skipped, then dmv_x = 0 and dmv_y = 0 (mv_x = predictor_x and mv_y = predictor_y).

4MV Macroblock Notes

Each of the Inter-coded luminance blocks in a macroblock will have its own motion vector. Therefore there will be between 0 and 4 luminance motion vectors in each 4MV macroblock.

A non-coded block in 4MV macroblocks can occur in one of two ways: 1) if the SKIPMB syntax element in the picture layer indicates that the macroblock is skipped and the MVTYPEMB syntax element in the picture layer indicates that the macroblock is 4MV. All blocks in the macroblock are skipped in this case, or 2) if the CBPCY syntax element (described in the next section) in the macroblock indicates that the block is non-coded. If a block is not coded, then dmv_x = 0 and dmv_y (mv_x = predictor_x and mv_y = predictor_y).

7.2.5.4.2 Chroma Motion Vector Reconstruction

The chroma motion vectors are derived from the luminance motion vectors. Also, for 4MV macroblocks, the decision of whether to code the chroma blocks as Inter or Intra is made based on the status of the luminance blocks or syntax elements. The following sections describe how to reconstruct the chroma motion vectors for 1MV and 4MV macroblocks. The chroma vectors are reconstructed in two steps.

As a first step, the nominal chroma motion vector is obtained by combining and scaling the luminance motion vectors appropriately. The scaling is performed in such a way that half-pixel offsets are preferred over quarter pixel locations.

In the second stage, a sequence level 1-bit syntax element FASTUVMC syntax element is used to determine if further rounding of chroma motion vectors is necessary. The purpose of this mode is speed optimization of the decoder. If FASTUVMC = 0, no rounding is performed in the second stage. If FASTUVMC = 1, the chroma motion vectors that are at quarter pel offsets will be rounded to the nearest full pel positions.
In addition, FASTUVMC = 1 only bilinear filtering will be used for all chroma interpolation

The motivation for this rounding is the significant difference between the complexities of interpolating pixel offsets that are at a) integer pel; b) half pel; c) at least one coordinate (of x and y) at a quarter pel; and d) both coordinates at quarter pel positions. The ratio of a:b:c:d is roughly 1:4:4.7:6.6. By applying this mode we can favor a) and b), thus cutting down on decoding time. Since this is being done only for chroma interpolation, the coding and quality loss (especially visible quality) are both negligible.
In the sections below cmv_x and cmv_y denote the chroma motion vector components and lmv_x and lmv_y denote the luminance motion vector components.

7.2.5.4.3 First-stage Chroma Motion Vector Reconstruction - 1MV Chroma Motion Vector Case:
If a MV macroblock, the chroma motion vectors are derived from the luminance motion vectors as follows:

// s_RndTbl[0] = 0, s_RndTbl[1] = 0, s_RndTbl[2] = 0, s_RndTbl[3] = 1
cmv_x = (lmv_x + s_RndTbl[1mv_x & 3]) >> 1
cmv_y = (lmv_y + s_RndTbl[1mv_y & 3]) >> 1
7.2.5.4.4 First-stage Chroma Motion Vector Reconstruction - 4MV Chroma Motion Vector Case:
The following pseudocode illustrates how the chroma motion vectors are derived from the motion information in the 4 luminance blocks in 4MV macroblocks. In this section, ix and iy are temporary variables.
if (all 4 luminance blocks are Inter-coded)

{

// lmv0_x, lmv0_y is the motion vector for block 0

// lmv1_x, lmv1_y is the motion vector for block 1

// lmv2_x, lmv2_y is the motion vector for block 2

// lmv3_x, lmv3_y is the motion vector for block 3

ix = median4(lmv0_x, lmv1_x, lmv2_x, lmv3_x)

iy = median4(lmv0_y, lmv1_y, lmv2_y, lmv3_y)
}

else if (3 of the luminance blocks are Inter-coded)

{

// lmv0_x, lmv0_y is the motion vector for the first Inter-coded block

// lmv1_x, lmv1_y is the motion vector for the second Inter-coded block

// lmv2_x, lmv2_y is the motion vector for the third Inter-coded block

ix = median3(lmv0_x, lmv1_x, lmv2_x)

iy = median3(lmv0_y, lmv1_y, lmv2_y)
}

else if (2 of the luminance blocks are Inter-coded)

{

// lmv0_x, lmv0_y is the motion vector for the first Inter-coded block

// lmv1_x, lmv1_y is the motion vector for the second Inter-coded block

ix = (lmv0_x + lmv1_x) / 2

iy = (lmv0_y + lmv1_y) / 2
}

else

Chroma blocks are coded as Intra

// s_RndTbl[0] = 0, s_RndTbl[1] = 0, s_RndTbl[2] = 0, s_RndTbl[3] = 1
cmv_x = (ix + s_RndTbl[ix & 3]) >> 1
cmv_y = (iy + s_RndTbl[iy & 3]) >> 1

See section 3.8 for the definition of median3 and median4.

7.2.5.4.5 Second Stage Chroma Rounding
If the sequence level bit FASTUVMC = 1, then a second level of rounding is done on the chroma motion vectors as follows –

if (FASTUVMC)

{

// RndTbl[-3] = -1, RndTbl[-2] = 0, RndTbl[-1] = +1, RndTbl[0] = 0

// RndTbl[1] = -1, RndTbl[2] = 0, RndTbl[3] = +1

cmv_x =

cmv_x + RndTbl[cmv_x % 4];

cmv_y =

cmv_y + RndTbl[cmv_y % 4];

}

In the above, cmv_x and cmv_y represent the x and y coordinates of the chroma motion vector in units of quarter pels. % represents the modulus (or remainder) operation, which is defined thus: (x % a) = -(-x % a), i.e. the modulus of a negative number is equal to the negative of the modulus of the corresponding positive number. Thus, when cmv_x (or cmv_y) is divisible by 4, we have an integer offset; when cmv_x % 4 = +/-2, we have a half pel offset, and when cmv_x % 4 = +/-1 or +/-3 we have a quarter pel offset. As can be seen by the above re-mapping operation, the quarter pel positions are being disallowed by rounding the chroma motion vector to the nearest integer position (half pel positions are left unaltered).

This forces the chroma co-ordinates to be remapped to integer and half pel positions. Furthermore, bilinear filtering is used for all chroma interpolations if FASTUVMC = 1 for further speedup. Note that the second stage rounding is not performed if FASTUVMC = 0.
7.2.5.5 Coded Block Pattern

Figure 19 shows the position of the CBPCY syntax element within the P picture macroblock layer. The CBCPY syntax element is a variable-length code that decodes to a 6-bit syntax element.

The Huffman codetable used to decode CBPCY is specified by the CBPTAB syntax element in the picture layer. See section 7.2.4.6 for a description of the CBPTAB syntax element.
The CBPCY syntax element is used differently depending on whether the macroblock is 1MV or 4MV. The following sections describe how CBPCY is used in each macroblock type.
7.2.5.5.1 CBPCY in 1MV Macroblocks
The CBPCY syntax element is present in the 1MV macroblock layer if:

1) The MVDATA syntax element indicates that the macroblock is Inter-coded and,

2) The MVDATA syntax element indicates that at least one block contains coefficient information. This is indicated by the ‘last’ value decoded from MVDATA. See section 7.2.5.2 for a description of MVDATA decoding.

If the CBPCY syntax element is present, then it decodes to a 6-bit syntax element indicating which of the blocks contain at least one non-zero coefficient. Figure 47 shows how the CBPCY bitsyntax element corresponds to the block numbers.
[image: image52.emf]0 5 4 3 2 1

Figure 47: Bit-position/block correspondence for CBPCY

A ‘1’ in one of the positions indicates that the corresponding block has at least one non-zero AC coefficient if the macroblock is Intra-coded or at least one non-zero DC or AC coefficient if the macroblock is Inter-coded.
A ‘0’ in one of the positions indicates that the corresponding block does not contain any non-zero AC coefficients if the macroblock is Intra-coded or any non-zero DC or AC coefficients if the macroblock is Inter-coded.
7.2.5.5.2 CBPCY in 4MV Macroblocks
The CBPCY syntax element is always present in the 4MV macroblock layer. The CBPCY bit positions for the luminance blocks (bits 0-3) have a slightly different meaning than the bit positions for chroma blocks (bits 4 and 5).

For the luminance blocks:

A ‘0’ indicates that the corresponding block does not contain motion vector information or any non-zero coefficients. In this case, the BLKMVDATA syntax element is not present for that block and the predicted motion vector is used as the motion vector and there is no residual data. If the motion vector predictors indicate that hybrid motion vector prediction is used, then a single bit is present indicating the motion vector predictor candidate to use. Refer to section 7.2.5.2 for a description of computing the motion vector predictor.

A ‘1’ indicates that the BLKMVDATA syntax element is present for the block. The BLKMVDATA syntax element indicates whether the block is Inter or Intra-coded and whether there is coefficient data for the block. If it is Inter coded, the BLKMVDATA syntax element also contains the motion vector differential. If the ‘last flag’ decoded from BLKMVDATA (described in section 7.2.5.2) decodes to 1, then no AC coefficient information is present if the block is Intra-coded or no DC or AC coefficient is present if the block is Inter-coded. If ‘last flag’ decodes to 0, then there is at least one non-zero AC coefficient if the block is Intra-coded or at least one non-zero DC or AC coefficient if the block is Inter-coded.
For the chroma blocks:

A ‘0’ indicates that the block does not contain any non-zero AC coefficients if the block is Intra-coded or any non-zero DC or AC coefficients if the block is Inter-coded.

A ‘1’ indicates that the corresponding block has at least one non-zero AC coefficient if the block is Intra-coded or at least one non-zero DC or AC coefficient if the block is Inter-coded.
7.2.5.6 MB-level Transform Type
The TTMB syntax element is present only in Inter macroblocks. As described in section 6.1.3.11 TTMB encodes the transform type, the signaling mode and the transform subblock pattern.
If the signaling mode is macroblock signaling, then the transform type decoded from the TTMB syntax element is the same for all blocks in the macroblock. If the transform type is 8x4 or 4x8, then a subblock pattern is also decoded from the TTMB syntax element. In this case, the subblock pattern applies to the first coded block in the macroblock. If the transform type is 4x4, then the subblock pattern in encoded in the SUBBLKPAT syntax element at the block level. If the transform type is 8x4 or 4x8, then the subblock patterns for all the blocks after the first one are coded in the SUBBLKPAT syntax element at the block level.

If the signaling mode is block signaling, then the transform type decoded from the TTMB syntax element is applied to the first coded block in the macroblock and the TTBLK syntax element is not present for the first coded block. For the remaining coded blocks, the TTBLK syntax element indicates the transform type for that block. If TTMB syntax element indicates that the first transform type is 8x4 or 4x8, then a subblock pattern is also decoded from the TTMB syntax element. In this case, the subblock pattern applies to the first coded block in the macroblock.

7.2.6 Block Layer Decode

7.2.6.1 Intra Coded Block Decode

The process for decoding Intra blocks in P pictures is similar to the process for decoding Intra blocks in baseline I picture as described in section 0 with the following differences.

7.2.6.1.1 Coefficient Scaling

The process for coefficient scaling is same as described in section 7.1.1.16.

7.2.6.1.2 AC Prediction in Intra blocks in 4MV.
Refer to section 7.1.1.14 for a description of AC prediction. AC prediction in Intra-coded blocks within 4MV macroblocks is similar except that bitstream information is present within the block that controls whether AC prediction is used and which predictor candidate to use. Figure 21 shows the location of the AC prediction information (the ACPREDBLK syntax element) in the Intra block bitstream. The following sections describe how AC prediction is performed in 4MV macroblocks.

If the top predictor is selected, then the top row of AC coefficients from the block above the current block are used as the predictors for the top row of AC coefficients from the current block. If the left predictor is selected, then the first column of AC coefficients from the block to the left of the current block are used as the predictors for the left column of AC coefficients from the current block. The pseudocode below illustrates the process for deciding the AC predictors in Intra blocks in 4MV macroblocks.
In the pseudocode, predictorA is the block immediately above the current block, predictorC is the block immediately to the left of the current block and predictorB is the block immediately above and to the left of the current block. The result of the pseudocode is that the variable use_ac_prediction determines whether AC prediction is used and prediction_direction determines which block is used as the predictor.
Note that in the following pseudocode, the coefficients in the predictor blocks are scaled if the macroblock quantizer scales are different. The previous section describes the scaling operation.
use_ac_prediction = FALSE

if ((predictorA is Intra) && (predictorC is Intra))

{

if (abs(predictorB’s DC coefficient – predictorC’s DC coefficient) <

abs(predictorB’s DC coefficient – predictorA’s DC coefficient))

{

prediction_direction = UP

}

else

prediction_direction = LEFT

if (get_bits(1) == 0)

// ACPREDBLK syntax element

use_ac_prediction = TRUE

else

{

if (get_bits(1) == 0)

// ACPREDBLK syntax element

{

if (prediction_direction == UP)

prediction_direction = LEFT

else

prediction_direction = UP

use_ac_prediction = TRUE

}

}

}

else if ((predictorA is Intra) || (predictorC is Intra))

{

if (predictorA is Intra)

prediction_direction = UP

else

prediction_direction = LEFT
if (get_bits(1) == 0)

// ACPREDBLK syntax element

use_ac_prediction = TRUE

}
7.2.6.1.3 AC Prediction in Intra blocks in 1MV macroblocks
AC prediction in Intra blocks within 1MV macroblocks is the same as Intra blocks in I pictures as described in section 7.1.1.14. The exception is if the top predictor block and left predictor block are not Intra-coded, then AC prediction is not used, even if ACPRED = 1 in the macroblock layer. If just one of the predictors is Intra coded (either the top or the left), then it is used as the predictor. If both are Intra-coded, then the method described in section 7.1.1.14 is used. In this case, if the top-left block is not Intra, then the DC value is assumed to be 0.
7.2.6.1.4 Zig-zag Scan
The zig-zag scan order used to scan the run-length decoded Transform coefficients into the 8x8 array is the same as that used for the 8x8 Inter block as described in section 7.2.6.2. This differs from Intra blocks in I pictures which use one of 3 zig-zag scans depending on the prediction direction.
7.2.6.1.5 Coding Sets for 3D Huffman Coding
If the coding set used to decode the AC coefficients is signaled at the frame level, then the TRANSACFRM syntax element is used to specify the coding set index used for decoding the Y and Cr/Cb AC coefficients (see section 7.1.1.11 for a description of the AC coding sets). The index decoded from the TRANSACFRM syntax element is used to select the intra coding set used to decode the Y blocks and is used to select the inter coding set used to decode the Cr/Cb blocks. This differs from the process used for I pictures where the TRANSACFRM specifies the index for the inter coding set and the TRANSACFRM2 syntax element specifies the index for the intra coding set. The P picture header does not contain the TRANSACFRM2 syntax element. The correspondence between the coding set index and the coding set depends on the value of PQINDEX. Tables Table 44 and Table 45 below show the correspondence for PQINDEX <= 7 and PQINDEX > 7. Section 10.9 contains the table information.
Table 44: Index/Coding Set Correspondence for PQINDEX <= 7
	Y blocks
	Cr and Cb blocks

	Index
	Table
	Table

	0
	High Rate Intra
	High Rate Inter

	1
	High Motion Intra
	High Motion Inter

	2
	Mid Rate Intra
	Mid Rate Inter

Table 45: Index/Coding Set Correspondence for PQINDEX > 7
	Y blocks
	Cr and Cb blocks

	Index
	Table
	Table

	0
	Low Motion Intra
	Low Motion Inter

	1
	High Motion Intra
	High Motion Inter

	2
	Mid Rate Intra
	Mid Rate Inter

7.2.6.2 Inter Coded Block Decode

Figure 48 shows the steps required reconstructing Inter blocks when the 3D Huffman coding method is used. If the advance 2-layer coding is used, the only difference is to replace the 3D decoding by the A2LC decoding. For illustration the figure shows the reconstruction of a block whose 8x8 error signal is coded with two 8x4 Transforms. The 8x8 error block can also be transformed with two 4x8 Transforms or one 8x8 Transform. The steps required to reconstruct an inter-coded block include: 1) transform type selection, 2) sub-block pattern decode, 3) coefficient decode, 4) inverse Transform, 5) obtain predicted block and 6) motion compensation (add predicted and error blocks). The following sections describe these steps.

[image: image53]
Figure 48: Inter block reconstruction

7.2.6.2.1 Transform Type Selection

[image: image54]
Figure 49: Transform Types

If variable-sized transform coding is enabled (signaled by the sequence-level syntax element VSTRANSFORM = 1 as described in section 5.1.13), then the 8x8 error block can be transformed using one 8x8 Transform, or as shown in Figure 49, divided vertically and transformed with two 8x4 Transforms or divided horizontally and transformed with two 4x8 Transforms or divided into 4 quadrants and transformed with 4 4x4 Transforms. The transform type is signaled at the picture, macroblock or block level. As shown in Tables Table 20, Table 21 and Table 22 if TTMB indicates that the signal level is Block, then the transform type is signaled at the block level. If the transform type is specified at the block level, then the TTBLK syntax element is present within the bitstream as shown in Figure 22. This syntax element indicates the transform type used for the block. Tables Table 28

 REF _Ref15825136 \h
Table 29

 REF _Ref15825139 \h
Table 30 show the code tables used to encode the transform types if block mode signaling is used.

If variable-sized transform coding is not enabled, then the 8x8 Transform is used for all blocks.

7.2.6.2.2 Subblock Pattern Decode

If the transform type is 8x4, 4x8 or 4x4, then the decoder needs information about which of the subblocks have non-zero coefficients. For 8x4 and 4x8 transform types, the subblock pattern is decoded as part of the TTMB or TTBLK syntax element. If the transform type is 4x4, then the SUBBLKPAT syntax element is present in the bitstream as shown in Figure 22. Section 6.1.4.16 describes the SUBBLKPAT syntax element.
If the subblock pattern indicates that no non-zero coefficients are present for the subblock, then no other information for that subblock is present in the bitstream. For the 8x4 transform type, the data for the top subblock (if present) is coded first followed by the bottom subblock. For the 4x8 transform type, the data for the left subblock (if present) is coded first followed by the right subblock. For the 4x4 transform type, the data for the upper left subblock is coded first followed, in order, by the upper right, lower left and lower right subblocks.

7.2.6.2.3 Coefficient Bitstream Decode

The first step in reconstructing the inter-coded block is to reconstruct the Tranform coefficients. When the 3D Huffman coding method is used, the process for decoding the bitstream to obtain the run, level and last flags for each non-zero coefficient in the block or sub-block is nearly identical to the process described in section 7.1.1.11 for decoding the AC coefficients in intra blocks. The two differences are:

1) Unlike the decoding process for intra blocks, the DC coefficient is not differentially coded. No distinction is made between the DC and AC coefficients and all coefficients are decoded using the same method.

2) Unlike the decoding process for intra blocks in I pictures (described in section 7.1.1.11) where the Y block coefficients are decoded using one of the three intra coding sets and the Cr and Cb block coefficients are decoded using one of the three inter coding sets, the Y and Cr/Cb inter blocks all use the same inter coding set.
3) The correspondence between the coding set index and the coding set depends on the value of PQINDEX. The following tables show the correspondence for PQINDEX <= 6 and PQINDEX > 6.

See section 7.4 for the coefficient decoding with the advanced 2-layer coding method. This is invoked when CODINGMETHOD = 1 in the advanced profile.
Table 46: Index/Coding Set Correspondence for PQINDEX <= 6
	Y, Cr and Cb blocks

	Index
	Table

	0
	High Rate Inter

	1
	High Motion Inter

	2
	Mid Rate Inter

Table 47: Index/Coding Set Correspondence for PQINDEX > 6
	Y, Cr and Cb blocks

	Index
	Table

	0
	Low Motion Inter

	1
	High Motion Inter

	2
	Mid Rate Inter

7.2.6.2.4 Run-level Decode

The process for decoding the run-level pairs obtained in the coefficient decoding process described above is nearly the same as described in section 7.1.1.12. The difference is that because all coefficients are run-level encoded (not just the AC coefficients as in intra blocks) the run-level decode process produces a 16-element array in the case of 4x4 Transform, a 32-element array in the case of 8x4 or 4x8 Transform blocks or a 64-element array in the case of 8x8 Transform blocks.

7.2.6.2.5 Zig-zag Scan of Coefficients

The one-dimensional array of quantized coefficients produced in the run-level decode process described above are scanned out into a two-dimensional array in preparation for the Inverse Transform. The process is similar to that described in section 7.1.1.13 for intra blocks. The differences are:

1) Each Transform type has an associated zig-zag scan array. The zig-zag scan arrays for 8x8, 8x4, 4x8 and 4x4 Transform are shown in section 10.10.2.

2) Unlike the zig-zag scanning process for intra blocks where one of three arrays are used depending on the DC prediction direction, only one array is used for inter blocks.

7.2.6.3 Inverse Quantization
The non-zero quantized coefficients reconstructed as described in the sections above are inverse quantized in one of two ways depending on the value of PQUANT.

If the uniform quantizer is used, the following formula describes the inverse quantization process:

dequant_coeff = quant_coeff * (2 * quant_scale + halfstep)
If the nonuniform quantizer is used, the following formula describes the inverse quantization process:

dequant_coeff = quant_coeff * (2 * quant_scale + halfstep) + sign(quant_coeff) * quant_scale

where:

quant_coeff is the quantized coefficient

dequant_coeff is the inverse quantized coefficient

quant_scale = The quantizer scale for the block (either PQUANT or MQUANT)
halfstep = The half step encoded in the picture layer as described in section 6.1.1.11.
PQUANT is encoded in the picture layer as described in section 6.1.1.8.

MQUANT is encoded as described in section 7.2.5.2.

7.2.6.4 Inverse TRANSFORM
After reconstruction of the TRANSFORM coefficients, the resulting 8x8, 8x4, 4x8 or 4x4 blocks are processed by the appropriate two‑dimensional inverse transforms (INVERSETRANSFORM). The 8x8 blocks are transformed using the 8x8 INVERSETRANSFORM, the 8x4 blocks are transformed using the 8x4 INVERSETRANSFORM, the 4x8 blocks are transformed using the 4x8 INVERSETRANSFORM and the 4x4 blocks are transformed using the 4x4 INVERSETRANSFORM. The inverse transforms output ranges from -256 to +255 after clipping to be represented with 9 bits.

See section 7.8 regarding INVERSETRANSFORM implementation and conformance.

7.2.6.5 Motion Compensation

The 8x8, 8x4, 4x8 or 4x4 error block or blocks are added to the predicted 8x8 block to produce the reconstructed block. The motion vector decoded in the macroblock header (described in section 7.2.5.2) is used to obtain the predicted block in the reference frame.

The horizontal and vertical motion vector components represent the displacement between the block currently being decoded and the corresponding location in the reference frame. Positive values represent locations that are below and to the right of the current location. Negative values represent locations that are above and to the left of the current location.
If the picture layer syntax element MVMODE (see section 6.1.1.17) indicates that 1MV Halfpel or 1MV Halfpel Bilinear is used as the motion compensation mode, then all motion vectors are expressed in half-pixel resolution. For example, a horizontal motion component of 4 would indicate a position 2 pixels to the right of the current position and a value of 5 would indicate a position of 2 ½ pixels to the right. If the picture layer syntax element MVMODE (see section 6.1.1.17) indicates that 1MV or Mixed MV is used as the motion compensation mode, then all motion vectors are expressed in quarter-pixel resolution. For example, a horizontal motion component of 4 would indicate a position 1 pixel to the right of the current position and a value of 5 would indicate a position of 1 1/4 pixels to the right. In 1MV Halfpel Bilinear mode, all non-integer pixel motion vector offsets use a bilinear filter to compute the interpolated pixels. Otherwise, all non-integer pixel motion vector offsets use a bicubic filter to compute the interpolated pixels
7.2.6.5.1 Bilinear Interpolation
The following sections describe the bilinear filter operations.
The bilinear filter operates as shown in Figure 50.

[image: image55.emf]

c

d

b

a

(a + b + c + d + r 2)>>2

(a + d + r)>>1

(a + b + r)>>1

Integer locations

Figure 50: Bilinear filter operation
The value r = 1 – R (and r2 = 2 – R), where R is the frame level rounding control value as described in section 7.2.7.

7.2.6.5.2 Bicubic Interpolation
The following sections describe the bicubic filter operations.
[image: image56.emf]

Cas e 3

Cas e 6

Cas e 2

Cas e 1

Cas e 4

Cas e 5

Integer locations

Cas e 7

Case 8

Figure 51: Quarter pel bicubic filter cases
Figure 51 shows all the possible unique interpolated positions. They are:

Case 1: full-pel horizontal, half-pel vertical

Case 2: half-pel horizontal, full-pel vertical

Case 3: half-pel horizontal, half-pel vertical

Case 4: full-pel horizontal, quarter-pel vertical

Case 5: quarter-pel horizontal, full-pel vertical

Case 6: quarter-pel horizontal, quarter-pel vertical

Case 7: quarter-pel horizontal, half-pel vertical
Case 8: half-pel horizontal, quarter-pel vertical
One-dimensional Bicubic Interpolation (Cases 1, 2, 4 and 5)
In Figure 51, cases 1, 2, 4 and 5 represent the cases where interpolation occurs in only one dimension – either horizontal or vertical. The following filters are used for the possible shift locations:
½ pel shift F1: [-1 9 9 -1]

¼ pel shift F2: [-4 53 18 -3]

¾ pel shift F3: [-3 18 53 -4]

Figure 52 shows the pixels that are used to compute the interpolated pixels for each case. S denotes the sub-pixel position. P1, P2, P3 and P4 represent the integer pixel positions. The figure shows horizontal interpolation but the same operation applies to vertical interpolation.
[image: image57.emf]P1 P2 S P3 P4

½ Pixel Shift
[image: image58.emf]P1 P2S P3 P4

¼ Pixel Shift
[image: image59.emf]P1 P2 SP3 P4

¾ Pixel Shift
Figure 52: Pixel Shifts
The following equations show the filtering operation for each case:

(-1*P1 + 9*P2 + 9*P3 -1*P4 + 8 – r) >> 4 (1/2 pixel shift)

(-4*P1 + 53*P2 + 18*P3 – 3*P4 + 32 – r) >> 6 (1/4 pixel shift)

(-3*P1 + 18*P2 + 53*P3 -4*P4 +32 – r) >> 6 (3/4 pixel shift)
The value r in the equations above depends on R, the frame-level round control value (see section 7.2.7 for a description) and the interpolation direction as follows:
[image: image60.wmf]î

í

ì

-

-

-

=

)

5

2

(

)

4

1

(

1

and

cases

direction

horizontal

R

and

cases

direction

vertical

R

r

Two-dimensional Bicubic Interpolation

In Figure 51, cases 3, 6, 7 and 8 are the cases where interpolation occurs in both the horizontal and vertical directions.

Two-dimensionally interpolated pixel locations first interpolate along the vertical direction, and then along the horizontal direction using the appropriate filter among F1, F2 and F3 specified above. Rounding is applied after vertical filtering and after horizontal filtering. The rounding rule ensures retention of maximum precision permitted by 16 bit arithmetic in the intermediate results.

The rounding rule after vertical filtering is defined as

(S + rndCtrlV) >> shiftV

where

S = vertically filtered result, i.e. -1*P1 + 9*P2 + 9*P3 -1*P4 for ½ pixel shift

shiftV = { 1, 5, 3, 3 } for cases 3, 6, 7 and 8 respectively.

rndCtrlV = 2shiftV-1 - 1 + R (see section 7.2.7 for a description of R)
The rounding rule after horizontal filtering is:

(S + 64 – R) >> 7.

where

S = horizontally filtered result

R = frame level round control value (see section 7.2.7)

All of the bicubic filtering cases can potentially produce an interpolated pixel whose value is negative, or larger than the maximum range (255). In these cases, the output is clipped to lie within the range – underflows are set to 0 and overflows to 255.
7.2.6.5.3 Adding Error and Predictor

The 8x8 predicted block is added to the 8x8 error block to form the reconstructed 8x8 block. The pseudo-code in Figure 53 illustrates this process.

for (row= 0; row < 8; row++)

{

for (col = 0; col < 8; col++)

reconblock[row*8 + col] = clip(predblock[row*8 + col] + errorblock[row*8 + col])

}

where:

clip(n) =

0 if n < 0

255 if n > 255

n otherwise

Figure 53: Inter block reconstruction pseudo-code

7.2.7 Rounding Control

Section 7.2.6.2 describes the interpolation operations used to generate subpixel values in the reference blocks. Rounding is controlled by a value R called the rounding control value. The value of R toggles back and forth between 0 and 1 at each P frame. At each I frame, the value of R is reset to 0. Therefore, the value of R for the first P frame following an I frame is 0.

7.2.8 Intensity Compensation
If the picture layer syntax element MVMODE indicates that intensity compensation is used for the frame, then the pixels in the reference frame are remapped prior to using them as predictors for the current frame. As section 7.2.4.3 describes, when intensity compensation is used, the LUMSCALE and LUMSHIFT syntax elements are present in the picture bitstream. The following pseudocode illustrates how the LUMSCALE and LUMSHIFT values are used to build the lookup table used to remap the reference frame pixels.

if (LUMSCALE == 0)
{

iScale = - 64

iShift = 255 * 64 + 32 - LUMSHIFT *2 * 64

}
else {

iScale = LUMSCALE + 32

if (LUMSHIFT > 31)

iShift = LUMSHIFT * 64 - 64 * 64;

 else

iShift = LUMSHIFT * 64;

 }

// build LUTs

for (i = 0; i < 256; i++)
{

j = (iScale * i + iShift + 32) >> 6

if (j > 255)

j = 255

else if (j < 0)

j = 0

LUTY[i] = j

j = (iScale * (i - 128) + 128 * 64 + 32) >>6

if (j > 255)

j = 255

else if (j < 0)

j = 0

LUTUV[i] = j

}

The Y component of the reference frame is remapped using the LUTY[] table generated above and the U and V components are remapped using the LUTUV[] table as follows:

[image: image61.wmf]]

[

Y

Y

p

LUTY

p

=

[image: image62.wmf]]

[

UV

UV

p

LUTUV

p

=

Where [image: image63.wmf]Y

p

is the original luminance pixel value in the reference frame and [image: image64.wmf]Y

p

 is the remapped luminance pixel value in the reference frame and[image: image65.wmf]UV

p

is the original U or V pixel value in the reference frame and [image: image66.wmf]UV

p

 is the remapped U or V pixel value in the reference frame.
7.3 Progressive B Frame Decoding

At the top level, most B frames are coded as bidirectionally predicted frames as the name suggests. In certain cases however it is more economical to code a frame independent of its anchors – in other words as an intra B frame. An intra B frame has the same frame level syntax an inter B frame, but its macro block level decoding follows that of a baseline I frame.

Normal B frames are coded by coding 16x16 tiles of the image (macro blocks). Unlike P frames there is no “4MV” motion compensation mode. At the frame level, only two choices for motion vector resolution are permitted – quarter pel bicubic and half pel bilinear.

7.3.1 Skipped and Dropped Frames

When a B frame is skipped (not coded because it is similar or identical to the previous frame) or dropped (not coded because of bandwidth limitations), it is not sent. The decoder has no knowledge of its existence and continues to display the previous frame.

When an anchor frame is skipped/dropped, there is a possibility that the intermediate B frames may not be skipped / dropped. Without indicating to the decoder that the anchor is skipped / dropped, the decoding process will not be able to function correctly. Consider the following temporal sequence of frames:

I0 B1 P2 B3 P4

The order of transmission is

I0 P2 B1 P4 B3

Now, assume that B1 is identical to I0 and is dropped entirely from the sequence. The transmitted frames are therefore

I0 P2 P4 B3

which are displayed correctly as

I0 P2 B3 P4.

However, if P2 is identical to I0 and B1 is not, and if P2 is dropped from the stream, we have the non-decodable sequence

I0 B1 B3 P4

Hence, it is necessary to indicate to the decoder any anchor frame that is dropped. This is implemented in the simple and main profiles of VC9 by coding a frame of size 1 byte. This byte is null 0x00. In the advanced profile, the dropping is signaled by the FRSKIP syntax element in the picture preamble.
The decoder identifies skipped P frames and makes a duplicate copy of the existing reference to act as the temporally subsequent reference anchor.

Clearly, there is no dynamic range / resolution / motion vector range change at skipped / dropped P frames. It is worth noting that the fraction coding principle in VC9 allows for arbitrary dropping of B frames, and indeed variable B frame distance

7.3.2 B Picture Layer Decode

Some B frame specific information is transmitted at the frame level. Apart from the frame type (PTYPE), a symbol called the B frame fraction (BFRACTION) is sent at the frame header. This indicates whether the B frame is coded as Intra, and if not, the scaling factor used to derive the direct motion vectors (explained in section 6.1.1.6). The global states of resolution and range are guaranteed not to change at a B frame – the only permissible points of change are at anchor frames. However, the information relating to resolution and range are transmitted at B frames as well (when these flags are enabled at the sequence layer). The remainder of the section deals only with predicted or “normal” B frames, i.e. those that aren’t coded as Intra.

Global luminance change is disallowed at B frames. For progressive B frames, the motion mode is also sent. Only two motion modes are valid – yet there is some redundancy in the way they are encoded.

7.3.2.1 Bitplane Coding

As in P frames, some information is coded as a compressed bitplane that is sent at the frame level. For progressive B frames, two such bitplanes are sent – one denoting skipped macro blocks and the other denoting direct coded macro blocks. This information is sent at the macro block level when the raw coding mode is chosen. See section 6.2 for a description of bitplane coding.

7.3.2.2 Rounding Control

The rounding control parameter used by B frames is identical to that used by the previously decoded anchor.

7.3.2.3 Sync Markers
B frames do not contain sync markers.
7.3.2.4 Picture Resolution
If variable resolution coding is enabled for the sequence (signaled by the MULTIRES flag in the sequence header, see section 5.1.12), then the resolution of the B frame is determined by the resolution of the two reference frames. See section 7.1.1.4 for a description of how the current resolution is signaled. The resolution of the B frame is the same as the resolution of the two reference frames. The two reference frames must always have the same resolution. This will always be the case for B frames that occur temporally between two P frames since a resolution change can only occur at I frames. This restriction means that B frames can never occur temporally between an I and P or two I frames where the I frame is a different resolution than the preceding I or P frame.
7.3.3 B Macroblock Layer Decode
Macro blocks in B frames are identified as belonging to one of four modes, viz. backward, forward, direct and interpolated. The forward mode is akin to conventional P picture prediction. In the forward mode, the B macro block is interpolated from its temporally previous anchor frame only. Likewise, backward mode macro blocks are entirely interpolated from their temporally subsequent anchor frame.

7.3.3.1 Long and Short Types

When a B frame is closer to its temporally previous reference, it can be expected that the forward coding mode will be used more often. Likewise, when a B frame is closer to the end of its inter-anchor interval, it may be expected that it references the future anchor more often. This statistical behavior is exploited by flagging the backward and forward mode using two codewords whose interpretation is switched across two sides of the midpoint of the inter-anchor interval.

7.3.3.2 Direct and Interpolated Modes

Macroblocks for which BMVTYPE is direct or interpolated use both the anchors for prediction. They use two sets of motion vectors (MV’s), one each to reference into the previous and next anchor frame. In both cases we interpolate the pixels from the two reference frames, and then use simple per-pixel average operations with round-up to compute the pixels in the motion compensated macroblock –

Pixel value = (Interpolated value from anchor 1 + Interpolated value from anchor 2 + 1) >> 1

The difference between the direct and interpolated modes lies in how we arrive at the two sets of MV’s. In the case of the interpolated mode we actually send two MV’s in the bitstream (BMV1 and BMV2). In the case of the direct mode we don’t send any MV’s explicitly. Instead, the decoder computes both the MV’s implicitly by scaling the buffered up MV from the identical macroblock of the next anchor frame.

Given that the subsequent anchor frame was a P frame (in case the next frame was I, all the motion vectors are assumed to be (0,0)), and the collocated macroblock containted a motion vector MV (MV_X, MV_Y), the direct mode computes two sets of motion vectors, one referencing into the forward or previous anchor frame, (MV_XF , MV_YF)and the other referencing into the subsequent anchor frame, (MV_XB, MV_YB) in the following manner –

Scale_Direct_MV (IN MV_X, IN MV_Y, OUT MV_XF , OUT MV_YF, OUT MV_XB, OUT MV_YB)

if (Half pel units) {

 MV_XF = 2 * ((MV_X * ScaleFactor + 255) >> 9);

 MV_YF = 2 * ((MV_X * ScaleFactor + 255) >> 9);

 MV_XB = 2 * ((MV_X * (ScaleFactor - 256) + 255) >> 9);

 MV_YB = 2 * ((MV_X * (ScaleFactor - 256) + 255) >> 9);

 }

 else {

/* Quarter pel units */
 MV_XF = (MV_X * ScaleFactor + 128) >> 8;

 MV_YF = (MV_X * ScaleFactor + 128) >> 8;

 MV_XB = (MV_X * (ScaleFactor - 256) + 128) >> 8;

 MV_YB = (MV_X * (ScaleFactor - 256) + 128) >> 8;

 }
End Scale_Direct_MV
“ScaleFactor” is computed at the start of decoding each B frame, as follows –

Int NumShortVLC[] = {1, 1, 2, 1, 3, 1, 2};

Int DenShortVLC[] = {2, 3, 3, 4, 4, 5, 5};

Int NumLongVLC[] = {3, 4, 1, 5, 1, 2, 3, 4, 5, 6, 1, 3, 5, 7};

Int DenLongVLC[] = {5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8};

Int Inverse[] = { 256, 128, 85, 64, 51, 43, 37, 32 };

Frame_Initialization(code word)
if (long code word)
{

 Numerator = NumLongVLC[code word - 112];

 Denominator = DenLongVLC[code word - 112];

}

else /* short code word */
{
 Numerator = NumShortVLC[code word];

 Denominator = DenShortVLC[code word];

}

FrameReciprocal = Inverse[Denominator - 1];
ScaleFactor = Numerator * FrameReciprocal;
End Frame_Initialization

And “code word” is obtained by decoding the frame level syntax element BFRACTION, as shown in Table 5. In this VLC table, the code-words 000 through 110 are known as the “short” code words, and the others are known as the “long” code words.

Figure 54 shows how direct mode scales the motion vectors from the next P frame.

[image: image67.wmf](x,y)

(x+dx/2,y+dy/2)

(x+dx,y+dy)

B

2

B

1

B

3

P frame (time

t

)

B frame (time

t+1

)

P frame (time

t+2

)

MV (dx,dy)

Figure 54: Direct Mode Prediction

7.3.3.3 Motion Vector Prediction

MV prediction for frame B pictures follows exactly the same rules as in P frames, and will not be repeated here. The only additional point to note is that two separate MV buffers are kept for forward and backward MV’s, and the MV prediction rules are applied on each of these while decoding an MV of the like type, i.e. forward MV’s are used to predict an incoming forward MV, and backward MV’s are used to predict an incoming backward MV. In the interpolated mode we use both forward and backward prediction to predict the two incoming MV’s, and in the direct mode we scale the next field P’s collocated MV.
Macro blocks that use the direct or interpolate modes have valid forward and backward motion vectors associated with them. Macro blocks that are coded as forward or backward do not have valid backward and forward components respectively. For these cases, the direct mode motion vectors used in backward and forward directions respectively are used to fill in (see 7.3.3.2).

For intra coded macro blocks, the “intra motion vector” is used to fill in both forward and backward motion prediction planes. An “intra motion vector” is simply a unique large constant (which exceeds the range of valid MV’s) that is filled into the MV arrays to indicate that the MB was coded as intra.

7.3.3.4 Motion Vector Transmission

Whether or not a macro block is coded as direct is known at the start of decoding macro block level information. Non-direct macro blocks have one or two associated residual motion vectors, direct macro blocks have none. Skipped macro blocks that are direct coded have zero residual Transform coefficients (Transform AC for intra macro blocks), and skipped non-direct coded macro blocks have zero residual motion as well.

It is possible to gain some efficiency by coding the mode of the non-direct macro block after sending the first motion vector. Since VC9 jointly codes motion vector information with the intra flag, intra macro blocks are identified after decoding the first motion vector. It is not necessary to send any mode information subsequently after an intra motion vector is received.

When the first motion vector is non-intra, the macro block type is sent. This is based on the efficient remapping of forward and backward into short and long types as explained earlier. The second motion vector is sent only if the macro block is interpolated, and if the last_flag (see section 7.2.5.2.1) component of the first motion vector is nonzero. If the last_flag component is zero for an interpolated macro block, it is implied that the second residual motion vector of the interpolated block is zero, and so are the residual Transform terms.

7.3.3.5 Subpixel Interpolation

Subpixel interpolation of B frames is performed in the same manner as interpolation of P frames. The valid modes are quarter pel bicubic and half pel bilinear.
7.3.3.6 Pixel Averaging

Macroblocks that are coded using the direct or interpolated modes have two associated predictions drawn from the two reference anchors. These predictions are merged into one by averaging. A pixelwise mean operation with upwards rounding is employed to perform averaging.

7.3.3.7 Reconstructing and Adding Error

The decoding, dequantization, Inverse Transform, error addition and clamping of residuals to the predicted macro blocks is performed in a manner identical to that used in P frames. Intra macro blocks are also coded as they would be in P frames. However, the overlapped smoothing operation applied to edges between intra blocks in P frames is not performed in B frames. The exception is with a B frame encoded as an I frame. In this case, the overlap smoothing operation is performed.
7.3.4 B Block Layer Decode

Block decoding syntax and operations are the same as for P pictures and will not be repeated. I-MB’s in B frames are also the same as those in P frames.
7.4 Advanced 2-layer Decoding

This section describes the process for decoding transform coefficients when CODINGMETHOD = 1 in the advanced profile. See section 6.1.5 for the description of the syntax of the advanced 2-layer coding (A2LC) method. The method can be used in the advanced profile of both progressive mode and interlace mode. After the A2LC decoding, the decoded run-level pairs are processed by other components such as run-level decode, zig-zag scan and dequantization.
The VLC tables in many steps of the advanced 2-layer coding (A2LC) scheme consists of several contexts, and each context is divided into a number of zones. Different zones cover different scenarios, with one small Huffman table provided for each zone. The decoder can decide the context and zone to use for the next symbol, based on available information.

These VLC tables are generally tabulated in analogy to a 3-D array in section 10.1. That is, all zones in the first context are tabulated before the next context. The first entry in each zone indicates the number of symbols in that zone, which is also the symbol set size of the Huffman table for that zone. This number is followed by the index, codeword, and code size of each symbol in that zone. This can be illustrated by Figure Figure 55, which serves as a guide for all A2LC-related Huffman tables.

[image: image68.emf]Table for Context 0 Table for Context 1 Table for Context M - 1

Table for Zone 0 Table for Zone 1 Table for Zone K - 1

… ...

… ...

Zone

Size

codeword

0

… ...

codesize

0

codeword

L - 1

codesize

L - 1

Index

0

Index

L - 1

Figure 55: VLC Table Format when context and zone are involved.

7.4.1 Number of Non-Zero Coefficients (NUMCOEF)

The decoding of NUMCOEF uses the information of two neighboring blocks to decide a context for the current block. One Huffman table is provided for each context. The steps involved in decoding NUMCOEF are as follows:

1. Predict NUMCOEF from the top neighbor and the left neighbor.

2. Decide the context and select the corresponding Huffman table.

3. Decode a symbol with the selected Huffman table.

7.4.1.1 Spatial Prediction Rule
A predicted NUMCOEF for the current block, denoted as PredNumCoef, is obtained from PT and PL, corresponding to the number of non-zero coefficients of the top neighbor and the left neighbor, respectively. If PT or PL refers to an Inter block, its value is simply the NUMCOEF of that block, otherwise its value is chosen as NUMCOEF + 1 to include the DC coefficient.

When both neighbors exist, PredNumCoef = (PT + PL + 1) / 2. If one of the specified neighbors does not exist, i.e., its position goes beyond the boundary of the frame, the number from the other neighbor is used directly as PredNumCoef. If both neighbors do not exist, a default value of 1 is used as the prediction. If a specified neighbor is not coded by the encoder, its number of non-zero coefficients is treated as zero.

Since an 8x8 block can be in one of the 8x8, 8x4, 4x8, or 4x4 transform modes, the rules specified in Table 48 and Table 49 are applied to get PT or PL, depending on the transform modes of the current 8x8 block and the specified neighboring block. Intra mode is treated as an 8x8 mode. Here we denote N0, N1, N2, and N3 as the number of non-zero coefficients (including DC for Intra blocks) of the four possible sub-blocks of an 8x8 block. The relationship between these numbers and all possible sub-blocks are shown in Figure 56. Note that the rules in Table 48 and Table 49 are applied even if the current block and/or the top block belongs to a field-coded MB in Interlace frame mode.

[image: image69.emf]N0

N0 N1

N2 N3

N0

N1

N0 N1

Figure 56: Block partitions and the corresponding NUMCOEF of all sub-blocks.

Table 48: Definition of PT (NUMCOEF of a top neighbor)
	Current Sub-block
	Neighbor in 8x8 mode
	Neighbor in 8x4 mode
	Neighbor in 4x8 mode
	Neighbor in 4x4 mode

	8x8
	N0
	N0 + N1
	N0 + N1
	N0+N1+N2+N3

	8x4 top
	(N0 + 1) / 2
	N1
	(N0 + N1 + 1) / 2
	N2 + N3

	8x4 bottom
	Impossible
	N0
	Impossible
	Impossible

	4x8 left
	(N0 + 1) / 2
	(N0 + N1 + 1) / 2
	N0
	N0 + N2

	4x8 right
	(N0 + 1) / 2
	(N0 + N1 + 1) / 2
	N1
	N1 + N3

	4x4 No. 0
	(N0 + 2) / 4
	(N1 + 1) / 2
	(N0 + 1) / 2
	N2

	4x4 No. 1
	(N0 + 2) / 4
	(N1 + 1) / 2
	(N1 + 1) / 2
	N3

	4x4 No. 2
	Impossible
	Impossible
	Impossible
	N0

	4x4 No. 3
	Impossible
	Impossible
	Impossible
	N1

Table 49: Definition of PL (NUMCOEF of a left neighbor)
	Current Sub-block
	Neighbor in 8x8 mode
	Neighbor in 8x4 mode
	Neighbor in 4x8 mode
	Neighbor in 4x4 mode

	8x8
	N0
	N0 + N1
	N0 + N1
	N0+N1+N2+N3

	8x4 top
	(N0 + 1) / 2
	N0
	(N0 + N1 + 1) /2
	N0+N1

	8x4 bottom
	(N0 + 1) / 2
	N1
	(N0 + N1 + 1) /2
	N2+N3

	4x8 left
	(N0 + 1) / 2
	(N0 + N1 + 1) /2
	N1
	N1+N3

	4x8 right
	Impossible
	Impossible
	N0
	Impossible

	4x4 No. 0
	(N0 + 2) / 4
	(N0+1) / 2
	(N1+1)/2
	N1

	4x4 No. 1
	Impossible
	Impossible
	Impossible
	N0

	4x4 No. 2
	(N0 + 2) / 4
	(N1+1) / 2
	(N1+1) / 2
	N3

	4x4 No. 3
	Impossible
	Impossible
	Impossible
	N2

7.4.1.2 Context Decision Rule

The thresholds for NUMCOEF context decision are given in Table 50. There are four contexts for Inter blocks and three for Intra blocks. The following pseudo-code illustrates how to decide the context for NUMCOEF, where MaxContext = 4 for Inter blocks and MaxContext = 3 for Intra blocks.

Context = 0;

While (Context < MaxContext – 1

 && PredNumCoef > ContextThresholds_NUMCOEF[BlkMode][Context]) {
Context ++;

}

Table 50: NUMCOEF Context Partition Thresholds

	Block Mode
	Context 0 Threshold
	Context 1 Threshold
	Context 2 Threshold

	8x8
	1
	4
	12

	8x4/4x8
	1
	4
	8

	4x4
	1
	3
	6

	INTRA
	6
	18
	63

7.4.1.3 Decoding of NUMCOEF for Inter Mode

Three sets of VLC tables are provided for Inter-mode blocks. One for 8x8 blocks, one for 8x4 and 4x8 blocks, and one for 4x4 blocks. Each contains 4 contexts.

In the Huffman table for each context, the first four symbols not only specify that there are up to four non-zero coefficients in the current block, but also indicate that all these coefficients are ISLs, i.e., all have absolute values of ones.

Let N be the size of a coded sub-block. The value of N is 64, 32, 32, and 16 for Inter coded 8x8, 8x4, 4x8, and 4x4 sub-block. N = 63 for Intra 8x8 AC coefficients. For a sub-block of size N, the number of non-zero coefficients in a coded block ranges from 1 to N. This implies that there are 64 possibilities for N = 64 and 32 possibilities for N=32. To reduce the table size, an escape coding method is applied in the first three Inter-mode contexts when N is 64 or 32.

For Inter 8x8 blocks, only the last context covers all possible values of NUMCOEF. The tables for the first three contexts only cover NUMCOEF = 1 to NUMCOEF=33, in addition to the four ISL-only symbols. A 5-bit FLC-based escape coding is applied when NUMCOEF >= 33.

For Inter 8x4/4x8 blocks, only the last context covers all possible values of NUMCOEF. The tables for the first three contexts only cover NUMCOEF = 1 to NUMCOEF=17, in addition to the four ISL-only symbols. A 4-bit FLC-based escape coding is applied when NUMCOEF >= 17.

The numbers of symbol of all Inter-mode contexts are summarized in Table 51. The corresponding VLC tables are given in Table 75 to Table 77. Each table lists the VLC tables for all contexts, starting from the first context. The first element in each context indicates the number of symbols in that context. This number is followed by the index, codeword, and code length of all symbols in that context.

The following pseudo-code illustrates how to decode Inter-block NUMCOEF.

PredNumCoef = GetNbrBlockNumCoef();

Context = GetContext_NUMCOEF (PredNumCoef);

Index = vlc_decode (HufPtr_NUMCOEF[BlkMode][Context]);

if (Index <= 3) {

ISLONLY = TRUE;

NUMCOEF = Index + 1;

} else {

ISLONLY = FALSE;

if ((BlockMode is not 4x4) && (Context < 3) && (Index == 4 + BlockSize / 2)) {

EscBits = (BlockMode == 8x8) ? 5 : 4;

EscIndex = get_bits (EscBits);

NUMCOEF = EscIndex + BlockSize / 2 + 1;

} else {

NUMCOEF = Index – 3;

}

};

where HufPtr_NUMCOEF [BlkMode][Context] points to the Huffman table that corresponds to the current block mode and context. The function vlc_decode() represents the Huffman decoding process with the given Huffman table.

7.4.1.4 Decoding of NUMCOEF for Intra Mode

The VLC tables for Intra mode NUMCOEF have three contexts. Each context also contains four symbols for ISL-only blocks. A 5-bit FLC-based escape coding is applied in the first two contexts when NUMCOEF >= 32.

The numbers of symbol of Intra-mode contexts are also shown in Table 51. Note that only AC coefficients of Intra blocks are encoded by the A2LC method, therefore the maximum value of NUMCOEF for Intra blocks is 63. Table 78 lists the corresponding VLC table.

Table 51: Number of Symbols in Each Huffman Context for Decoding NUMCOEF.
	Block Mode
	Context 0
	Context 1
	Context 2
	Context 3

	8x8
	37
	37
	37
	68

	8x4/4x8
	21
	21
	21
	36

	4x4
	20
	20
	20
	20

	Intra
	36
	36
	67
	Not applicable

The following pseudo-code illustrates how to decode Intra-block NUMCOEF.

PredNumCoef = GetNbrBlockNumCoef();

Context = GetContext_NUMCOEF_Intra (PredNumCoef);

Index = vlc_decode (HufPtr_NUMCOEF_Intra[Context]);

if (Index <= 3) {

ISLONLY = TRUE;

NUMCOEF = Index + 1;

} else {

ISLONLY = FALSE;

if ((Context < 2) && (Index == 35)) {

 NUMCOEF = 32 + get_bits(5);

} else {

NUMCOEF = Index – 3;

}

};

7.4.2 Number of Zeros (NUMZERO)

If NUMCOEF is less than the block size, the total number of zeros (NUMZERO) up to the last non-zero coefficient is decoded next. The Huffman table is selected based on the current coding mode, transform mode of the current block, values of NUMZERO of two neighboring blocks, and NUMCOEF of the current block. The steps involved in decoding NUMZERO are as follows:

1. Predict NUMZERO from values of NUMZERO of the top neighbor and the left neighbor.

2. Decide the context of Huffman table if the current block is in Inter mode.

3. Decide the zone of Huffman table.

4. Decode a symbol with the selected Huffman table.

7.4.2.1 Spatial Prediction Rule
To decode NUMZERO, a predicted value for NUMZERO is first obtained, denoted as PredNumZero. The computation of PredNumZero has the same rules as that of NUMCOEF, as specified in Table 48 and Table 49. In this case, N0 to N3 means the NUMZERO of a sub-block in the top neighbor and the left neighbor.

7.4.2.2 Context Decision Rule

Two sets of Huffman tables are provided for the decoding of NUMZERO, one for progressive coding mode and one for interlace coding mode. In each coding mode, two contexts are available for Inter blocks, and one context is provided for Intra blocks. Therefore the prediction of NUMZERO is only required by Inter blocks. The context thresholds for progressive-mode and interlace-mode Inter blocks are identical, and are listed in Table 52 for different transform modes. The NUMZERO is decoded by Context 0 if PredNumZero is less than or equal to the threshold in Table 52.

Table 52: NUMZERO Context Partition Thresholds
	Block Mode
	Context 0 Threshold

	8x8
	16

	8x4/4x8
	8

	4x4
	6

7.4.2.3 Zone Decision Rule

To improve the coding efficiency, the selection of Huffman table is also determined by NUMCOEF, since the maximum value of NUMZERO is N – NUMCOEF for a block of size N. Therefore there are N – 1 possible scenarios, corresponding to NUMCOEF equal to 1 to N-1. To reduce the size of the VLC table, these cases are grouped into a number of zones with different resolutions, as shown in Table 53. Notice that this is not a 2-D table. It contains several 1-D tables, and each time the decoder only uses one zone to decode a NUMZERO.

Table 53: Number of zones for NUMZERO

	Block Mode
	Number of Zones

	8x8
	9

	8x4/4x8
	12

	4x4
	15

	Intra 8x8
	9

The sizes of all zones for different modes and different contexts are:

ZoneHeight_Inter_8x8 [2][9] = {

{1,
1,
1,
1,
1,
1,
1,
4, 52},

{2,
2, 2,
4,
4, 4,
4,
8, 33},

};

ZoneHeight_Inter_8x4_and_4x8 [2][12] = {
 {1,
1,
1,
1,
1,
1,
1,
1,
1, 1, 1, 20},

 {1,
1,
1,
1,
1,
1,
2,
2,
2,
2, 2, 15},

};

ZoneHeight_Intra_8x8 [9] = {1,
1,
1,
1,
1,
1,
1,
4, 51};

For Inter 4x4 mode, there are 15 zones, each corresponding to one possible value of NUMCOEF.

7.4.2.4 Decoding of NUMZERO

For a block of size N, the size of the symbol set in the n-th NUMZERO zone is determined as N – ZoneLimit_NUMZERO[n] + 1, where ZoneLimit_NUMZERO[n] represents the minimal value of NUMCOEF in the n-th zone, which can be computed from the zone definition above.

The VLC tables for the decoding of NUMZERO in interlace mode are tabulated in Table 79 through Table 82. The VLC tables for the decoding of NUMZERO in progressive mode are tabulated in Table 83 and Table 86. To reduce the table size, the number of symbols in the first seven zones of Intra-mode blocks is limited to 33. A 5-bit FLC-based escape coding is applied when NUMZERO >= 32.

The following pseudo-code illustrates how to decode the NUMZERO for Inter blocks:

PredNumZero = GetNbrBlockNumZero();

Context = GetContext_NUMZERO(PredNumZero);

Zone = GetZone_NUMZERO(NUMCOEF);

If (Interlace Coding Mode) {

NUMZERO = vlc_decode (HufPtr_NUMZERO_Interlace[BlkMode][Context][Zone]);

} else {

NUMZERO = vlc_decode (HufPtr_NUMZERO_Progressive[BlkMode][Context][Zone]);

}

The following pseudo-code illustrates how to decode the NUMZERO for Intra blocks.

Zone = GetZone_NUMZERO_Intra(NUMCOEF);

If (Interlace Coding Mode) {

index = vlc_decode (HufPtr_NUMZERO_Intra_Interlace[Zone]);

} else {

index = vlc_decode (HufPtr_NUMZERO_Intra_Progressive[Zone]);

}

if (NUMCOEF <= 7 && index == 32) {

 NUMZERO = 32 + get_bits(5);

 } else {

 NUMZERO = index;

 }

7.4.3 Outline of Level-Layer Decoding

The following pseudo-codes outline the overall structure of level-layer decoding. The Detail of each step will be described next. See section 6.1.5 for the syntax diagram of the level layer.

RUNISL1 = Decode_RUNISL1();

if (NUMCOEF – RUNISL1 > 0) {

//Function returns NUMSL and SingleTwoFound.

Decode_NUMSL(&NUMSL, &SingleTwoFound);

ISLLeft = NUMCOEF – RUNISL1 – NUMSL;

if (SingleTwoFound == FALSE) {

LevelZone = 0;

LevelThreshold[BlkMode] = IniLevelThreshold[BlkMode];

ShiftLevel = (NUMSL == 1);

for (n = NUMSL - 1; n >= 0; n--) {

VALSL(n) = Decode_VALSL();

if (n > 0 && ISLLeft) {

RUNISL(n) = Decode_RUNISL();

ISLLeft = ISLLeft - RUNISL(n);

}

}

}

}

Decode_Signs();

7.4.4 First Run of ISLs (RUNISL1)

If it is concluded during the decoding of NUMCOEF that not all coefficients are ISLs (ISLONLY = FALSE), and NUMCOEF is not 1, the first run of ISLs (RUNISL1) will be decoded, which specifies the number of ISLs at the end of the level sequence, i.e., after the last SL.

Two scenarios are considered. If NUMCOEF <= 4, the decoder knows at this point that not all of the coefficients are ISLs, thus RUNISL1 must be between 0 and NUMCOEF – 1. If NUMCOEF > 4, RUNISL1 can range from 0 to NUMCOEF. Therefore two sets of VLC tables are provided. The first one covers the cases of NUMCOEF = 2, 3, or 4, and the second table handles the cases with NUMCOEF > 4.

Table 54: Huffman Table for Inter block Short RUNISL1 (codewords are shown in binary format)

	NUMCOEF
	RUNISL1 = 0
	RUNISL1 = 1
	RUNISL1 = 2
	RUNISL1 = 3

	2
	0
	1
	--
	--

	3
	10
	0
	11
	--

	4
	00
	01
	10
	11

Table 55: Huffman Table for INTRA block Short RUNISL1 (codewords are shown in binary format)
	NUMCOEF
	RUNISL1 = 0
	RUNISL1 = 1
	RUNISL1 = 2
	RUNISL1 = 3

	2
	0
	1
	--
	--

	3
	10
	11
	0
	--

	4
	00
	01
	10
	11

7.4.4.1 Decoding of RUNISL1 when NUMCOEF <= 4

The VLC table for NUMCOEF <= 4 contains three zones, corresponding to NUMCOEF = 2, 3, or 4. The tables used by Inter and Intra blocks are given in Table 54 and Table 55, respectively.

7.4.4.2 Decoding of Inter Block RUNISL1 When NUMCOEF > 4

When NUMCOEF > 4, one set of VLC tables is shared by all of the 8x8, 8x4, 4x8, or 4x4 modes. It contains four contexts and the context number is the same as that of the NUMCOEF decoding. Each context is partitioned into 8 zones, depending on the value of NUMCOEF. The sizes of all zones are:

ZoneHeight_RUNISL1[8] = {1, 1, 1,
1,
1,
2,
4,
49};

For example, the first zone is designed for NUMCOEF = 5, and the sixth zone is for NUMCOEF = 10 and 11. The size of the symbol set for the n-th Huffman zone equals to ZoneLimit_RUNISL1 [n] + 1, where ZoneLimit_RUNISL1 [n] is the maximal allowed NUMCOEF in that zone. To reduce the table size, the number of symbols in the last zone is limited to be 34. Five-bit FLC-based escape coding is applied if RUNISL1 >= 33.

The VLC table for Inter block RUNISL1 is given in Table 87.

The following pseudo-code illustrates the decoding process for Inter blocks:

If (ISLONLY == TRUE) {

RUNISL1 = NUMCOEF;

} else {

If (NUMCOEF == 1) {

RUNISL1 = 0;

} else {

If (NUMCOEF <= 4) {

RUNISL1 = Vlc_decode (HufPtr_RUNISL1_1[NUMCOEF - 2]);

} else {

Zone = GetZone_RUNISL1(NUMCOEF);

index = Vlc_decode (HufPtr_RUNISL1_2[NUMCOEF_Context][Zone]);

if (index < 33) {

 RUNISL1= index;

} else {

RUNISL1= 33 + get_bits(5);

 }

}

}

}
7.4.4.3 Decoding of Intra-Block RUNISL1 When NUMCOEF > 4

For Intra blocks, there is only one context in the VLC table for RUNISL1, which is partitioned into 6 zones. The sizes of all zones are given by:

ZoneHeight_RUNISL1_Intra[8] = {1, 1, 2, 4, 12, 39};

The number of symbols in the last zone is also limited to be 34. A 5-bit FLC-based escape coding is applied if RUNISL1 >= 33.

The VLC table for Intra block RUNISL1 is given in Table 88.

The following pseudo-code illustrates the decoding process for INTRA blocks:

If (ISLONLY == TRUE) {

RUNISL1 = NUMCOEF;

} else {

If (NUMCOEF == 1) {

RUNISL1 = 0;

} else {

If (NUMCOEF <= 4) {

RUNISL1 = Vlc_decode (HufPtr_RUNISL1_1_Intra[NUMCOEF - 2]);

} else {

Zone = GetZone_RUNISL1_Intra(NUMCOEF);

index = Vlc_decode (HufPtr_RUNISL1_2_Intra[Zone]);

if (index < 33) {

 RUNISL1= index;

} else {

RUNISL1= 33 + get_bits(5);

 }

}

}

}

7.4.5 Number of SLs (NUMSL)

The next symbol to be decoded is the number of SLs in the block, denoted as NUMSL. Once NUMCOEF and RUNISL1 are known, the maximum number of SLs is known as NUMCOEF – RUNISL1. This value is used to select a Huffman table to decode NUMSL. NUMSL is not coded if RUNISL1 = NUMCOEF, i.e., all coefficients are ISLs. Therefore the valid value for the coded NUMSL is from 1 to NUMCOEF – RUNISL1.

7.4.5.1 Decoding of NUMSL for Inter Blocks

One set of VLC tables is shared by all Inter block modes for the decoding of NUMSL. It contains three contexts. The context decision is based on NUMCOEF, and the thresholds are given by Table 56. A NUMSL is decoded by context n if

 NUMCOEF > ContextThresholds_NUMSL [n-1]

and

NUMCOEF <= ContextThresholds_NUMSL [n] .

Table 56: Context Decision Thresholds for NUMSL

	Block Mode
	Context 0 Threshold
	Context 1 Threshold

	8x8
	10
	30

	8x4/4x8
	4
	16

	4x4
	4
	9

Each context is divided into 8 zones, determined by NUMCOEF - RUNISL1. The sizes of all zones within each context are defined by:

ZoneHeight_NUMSL[3][8] =

{

 {1, 1, 1, 1, 1, 1, 1, 57},

 {1, 1, 1, 1, 2, 4, 8, 46},

 {4, 4, 2, 2, 4, 4, 8, 36},

};

For example, the first zone in the first context corresponds to NUMCOEF - RUNISL1 = 1. All block transform modes use the same definition of zones. Therefore, for 4x4 mode, the effective zone numbers are 8, 7 and 5 in the three contexts.

To reduce the table size, the Huffman table only covers up to NUMSL= 32. An 5-bit FLC-based escape coding is applied when NUMSL>=33.

The first symbol in the Huffman table for NUMSL not only specifies that there is only one SL, but also indicates that its absolute value is two. In this case, the position of this SL in the level sequence can be computed from NUMCOEF and RUNISL1, and all levels before this SL must be ISLs. Therefore the VALSL and RUNSL are skipped and the signs of all levels are decoded directly.

The second symbol in NUMSL table implies that NUMSL = 1 and the value of the single SL is greater than 2. For index = 2 to 32, the decoded NUMSL = index. The symbol with an index of 33 is used as escape code.

The VLC table for Inter block NUMSL is given in Table 89.

The following pseudo-code illustrates the decoding process for NUMSL:

Context = GetContext_Level(NUMCOEF);

Zone = GetZone_NUMSL(NUMCOEF - RUNISL1);
index = vlc_decode (HufPtr_NUMSL[Context][Zone]);

if (index == 0) {

SingleTwoFound = TRUE;

NUMSL = 1;

} else {

SingleTwoFound = FALSE;

if (index < 33) {

NUMSL = index;

} else {

NUMSL = 33 + get_bits(5);

}
}

7.4.5.2 Decoding of NUMSL for Intra Blocks

The VLC table for Intra block NUMSL has only one context, which is also divided into 8 zones. The sizes of all zones are given by

ZoneHeight_NUMSL_Intra[8] = {1, 2, 4, 4, 4, 8, 8, 32};

The first symbol in each zone also implies the case of single-two SL. No escape coding is employed for Intra blocks.

The VLC table for Intra block NUMSL is given in Table 90.

The pseudo-code for decoding NUMSL is as follows:

Zone = GetZone_NUMSL_Intra(NUMCOEF - RUNISL1);
index = vlc_decode (HufPtr_NUMSL_Intra[Zone]);

if (index == 0) {

NUMSL = 1;

SingleTwoFound = TRUE;

} else {

NUMSL = index;

SingleTwoFound = FALSE;

}

7.4.6 Values of SLs (VALSL)

After decoding NUMSL, the value of each SL and the number of ISL before it will be decoded. This can be viewed as a second layer run-level description of the level part. The decoding proceeds backwards, from high frequency coefficients to low frequency coefficients. Notice that the minimal value for SLs is 2.

There are two sets of VLC tables for VALSL, one for Inter blocks and one for Intra blocks. Each set contains 4 zones. These tables are shown in Table 91 and Table 92.

7.4.6.1 Level Zone Decision Rule

The decoder always starts from Level zone 0. A level threshold is maintained, which is initialized to 3 for 8x8 blocks and 2 for other blocks. The level zone is increased by one if a decoded VALSL is greater than the current threshold. The threshold will be doubled in this case, as shown by the pseudo-codes below:
 if (VALSL > LevelThreshold[BlkMode] && LevelZone < 3) {

LevelThreshold[BlkMode] = LevelThreshold[BlkMode] * 2;

LevelZone = LevelZone + 1;

 }

7.4.6.2 Escape Coding for Large VALSL

The Huffman table for each zone contains 31 symbols. The absolute value of a SL can be written as

x = q * 32 + r,

where 0 <= r < 32. For x = 2 to x = 31, only r is presented in the bitstream. Otherwise, 3 symbols are decoded to reconstruct x, namely the Escape symbol, the scale q, and the remainder r. The last symbol in each Huffman table is used as the Escape symbol. The value of q is encoded by a VLC table given in Table 57, consisting of (q-1) 0s and a 1. The value of r is decoded with 5-bit FLC approach.

Table 57: Escape code for Large VALSL

	q
	Codeword

	1
	1

	2
	01

	3
	001

	4
	0001

	……
	……

7.4.6.3 Shift of Single SL

When NUMSL = 1 and SingleTwoFound is set to FALSE in the decoding of NUMSL, the minimal value of the SL is 3. To improve the coding efficiency, this value is down-shifted by 1 at the encoder before encoding. Therefore the decoder needs to increase the first VALSL by one to get the correct value.

7.4.6.4 Decoding of VALSL

The following pseudo-code illustrates the decoding of one VALSL. The initial values of LevelZone, LevelThreshold and ShiftLevel are given in Section 7.4.3.

index = vlc_decode(HufPtr_VALSL[LevelZone]);

if (index < 30) {

VALSL = index + 2;

} else {

EscScale = 1;

while (!get_bits(1)) {

EscScale ++;

}

VALSL = EscScale * 32 + get_bits(5);
}
if (ShiftLevel == TRUE) {

 VALSL ++;

 ShiftLevel = FALSE;

}

if (VALSL > LevelThreshold[BlkMode] && LevelZone < 3) {

LevelThreshold[BlkMode] = LevelThreshold[BlkMode] * 2;

LevelZone = LevelZone + 1;

}

7.4.7 Run of ISLs before Each SL (RUNISL)

The number of ISLs up to the last SL in a block is given by NUMCOEF – RUNISL1 – NUMSL. To reconstruct the level sequence, the number of ISLs before each SL is decoded after a VALSL. The decoder keeps track of the number of remaining ISLs, denoted as ISLLeft, which is initialized to be NUMCOEF – RUNISL1 – NUMSL. The value of ISLLeft is updated after the decoding of each RUNISL. No further RUNISL is needed to decode when all ISLs have been decoded (ISLLeft = 0) or all SLs have been decoded. In the first case, all remaining coefficients are SLs, and only their VALSLs are decoded. In the second case, all remaining coefficients are ISLs.

7.4.7.1 Decoding of RUNISL for Inter Blocks

The VLC table for Inter block RUNISL contains 3 contexts. The context is the same as that of NUMSL decoding. Each context is divided into 9 zones. The zone is determined by ISLLeft, since for a given ISLLeft, the possible values for the next RUNISL range from 0 to ISLLeft. The zone sizes are defined as:

ZoneHeight_RUNISL[9] = {1, 1,
1, 1, 1, 1, 2, 4, 51};

The number of symbols in the n-th zone is generally determined as ZoneLimit_RUNISL [n] + 1, where ZoneLimit_RUNISL [n] is the maximum possible ISLLeft in each zone. To reduce the table size, the number of sumbols in the last zone is limited to be 33. A 5-bit FLC-based escape coding is applied when RUNISL >= 32.

The VLC table for Inter block RUNISL is given in Table 93.

The pseudo-codes for decoding RUNISL are as follows,

Zone = GetZone_RUNISL (ISLLeft);

index = vlc_decode(HufPtr_RUNISL[Context][Zone]);

if (ISLLeft >= 32 && index == 32) {

 RUNISL = 32 + get_bits(5);

} else {

RUNISL = index;

}

7.4.7.2 Decoding of RUNISL for Intra Blocks

The VLC table for Intra blocks only has one context. It is also divided into 9 zones. The zone sizes are defined as:

ZoneHeight_RUNISL_Intra[9] = {1, 1,
1, 1, 1, 1, 2, 4, 50};

The last zone is also limited by 33 symbols. A 5-bit FLC-based escape coding is applied when RUNISL >= 32.

The VLC table for intra block RUNISL is given in Table 94.

The pseudo-codes for decoding RUNISL are as follows,

Zone = GetZone_RUNISL_Intra (ISLLeft);

index = vlc_decode(HufPtr_RUNISL_Intra[Zone]);

if (ISLLeft >= 32 && index == 32) {

 RUNISL = 32 + get_bits(5);

} else {

RUNISL = index;

}

7.4.8 Signs of Coefficients (SIGN)

The last part of the level layer is to decode the signs of all non-zero coefficients. Each sign is represented by one bit, 0 for positive and 1 for negative. The signs are also decoded backwards, from high frequency coefficients to low frequency coefficients. If NUMCOEF indicates that all coefficients of the current block are ISLs, the level layer only contains the signs of these coefficients.

7.4.9 Outline of Run-Layer Decoding

The following pseudo-codes outline the overall picture of run-layer decoding. The Detail of each step will be described next. See 6.1.5 for the syntax diagram of the run layer.

if (NUMZERO == 1) {

NUMSR = 1;

} else {

NUMSR = Decod_NUMSR();

Decode_VALSR();

}

ISRLeft = NUMCOEF – NUMSR;

if (ISRLeft) {

Decode_RUNISR();

}

7.4.10 Number of Significant Runs (NUMSR)

The run part is not presented if NUMCOEF = 1, since the number of zeros before this coefficient must be NUMZERO. In all other cases, the number of significant runs is decoded first, followed by the values of all SRs, and the number of ISRs before each SR.

The values of SRs are decoded backwards, since run values at the end of the run sequence generally have large values. Backward coding can reduce the symbol set quickly, leading to improved efficiency. It also allows early termination, as described below. Based on the same rationale, the number of ISRs before each SR is decoded forwards, to take full advantage of the fact that most ISRs are at the beginning of the run sequence.

The first symbol in the run part is the number of significant runs (NUMSR), if NUMZERO > 1. NUMSR is not presented when NUMZERO = 1, as NUMSR must be 1 in this case.

Notice that for a block of size N, the upper bound for NUMSR is floor (N/2), the round-off integer value of N/2, since there must be a non-zero coefficient for each run value. This indicates that the largest table size for NUMSR is floor (N/2).

In addition to this upper bound, the largest possible NUMSR is given by MaxNUMSR = min (NUMCOEF, NUMZERO). The value of MaxNUMSR is used to choose the Huffman zone to decode NUMSR.

7.4.10.1 Decoding of NUMSR for Inter Blocks

The VLC table for NUMSR has 3 contexts, based on the value of NUMZERO. The context thresholds are given in Table 58. A NUMSR is decoded by context n if

 NUMZERO > ContextThresholds_NUMSR [n-1]

and

NUMZERO <= ContextThresholds_NUMSR [n] .

Table 58: Context Thresholds for Inter-block NUMSR

	Block Mode
	Context 0 Threshold
	Context 1 Threshold

	8x8
	20
	32

	8x4/4x8
	10
	16

	4x4
	8
	12

Each context is divided into 10 zones. The sizes of all zones are defined as:

ZoneHeight_NUMSR [10] = {1, 1, 1, 1, 1, 1, 1, 4, 8, 12};

The first zone corresponds to MaxNUMSR = 2, and the second zone corresponds to MaxNUMSR = 3, and so on. The number of symbols in the n-th zone is ZoneLimit_NUMSR[n], corresponding to NUMSR = 1 to NUMSR = ZoneLimit_NUMSR[n], where ZoneLimit_NUMSR[n] is the maximum possible MaxNUMSR in that zone.

The VLC table for Inter block NUMSR is given in Table 95.

The following pseudo-code illustrates how to decode the NUMSR:

Context_NUMSR = GetContext_NUMSR (NUMZERO);
MaxNUMSR = min (NUMCOEF, NUMZERO);

Zone = GetZone_NUMSR (MaxNUMSR);

Index = vlc_decode(HufPtr_NUMSR[Context_NUMSR][Zone]);
NUMSR = index + 1;

7.4.10.2 Decoding of NUMSR for Intra Blocks

The table for Intra-block NUMSR has two contexts, also depending on NUMZERO, and the context threshold is chosen as 24. That is, the first context is used if NUMZERO <= 24, otherwise the second context is used.

Each context is divided into seven zones, based on the value of MaxNUMSR. The sizes of all zones are given by

ZoneHeight_NUMSR_Intra [7] = {1, 1, 1, 2, 4, 8, 13};

The VLC table for intra block NUMSR is given in Table 96.

The following pseudo-code illustrates how to decode the NUMSR for Intra block:

Context_NUMSR = GetContext_NUMSR_Intra (NUMZERO);
MaxNUMSR = min (NUMCOEF, NUMZERO);

Zone = GetZone_NUMSR_Intra (MaxNUMSR);

Index = vlc_decode(HufPtr_NUMSR_Intra[Context_NUMSR][Zone]);
NUMSR = index + 1;

7.4.11 Values of Significant Runs (VALSR)

The values of all significant runs are decoded backwards. Before the decoding of each VALSR, the decoder first computes MaxVALSR, the maximum possible value for the next VALSR, which is used to select the corresponding Huffman table. The value of MaxVALSR depends on the sum of the remaining SRs (SRSumLeft) and the number of significant runs left (SRLeft). Their relationship is given by

MaxVALSR = SRSumLeft – (SRLeft – 1).

This is because the maximum VALSR can only be obtained when all but one of the remaining SRs equal to 1.

After the decoding of a VALSR, SRSumLeft is decreased by VALSR, MaxVALSR is updated by MaxVALSR = MaxVALSR – (VALSR - 1), and SRLeft is reduced by 1.

The decoding of VALSR terminates when SRleft = 1 or SRSumLeft = SRLeft. In the first case, the value of the next SR must be SRSumLeft. In the second case, all remaining SRs must eqal to 1.

7.4.11.1 Decoding of VALSR for Inter Blocks

The VLC table for VALSR has 3 contexts, based on the value of NUMCOEF. The context thresholds are given in Table 59. A NUMSR is decoded by context n if

 NUMCOEF > ContextThresholds_VALSR [n-1]

and

NUMCOEF <= ContextThresholds_VALSR [n] .

Table 59: Context Thresholds for Inter-block VALSR

	Block Mode
	Context 0 Threshold
	Context 1 Threshold

	8x8
	8
	20

	8x4/4x8
	6
	12

	4x4
	4
	10

Each context is divided into 11 zones, according to the value of MaxVALSR. The sizes of all zones are defined as:

ZoneHeight_VALSR [11] = {1, 1, 1, 1, 2, 2, 2, 2, 8, 11, 30};

This zone partition is used by all contexts. To reduce the table size, the number of symbols in the last zone is limited by 33. A 5-bit FLC-based escape coding is used when VALSR >= 33.

The VLC table for Inter block VALSR is given in Table 97.

The following pseudo-codes summarize the decoding of VALSR:

Context_VALSR = GetContext_VALSR (NUMCOEF);
SRSumLeft = NUMZERO;
MaxVALSR = SRSumLeft - NUMSR + 1;

for (SRLeft = NUMSR; SRLeft > 0; SRLeft --) {

if (SRLeft == 1) {

VALSR[0] = SRSumLeft;

break;

} else if (SRLeft == SRSumLeft) {

// set all remaining SRs to 1.

break;

}

Zone = GetZone_VALSR (MaxVALSR);

Index = vlc_decode(HufPtr_VALSR[Context_VALSR][Zone]);

if (MaxVALSR >= 33 && Index == 32) {

VALSR[SRLeft - 1] = 33 + get_bits (5);

} else {

VALSR[SRLeft - 1] = Index + 1;

}

SRSumLeft = SRSumLeft - VALSR[SRLeft - 1];

MaxVALSR = MaxVALSR - VALSR[SRLeft - 1] + 1;

}
7.4.11.2 Decoding of VALSR for Intra Blocks

The table for Intra-block VALSR has two contexts, depending on NUMCOEF, and the context threshold is chosen as 8. That is, the first context is used if NUMCOEF <= 8, otherwise the second context is used.

Each context is divided into 9 zones, based on the value of MaxVALSR. The sizes of all zones are given by

ZoneHeight_VALSR_Intra [9] = {1, 1, 1, 1, 2, 4, 4, 8, 38};

The number of symbols in the last zone is also limited by 33. A 5-bit FLC-based escape coding is used when VALSR >= 33. The decoding process is identical to that for Inter blocks.

The VLC table for intra block VALSR is given in Table 98.

7.4.12 Runs of ISRs before Each SR (RUNISR)

The number of ISRs before each SR is decoded forwards, if NUMCOEF – NUMSR > 0. The decoder keeps track of the number of ISRs left, denoted as ISRLeft, which is initialized to be NUMCOEF – NUMSR. ISRLeft is used to select an appropriate Huffman zone. After the decoding of each RUNISR, ISRLeft is decreased by RUNISR. The decoding stops when ISRLeft = 0 or the number of ISRs before all SRs have been decoded.

7.4.12.1 Decoding of RUNISR for Inter Block RUNISRs

The VLC table for RUNISR has 3 contexts, based on the value of NUMZERO. The context thresholds are shown in Table 60. A RUNISR is decoded by context n if

 NUMZERO > ContextThresholds_ RUNISR [n-1]

and

NUMZERO <= ContextThresholds_ RUNISR [n] .

Table 60: Context Thresholds for Inter-block RUNISR

	Block Mode
	Context 0 Threshold
	Context 1 Threshold

	8x8
	8
	20

	8x4/4x8
	6
	12

	4x4
	4
	10

Each context is divided into 9 zones, based on the value of ISRLeft. The sizes of all zones are defined as:

ZoneHeight_RUNISR [9] = {1, 1, 1, 1, 1, 2, 4, 8, 43};

The number of symbols in the last zone of each context is limited by 33. A 5-bit FLC-based escape coding is used when RUNISR >= 32. The VLC table for Inter block RUNISR is given in Table 99.

The following pseudo-code illustrates how to decode all RUNISRs:

ISRLeft = NUMCOEF - NUMSR;
if (ISRLeft) {

Context = getContext_RUNISR (NUMZERO);
for (n = 0; n < NUMSR && ISRLeft > 0; n ++) {

Zone = GetZone_RUNISR (ISRLeft);

Index = vlc_decode (HufPtr_RUNISR[Context][Zone]);

if (ISRLeft >= 32 && Index == 32) {

RUNISR[n]= 32 + get_bits(5);

 } else {

RUNISR[n]= Index;

 }

ISRLeft = ISRLeft - RUNISR[n];

}
}
7.4.12.2 Decoding of RUNISR for Intra Block RUNISR

The table for Intra-block RUNISR has two contexts, depending on NUMZERO, and the context threshold is chosen as 24. That is, the first context is used if NUMZERO <= 24, otherwise the second context is used.

Each context is divided into 7 zones, based on the value of ISRLeft. The sizes of all zones are defined as:

ZoneHeight_RUNISR_Intra [7] = {1, 1, 1, 1, 4, 8, 45};

The number of symbols in the last zone of each context is also limited by 33. A 5-bit FLC-based escape coding is used when RUNISR >= 32. The decoding process is similar to that of the Inter blocks.

The VLC table for Intra block RUNISR is given in Table 100.

7.5 Overlapped Transform

If the sequence layer syntax element OVERLAP is set to 1, then a filtering operation is conditionally performed across edges of two neighboring Intra blocks, for both the luminance and chrominance channels. This filtering operation (referred to as overlap smoothing) is performed subsequent to decoding the frame, and prior to in-loop deblocking. However, overlap smoothing may be done after the relevant macroblock slices are decoded as this is functionally equivalent to smoothing after decoding the entire frame.

Overlapped transforms are modified block based transforms that exchange information across the block boundary. With a well designed overlapped transform, blocking artifacts can be minimized. For intra blocks, VC9 simulates an overlapped transform by coupling an 8x8 TRANSFORM-like block transform with overlap smoothing. Edges of an 8x8 block that separate two intra blocks are smoothed – in effect an overlapped transform is implemented at this interface.

Figure 57 shows a portion of a P frame with I blocks. This could be either the Y or U/V channel. I blocks are gray (or crosshatched) and P blocks are white. The edge interface over which overlap smoothing is applied is marked with a crosshatch pattern. Overlap smoothing is applied to two pixels on either side of the separating boundary. The right bottom area of frame is shown here as an example. Pixels occupy individual cells and blocks are separated by heavy lines. The dark circle marks the 2x2 pixel corner subblock that is filtered in both directions.

The lower inset in Figure 57 shows four labeled pixels, a0 and a1 are to the left and b1, b0 to the right of the vertical block edge. The upper inset shows pixels marked p0, p1, q1 and q0 straddling a horizontal edge. The next section describes the filter applied to these four pixel locations.
[image: image70.emf]

a0 a1 b1 b0

p0 p1 q1 q0

Figure 57: Example showing overlap smoothing
7.5.1 Overlap Smoothing in Main and Simple Profiles
Overlap smoothing in main and simple profiles is applied subject to the following conditions:
1. All 8x8 block boundaries (except those at the periphery of the frame) are smoothed for I frames

2. Only block boundaries separating two intra blocks are smoothed for P frames

3. No overlap smoothing is performed for predicted B frames, i.e. B frames that are not encoded as Intra
4. Subject to the above, overlap smoothing is applied only if the frame level quantization step size PQUANT is 9 or above

5. There is no dependence on DQUANT or differential quantization across macroblocks

Overlap smoothing is carried out on the unclamped 10 bit reconstruction. In other words, the input to the overlap smoothing process is raw, unclamped 10 bit inverse transformed spatial pixels. This is necessary because the forward process associated with overlap smoothing may result in range expansion beyond the permissible 8 bit range for pixel values. The result of overlap smoothing is clamped down to 8 bits, in line with the remainder of the pixels not touched by overlap smoothing.

Vertical edges (pixels a0, a1, b1, b0 in the above example) are filtered first, followed by the horizontal edges (pixels p0, p1, q1, q0). The intermediate result following the first stage of filtering (vertical edge smoothing) is stored in 16 bit. The core filters applied to the four pixels straddling either edge are given below:

[image: image71.wmf]3

7

0

0

1

1

7

1

1

1

1

7

1

1

0

0

7

1

0

1

0

3

2

1

0

3

2

1

0

>>

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

+

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

-

-

=

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

r

r

r

r

x

x

x

x

y

y

y

y

The original pixels being filtered are (x0, x1, x2, x3). r0 and r1 are rounding parameters, which take on alternating values of 3 and 4. For both horizontal and vertical edge filters, the rounding values are r0 = 4, r1 = 3 for odd-indexed columns and rows respectively, assuming the numbering within a block to start at 1. For even-indexed columns / rows, r0 = 3 and r1 = 4. Filtering is defined as an in-place 16 bit operation – thus the original pixels are overwritten after smoothing. For vertical edge filtering, the pixels (a0, a1, b1, b0) correspond to (x0, x1, x2, x3), which in turn get filtered to (y0, y1, y2, y3). Likewise, for horizontal edge filtering, the correspondence is with (p0, p1, q1, q0) respectively.

Pixels in the 2x2 corner, shown by the dark circle in Figure 57, are filtered in both directions. The order of filtering determines their final values, and therefore it is important to maintain the order – vertical edge filtering followed by horizontal edge filtering – for bit exactness.

7.5.2 Overlap Smoothing in Advanced Profile
Overlap smoothing is applied subject to the following conditions:

1. No overlap smoothing is performed for any frame if the sequence level OVERLAP flag is false – the remainder of these rules apply only when OVERLAP is true

2. No overlap smoothing is performed for predicted B frames, i.e. B frames that are not encoded as Intra

3. Only block boundaries separating two intra blocks are smoothed for P frames such that

a. Picture level quantization step size PQUANT is 9 or higher, regardless of HALFQP

4. For I frames, and B frames encoded as I, 8x8 block boundaries (except those at the periphery of the frame) are smoothed as per the following rules

b. When picture level quantization step size PQUANT is 9 or higher (regardless of HALFQP), all 8x8 block boundaries (except those at the periphery of the frame) are smoothed

c. When picture level quantization step size PQUANT is 8 or lower (regardless of HALFQP), no 8x8 block boundaries are smoothed if the conditional overlap flag CONDOVER is 0 binary.

d. When picture level quantization step size PQUANT is 8 or lower (regardless of HALFQP), all 8x8 block boundaries (except those at the periphery of the frame) are smoothed if the conditional overlap flag CONDOVER is 10 binary

e. When picture level quantization step size PQUANT is 8 or lower (regardless of HALFQP), some 8x8 block boundaries (except those at the periphery of the frame) are smoothed if the conditional overlap flag CONDOVER is 11 binary as per the following rules

i. Internal 8x8 block boundaries within the luminance plane of a macroblock are smoothed when the OVERFLAGS pattern for the macroblock is 1

ii. 8x8 block boundaries between adjacent macroblocks (both luminance and chrominance) are smoothed only when the OVERFLAGS pattern for both adjacent macroblocks are 1

5. There is no dependence on DQUANT or differential quantization across macroblocks

Conditional overlap is applicable only for I frames. Conditional overlap allows the selective smoothing of 8x8 block boundaries within macroblocks and between adjacent macroblocks. The signaling is based on one binary symbol per macroblock – which is interpreted in a strict sense to mean that an edge between macroblocks is filtered only if both macroblocks’ OVERFLAGS are 1. There is no block or block edge level control.

Overlap smoothing is carried out on the unclamped 10 bit reconstruction. This is necessary because the forward process associated with overlap smoothing may result in range expansion beyond the permissible 8 bit range for pixel values. The result of overlap smoothing is clamped down to 8 bits, in line with the remainder of the pixels not touched by overlap smoothing.

Vertical edges (pixels a0, a1, b1, b0 in the above example) are filtered first, followed by the horizontal edges (pixels p0, p1, q1, q0). The intermediate result following the first stage of filtering (vertical edge smoothing) is stored in 16 bit. The core filters applied to the four pixels straddling either edge are given below:

[image: image72.wmf]3

7

0

0

1

1

7

1

1

1

1

7

1

1

0

0

7

1

0

1

0

3

2

1

0

3

2

1

0

>>

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

+

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

-

-

=

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

r

r

r

r

x

x

x

x

y

y

y

y

The original pixels being filtered are (x0, x1, x2, x3). r0 and r1 are rounding parameters, which take on alternating values of 3 and 4 to ensure statistically unbiased rounding. The original values are filtered by the matrix with entries that are clearly easy to implement. These values, after adding the rounding factors, are bit shifted by three bits to give the filtered output (y0, y1, y2, y3).

For both horizontal and vertical edge filters, the rounding values are r0 = 4, r1 = 3 for odd-indexed columns and rows respectively, assuming the numbering within a block to start at 1. For even-indexed columns / rows, r0 = 3 and r1 = 4. Filtering is defined as an in-place operation – thus the original pixels are overwritten after smoothing. For vertical edge filtering, the pixels (a0, a1, b1, b0) correspond to (x0, x1, x2, x3), which in turn get filtered to (y0, y1, y2, y3). Likewise, for horizontal edge filtering, the correspondence is with (p0, p1, q1, q0) respectively.

Pixels in the 2x2 corner, shown by the dark circle in Figure 57, are filtered in both directions. The order of filtering determines their final values, and therefore it is important to maintain the order – vertical edge filtering followed by horizontal edge filtering – for bit exactness. Conceptually, clamping is to be performed subsequent to the two directional filtering stages, on all pixels that are filtered. However, there may be some computational advantage to combining clamping with filtering – this is an implementation issue as long as it is done carefully to generate the correct output.

7.6 In-loop Deblock Filtering

If the sequence layer syntax element LOOPFILTER = 1, then a filtering operation is performed on each reconstructed frame. This filtering operation is performed prior to using the reconstructed frame as a reference for motion predictive coding. Therefore, it is necessary that the decoder perform the filtering operation strictly as defined.

Since the intent of loop filtering is to smooth out the discontinuities at block boundaries the filtering process operates on the pixels that border neighboring blocks. For P pictures, the block boundaries can occur at every 4th, 8th, 12th, etc pixel row or column depending on whether an 8x8, 8x4 or 4x8 Inverse Transform is used. For I pictures filtering occurs at every 8th, 16th, 24th, etc pixel row and column.
7.6.1 I Picture In-loop Deblocking
For I pictures, deblock filtering is performed at all 8x8 block boundaries. Figure 58 and Figure 59 show the pixels that are filtered along the horizontal and vertical border regions. The figures show the upper left corner of a component (luma, Cr or Cb) plane. The crosses represent pixels and the circled crosses represent the pixels that are filtered.

[image: image73.emf]
Figure 58: Filtered horizontal block boundary pixels in I picture

[image: image74.emf]
Figure 59: Filtered vertical block boundary pixels in I picture
As the figures show, the top horizontal line and first vertical line are not filtered. Although not depicted, the bottom horizontal line and last vertical line are also not filtered. In more formal terms, the following lines are filtered:

N = the number of horizontal 8x8 blocks in the plane (N*8 = horizontal frame size)

M = the number of vertical 8x8 blocks in the frame (M*8 = vertical frame size)

Horizontal lines (7,8), (15,16) … ((N – 1)*8 – 1, (N –1)*8) are filtered

Vertical lines (7, 8), (15, 16) … ((M-1)*8 - 1, (M – 1)*8) are filtered

The order in which the pixels are filtered is important. All the horizontal boundary lines in the frame are filtered first followed by the vertical boundary lines.

7.6.2 P Picture In-loop Deblocking
For P pictures, blocks may be Intra or Inter-coded. Intra-coded blocks always use an 8x8 Transform to transform the samples and the 8x8 block boundaries are always filtered. Inter-coded blocks may use an 8x8, 8x4, 4x8 or 4x4 Inverse Transform to construct the samples that represent the residual error. Depending on the status of the neighboring blocks, the boundary between the current and neighboring blocks may or may not be filtered. The decision of whether to filter a block or subblock border is as follows:

1) The boundaries between coded (at least one non-zero coefficient) subblocks (8x4, 4x8 or 4x4) within an 8x8 block are always filtered.
2) The boundary between a block or subblock and a neighboring block or subblock is not filtered if both have the same motion vector and both have no residual error (no Transform coefficients). Otherwise it is filtered.
Figure 60 shows examples of when filtering between neighboring blocks does and does not occur. In this example it is assumed that the motion vectors for both blocks is the same (if the motion vectors are different, then the boundary is always filtered). The shaded blocks or subblocks represent the cases where at least one nonzero coefficient is present.
Clear blocks or subblocks represent cases where no Transform coefficients are present. Thick lines represent the boundaries that are filtered. Thin lines represent the boundaries that are not filtered. These examples illustrate only horizontal neighbors. The same applies for vertical neighbors.
[image: image75.emf]8x8 8x8 8x8 8x8 8x4 8x8 8x4 8x8 8x4 4x8

8x4 8x4 4x4 8x8 4x4 4x8 4x4 8x4 4x4 8x4

Figure 60: Example filtered block boundaries in P frames
Figure 61 and Figure 62 shows an example of the pixels that could be filtered in a P frame. The crosses represent pixel locations and the circled crosses represent the boundary pixels that will filtered if the conditions specified above are met.

Figure 61 shows pixels filtered along horizontal boundaries. As the figure shows, the pixels on either side of the block or subblock boundary are candidates to be filtered. For the horizontal boundaries this could be every 4th and 5th, 8th and 9th, 12th and 13th etc pixel row in the frame as these are the 8x8 and 8x4 horizontal boundaries.
Figure 62 shows pixels filtered along vertical boundaries. For the vertical boundaries, every 4th and 5th, 8th and 9th, 12th and 13th etc pixel column in the frame can be filtered as these are the 8x8 and 4x8 vertical boundaries.

The first and last row and the first and last column in the frame are not filtered.
The order in which pixels are filtered is important. First, all the 8x8 block horizontal boundary lines in the frame are filtered starting from the top line. Next, all 8x4 block horizontal boundary lines in the frame are filtered starting from the top line. Next, all 8x8 block vertical boundary lines are filtered starting from the leftmost line. Last, all 4x8 block vertical boundary lines are filtered starting with the leftmost line. In all cases, the rules specified above are used to determine whether the boundary pixels are filtered for each block or subblock.
[image: image76.emf]
Figure 61: Horizontal block boundary pixels in P picture
[image: image77.emf]
Figure 62: Vertical block boundary pixels in P picture
7.6.3 Filter Operation
This section describes the filtering operation that is performed on the boundary pixels in I and P frames.

For P frames the decision criteria listed in section 7.6.2 determines which vertical and horizontal boundaries are filtered. For I frames, all the 8x8 vertical and horizontal boundaries are filtered. Since the minimum number of consecutive pixels that will be filtered in a row or column is four and the total number of pixels in a row or column will always be a multiple of four, the filtering operation is performed on segments of four pixels.
For example, if the eight pixel pairs that make up the vertical boundary between two blocks is filtered, then the eight pixels are divided into two 4-pixel segments as shown in Figure 63. In each 4-pixel segment, the third pixel pair is filtered first as indicated by the X’s. The result of this filter operation determines whether the other three pixels in the segment are also filtered, as described below.
[image: image78.emf]X X

X X

4-pixel segment

4-pixel segment

Figure 63: Four-pixel segments used in loop filtering
Figure 64 shows the pixels that are used in the filtering operation performed on the 3rd pixel pair. Pixels P4 and P5 are the pixel pairs that may be changed in the filter operation.

[image: image79.emf]P4 P5 P3 P2 P1 P6 P7 P8

Figure 64: Pixels used in filtering operation
The pseudocode of Figure 65 shows the filtering operation performed on the 3rd pixel pair in each segment. The value filter_other_3_pixels indicates whether the remaining 3 pixel pairs in the segment are also filtered. If filter_other_3_pixels = true, then the other three pixel pairs are filtered. If filter_other_3_pixels = false, then they are not filtered, and the filtering operation proceeds to the next 4-pixel segment. The pseudocode of Figure 66 shows the filtering operation that is performed on the 1st, 2nd and 4th pixel pair if filter_other_3_pixels = true.
filter_other_3_pixels = true

a0 = (2*(P3 - P6) - 5*(P4 – P5) + 4) >> 3

if (|a0| < PQUANT) {

a1 = (2*(P1 - P4) - 5*(P2 - P3) + 4) >> 3

a2 = (2*(P5 - P8) - 5*(P6 - P7) + 4) >> 3

 a3 = min(|a1|, |a2|)

if (a3 < |a0|)

{

d = 5*((sign(a0) * a3) - a0)/8

clip = (P4 – P5)/2

if (clip == 0)

filter_other_3_pixels = false
else

{

if (clip > 0)

{

if (d < 0)

d = 0

if (d > clip)

d = clip

}

else

{

if (d > 0)

d = 0

if (d < clip)

d = clip

}

P4 = P4 - d

P5 = P5 + d

}

}

else

filter_other_3_pixels = false

}

else

filter_other_3_pixels = false

Figure 65: Pseudo-code illustrating filtering of 3rd pixel pair in segment
a0 = (2*(P3 - P6) - 5*(P4 – P5) + 4) >> 3

if (|a0| < PQUANT)

{

a1 = (2*(P1 - P4) - 5*(P2 - P3) + 4) >> 3

a2 = (2*(P5 - P8) - 5*(P6 - P7) + 4) >> 3

 a3 = min(|a1|, |a2|)

if (a3 < |a0|)

{

d = 5*((sign(a0) * a3) - a0)/8

clip = (P4 – P5)/2

if (clip > 0)

{

if (d < 0)

d = 0

if (d > clip)

d = clip

P4 = P4 - d

P5 = P5 + d

}

else if (clip < 0)

{

if (d > 0)

d = 0

if (d < clip)

d = clip

P4 = P4 - d

P5 = P5 + d

}

}

}

Figure 66: Pseudo-code illustrating filtering of 1st, 2nd and 4th pixel pair in segment

This section used the vertical boundary for example purposes. The same operation is used for filtering the horizontal boundary pixels.
7.7 Bitplane Coding

Certain macroblock-specific information can be encoded in one binary symbol per macroblock. For example, whether or not any information is present for a macroblock (i.e., whether or not it is skipped) can be signaled with one binary symbol or bit. In these cases, the status for all macroblocks in a frame can be coded as a bitplane and transmitted in the frame header. VC9 uses bitplane coding in three cases to signal information about the macroblocks in a frame. These are: 1) signaling skipped macroblocks, 2) signaling field or frame macroblock mode and 3) signaling 1-MV or 4-MV motion vector mode for each macroblock. This section describes the bitplane coding scheme.
Frame-level bitplane coding is used to encode two-dimensional binary arrays. The size of each array is rowMB × colMB, where rowMB and colMB are the number of macroblock rows and columns respectively. Within the bitstream, each array is coded as a set of consecutive bits. One of seven modes is used to encode each array.

The seven modes are enumerated below.

1. Raw mode – coded as one bit per symbol

2. Normal-2 mode – two symbols coded jointly

3. Differential-2 mode – differential coding of bitplane, followed by coding two residual symbols jointly

4. Normal-6 mode – six symbols coded jointly

5. Differential-6 mode – differential coding of bitplane, followed by coding six residual symbols jointly

6. Rowskip mode – one bit skip to signal rows with no set bits

7. Columnskip mode – one bit skip to signal columns with no set bits

Section 6.2 shows the syntax elements that make up the bitplane coding scheme. The follow sections describe how to decode the bitstream and reconstruct the bitplane.
7.7.1 INVERT

The INVERT syntax element shown in the syntax diagram of Figure 31 is a one bit code, which if set indicates that the bitplane has more set bits than zero bits. Depending on INVERT and the mode, the decoder must invert the interpreted bitplane to recreate the original.
7.7.2 IMODE

The IMODE syntax element shown in the syntax diagram of Figure 31 encodes the mode used code the bitplane. The seven modes are described in section 7.7.3. Table 61 shows the codetable used to encode the IMODE syntax element.

Table 61: IMODE Codetable

	Coding mode
	Codeword

	Raw
	0000

	Norm-2
	10

	Diff-2
	001

	Norm-6
	11

	Diff-6
	0001

	Rowskip
	010

	Colskip
	011

7.7.3 DATABITS

The DATABITS syntax element shown in the syntax diagram of Figure 31 is an entropy coded stream of symbols that is based on the coding mode. The seven coding modes are described in the following sections.
7.7.3.1 Raw mode

In this mode, the bitplane is encoded as one bit per pixel scanned in the natural scan order. DATABITS is rowMB × colMB bits in length.
7.7.3.2 Normal-2 mode

If rowMB × colMB is odd, the first symbol is encoded raw. Subsequent symbols are encoded pairwise, in natural scan order. The binary VLC table in Table 62 is used to encode symbol pairs.

Table 62: Norm-2/Diff-2 Code Table

	Symbol 2n
	Symbol 2n + 1
	Codeword

	0
	0
	0

	1
	0
	100

	0
	1
	101

	1
	1
	11

7.7.3.3 Diff-2 mode

The Normal-2 method is used to produce the bitplane as described in section 7.7.3.2 and then the Diff-1 operation is applied to the bitplane as described in section 7.7.3.8.
7.7.3.4 Normal-6 mode

In the Norm-6 and Diff-6 modes, the bitplane is encoded in groups of six pixels. These pixels are grouped into either 2x3 or 3x2 tiles. The bitplane is tiled maximally using a set of rules, and the remaining pixels are encoded using a variant of row-skip and column-skip modes.

3x2 “vertical” tiles are used if and only if rowMB is a multiple of 3 and colMB is not. Else, 2x3 “horizontal” tiles are used, as shown in Figure 67.

[image: image80.emf](a) (b)

Figure 67: An example of 3x2 “vertical” tiles (a) and 2x3 “horizontal” tiles (b) – the elongated dark rectangles are 1 pixel wide and encoded using row-skip and column-skip coding.

The 6-element tiles are encoded first, followed by the column-skip and row-skip encoded linear tiles. If the array size is a multiple of 3x2 or of 2x3, the latter linear tiles do not exist and the bitplane is perfectly tiled.

The 6-element rectangular tiles are encoded using an incomplete Huffman code, i.e. a Huffman code which does not use all end nodes for encoding. Let N be the number of set bits in the tile, i.e. 0 ≤ N ≤ 6. For N < 3, a VLC is used to encode the tile. For N = 3, a fixed length escape is followed by a 5 bit fixed length code, and for N > 3, a fixed length escape is followed by the code of the complement of the tile.

The rectangular tile contains 6 bits of information. Let k be the code associated with the tile, where k = bi 2i, bi is the binary value of the ith bit in natural scan order within the tile. Hence 0 ≤ k ≤ 64. Table 63 is used to encode k.

Table 63: Code table for 2x3 and 3x2 tiles
	
	VLC / Escape symbol
	Followed by

	k
	Codeword
	Codelength
	Codeword
	Codelength

	0
	1
	1
	
	

	1
	2
	4
	
	

	2
	3
	4
	
	

	3
	0
	8
	
	

	4
	4
	4
	
	

	5
	1
	8
	
	

	6
	2
	8
	
	

	7
	2
	5
	3
	5

	8
	5
	4
	
	

	9
	3
	8
	
	

	10
	4
	8
	
	

	11
	2
	5
	5
	5

	12
	5
	8
	
	

	13
	2
	5
	6
	5

	14
	2
	5
	7
	5

	15
	3
	5
	14
	8

	16
	6
	4
	
	

	17
	6
	8
	
	

	18
	7
	8
	
	

	19
	2
	5
	9
	5

	20
	8
	8
	
	

	21
	2
	5
	10
	5

	22
	2
	5
	11
	5

	23
	3
	5
	13
	8

	24
	9
	8
	
	

	25
	2
	5
	12
	5

	26
	2
	5
	13
	5

	27
	3
	5
	12
	8

	28
	2
	5
	14
	5

	29
	3
	5
	11
	8

	30
	3
	5
	10
	8

	31
	3
	5
	7
	4

	32
	7
	4
	
	

	33
	10
	8
	
	

	34
	11
	8
	
	

	35
	2
	5
	17
	5

	36
	12
	8
	
	

	37
	2
	5
	18
	5

	38
	2
	5
	19
	5

	39
	3
	5
	9
	8

	40
	13
	8
	
	

	41
	2
	5
	20
	5

	42
	2
	5
	21
	5

	43
	3
	5
	8
	8

	44
	2
	5
	22
	5

	45
	3
	5
	7
	8

	46
	3
	5
	6
	8

	47
	3
	5
	6
	4

	48
	14
	8
	
	

	49
	2
	5
	24
	5

	50
	2
	5
	25
	5

	51
	3
	5
	5
	8

	52
	2
	5
	26
	5

	53
	3
	5
	4
	8

	54
	3
	5
	3
	8

	55
	3
	5
	5
	4

	56
	2
	5
	28
	5

	57
	3
	5
	2
	8

	58
	3
	5
	1
	8

	59
	3
	5
	4
	4

	60
	3
	5
	0
	8

	61
	3
	5
	3
	4

	62
	3
	5
	2
	4

	63
	3
	5
	1
	1

7.7.3.5 Diff-6 mode

The Normal-6 method is used to produce the bitplane as described in section 7.7.3.4 and then the Diff-1 operation is applied to the bitplane as described in section 7.7.3.8.
7.7.3.6 Row-skip mode

In the row-skip coding mode, all-zero rows are skipped with one bit overhead. The syntax is as shown in Figure 68.

[image: image81.emf]ROWSKIP

ROWBITS

Figure 68: Syntax diagram of row-skip coding

If the entire row is zero, a zero bit is sent as the ROWSKIP symbol, and ROWBITS is skipped. If there is a set bit in the row, ROWSKIP is set to 1, and the entire row is sent raw (ROWBITS). Rows are scanned from the top to the bottom of the frame.
7.7.3.7 Column-skip mode

Column-skip is the transpose of row-skip. Columns are scanned from the left to the right of the frame.
7.7.3.8 Diff-1 : Inverse differential decoding

If either differential mode (Diff-2 or Diff-6) is used, a bitplane of “differential bits” is first decoded using the corresponding normal modes (Norm-2 or Norm-6 respectively). The differential bits are used to regenerate the original bitplane. The regeneration process is a 2-D DPCM on a binary alphabet. In order to regenerate the bit at location (i, j), the predictor bp(i,j) is generated as follows (from bits b(i, j) at positions (i, j)):

[image: image82.wmf]otherwise

i

j

i

b

j

i

b

or

j

i

j

i

b

j

b

A

j

i

b

p

0

)

,

1

(

)

1

,

(

,

0

)

,

1

(

)

1

,

0

(

)

,

(

==

-

¹

-

=

=

ï

î

ï

í

ì

-

-

=

For the differential coding mode, the bitwise inversion process based on INVERT is not performed. However, the INVERT flag is used in a different capacity to indicate the value of the symbol A for the derivation of the predictor shown above. More specifically, A equal to 0 if INVERT equals to 0 and A equals to 1 if INVERT equals to 1. The actual value of the bitplane is obtained by xor’ing the predictor with the decoded differential bit value.
7.8 Sync Markers

Sync markers are known sequences of bits that are inserted at important locations in the bitstream to clearly identify these locations. There are several reasons that require sync markers – the important ones are for error resilience and for parallel decoding of the bitstream. The simple and profiles of VC9 allow sync markers to be inserted in the bitstream. The sequence level flag SYNCMARKER determines whether sync markers are enabled in the sequence. If they are enabled, sync markers are sent only for I and P frames. No sync markers are allowed in B frames, including B frames coded as Intra. When SYNCMARKER is enabled, all bitplanes are encoded as raw bitplanes and the relevant data (e.g. 4MV/1MV, skipbit) is sent at the macroblock level. Sync markers are placed only at byte boundaries.
The sync markers in simple/main profiles of VC9 are not guaranteed to be unique. However, sync markers are 24 bits in length and it is expected that even if they do randomly occur in a bitstream, such occurrences will be rare. Assuming a uniform distribution, it can be expected that one sync marker will randomly be emulated in a 224 byte long stream. For a bitrate of 1Mbps, this is equivalent to one random sync marker emulation every two minutes, or one occurrence every 3900 frames.

Sync markers may only occur at the start of a row of macroblocks (abbreviated as MB row). No sync marker is permitted in the first MB row. When sequence level SYNCMARKER is enabled, a single bit is sent at the end of every MB row, except for the last MB row in the frame, to indicate whether or not a sync marker follows. If this bit is one, it means that no sync marker follows. If this bit is zero, the remainder of the current byte is flushed out. Subsequently, the 24 bit byte aligned data is read from the bitstream. This is the sync marker.
Two sync markers are defined in VC9. These are the short and long sync markers. Both the codes are 24 bits in length, but the payload or data following the sync marker differs in length. The short sync marker, whose hex representation is 0x0000AA, is followed by a 5 byte payload. The long sync marker (hex 0x0000AB) is followed by a 10 byte payload. Note that the first two bytes of both sync markers are zeros. This design makes the implementation of hardware-based sync marker detection schemes easier.
Currently, there is no requirement on the decoder to do anything with the payload in order to be compliant with the spec. The only interoperability requirement on any decoder is that the decoder correctly handle encoded content that may have embedded sync markers, assuming that no errors are present in the bitstream. The payload may be used to transmit parity, error detection and error recovery information.
Figure 69 represents a coded (I or P) frame. Subfigure (a) shows successive macroblocks coded when SYNCMARKER is zero, (b) shows coded macroblocks when SYNCMARKER is one but no sync markers are actually sent, and (c) shows the case when both long and short sync markers are sent in the frame. The frame header, sync markers and payloads are byte aligned. The trailing 0 or 1 in all but the last slice is sent when SYNCMARKER is 1. This is necessary to ensure byte flushing in the case that a sync marker is sent at the start of the next slice. “FB” in the figure stands for flush bits or the process of stuffing between zero and seven bits to reach the end of the current byte. The value of the flush bits is zero. “SC” and “PL” stand for sync marker and payload respectively. The sync marker 0x0000AA is followed by a 5 byte payload and 0x0000AB is followed by a 10 byte payload.

There are no sync markers in B frames. For B frames, the entropy coded stream follows the order shown in Figure 69 (a) regardless of whether SYNCMARKER is 0 or 1.

[image: image83.emf]Slice 1 .

Slice 2 .

Slice N .

Frame

header

(a)

Slice 1 .

Slice 2 .

Slice N .

Frame

header

(b)

1

Slice 1 .

Slice 2 .

Frame

header

FB

FB

Slice N .

Slice 3 .

SC0

xAA

SC

0xAB

PL

5byte

PL

10byt

e

(c)

1

1

1

1

0

0

B

y

t

e

b

o

u

n

d

a

r

y

Figure 69: Sync markers in VC9 – (a) shows sequence of entropy coded data with SYNCMARKER set to zero, (b) SYNCMARKER is 1 but no sync markers are actually sent and (c) SYNCMARKER is 1, a long and a short sync marker are sent, some slices do not have sync markers

7.9 INVERSETRANSFORM Conformance

The decoding process requires strict conformance with the VC9 Inverse Transform implementation defined in Annex A.
8 Interlace syntax and semantics
8.1 Picture-level Syntax and Semantics

Each compressed video frame is made up of data structured into three hierarchical layers. This section describes the syntax and semantics of these layers. From top to bottom the layers are:


Picture


Macroblock


Block

Besides these three layers, there could be an optional slice-layer between the picture layer, and the macroblock layer.

Figure 70 through Figure 81 show the bitstream elements that make up each layer.

[image: image84.emf]Picture Layer

(Interlace Frame/Field I Picture)

ACPRED

PIC_PREAMB

REPSEQHDR

PTYPE

SEQHEADER

PQINDEX

HALFQP

PQUANTIZER

POSTPROC

CONDOVER

OVERFLAGS

TRANSACFRM

TRANSACFRM2

TRANSDCTAB

VOPDQUANT

MB LAYER

FIELDTX

Figure 70: Syntax diagram for the picture layer bitstream in Interlace Field/Frame I picture

[image: image85.emf]PQINDEX

PTYPE

HALFQP

PQUANTIZER

MVRANGE

4MVBPTAB

VOPDQUANT

TTMBF

TTFRM

TRANSDCTAB

MB LAYER

DMVRANGE

MVMODE2

LUMSCALE

LUMSHIFT

Picture Layer

(Interlace Field and

Frame P, B)

TRANSACFRM

NUMREF

REFFIELD

POSTPROC

PICPREAM

BFRACTION

DIRECTMB

FORWARDMB

SKIPMB

MBMODETAB

MVTAB

CBPTAB

2MVBPTAB

MVMODE

4MVSWITCH

INTCOMP

Figure 71: Syntax diagram for the picture layer bitstream in Interlace Field/Frame P, B picture

[image: image86.emf]CBPCY

MQDIFF

ABSMQ

ACPRED

OVERFLAGMB

BLOCK LAYER

Intra field picture

MB layer

Figure 72: Syntax diagram for macroblock layer bitstream in interlace field I picture

[image: image87.emf]MBMODE

MQDIFF

ABSMQ

ACPRED

CBPCY

BLOCK LAYER

MBMODE

MVDATA

HYBRIDPRED

CBPCY

MQDIFF

ABSMQ

TTMB

BLOCK LAYER

MBMODE

BLKMVDATA

HYBRIDPRED

CBPCY

MQDIFF

ABSMQ

TTMB

BLOCK LAYER

4MVBP

Intra MB 1MV MB 4MV MB

P Field Picture MB

Layer

Figure 73: Syntax diagram for macroblock layer bitstream in P picture

[image: image88.emf]MBMODE

MQDIFF

ABSMQ

ACPRED

CBPCY

BLOCK LAYER

BMV1

BMV2

CBPCY

MQDIFF

ABSMQ

TTMB

BLOCK LAYER

BLKMVDATA

HYBRIDPRED

CBPCY

MQDIFF

ABSMQ

TTMB

BLOCK LAYER

4MVBP

Intra MB 1MV MB 4MV MB

B Field Picture MB

Layer

INTERPMVP

FORWARDBIT

BMVTYPE

HYBRIDPRED

HYBRIDPRED

Figure 74: Syntax diagram for macroblock layer bitstream in Field B picture

[image: image89.emf]BLOCK LAYER

CBPCY

MB LAYER

(Interlace I Frame Picture)

FIELDTX

ACPRED

MQDIFF

ABSDIFF

OVERFLAGS

Figure 75: Syntax diagram for macroblock layer bitstream in Interlace Frame I picture

[image: image90.emf]MB LAYER

(Interlace Frame P Picture)

SKIPMB

MBMODE

CBPPRESENT

CBPCY

FIELDTX

ACPRED

BLOCK LAYER

MQDIFF

ABSDIFF

TTMB

Decodes up to 4 MV

BLOCK LAYER

MQDIFF

ABSDIFF

CBPCY

2MVBP / 4MVBP

MVDATA

INTRA MB INTER MB

Figure 76: Syntax diagram for macroblock layer bitstream in Interlace Frame P picture

[image: image91.emf]MB LAYER

(Interlace Frame B Picture)

SKIPMB

MBMODE

CBPPRESENT

CBPCY

FIELDTX

ACPRED

BLOCK LAYER

MQDIFF

ABSDIFF

TTMB

Decodes up to 4 MV

BLOCK LAYER

MQDIFF

ABSDIFF

CBPCY

2MVBP / 4MVBP

MVDATA

INTRA MB INTER MB

DIRECTBBIT

BMVTYPE

MVSW

Figure 77: Syntax diagram for macroblock layer bitstream in Interlace Frame B picture

[image: image92.emf]DCCOEF

ACPREDBLK

DCCOEFESC

DCSIGN

ACCOEF1

ESCMODE

ACCOEF2

LVLSIGN

ESCLR

ESCLVLSZ

ESCRUNSZ

ESCRUN

LVLSIGN2

ESCLVL

Block LAYER

(INTRA)

Figure 78: Intra Block Layer with 3D Huffman decoding in Interlace Frame.
[image: image93.emf]TTBLK

ACCOEF1

ESCMODE

ACCOEF2

ESCLVLSZ

ESCRUNSZ

ESCRUN

LVLSIGN

ESCLVL

ESCLR

LVLSIGN2

SUBBLKPAT

BLOCK LAYER

(INTER)

Figure 79: Inter Block Layer with 3D Huffman decoding in Interlace Frame.

[image: image94.emf]Block LAYER

(INTRA)

DCCOEF

ACPREDBLK

DCCOEFESC

DCSIGN

Advanced 2-Layer

Decoding LAYER

Figure 80: Intra Block Layer with advanced 2-layer coding (A2LC) method in Interlace picture.

[image: image95.emf]Block LAYER

(INTER)

TTBLK

SUBBLKPAT

Advanced 2-Layer

Decoding LAYER

Figure 81: Inter Block Layer with advanced 2-layer coding method in Interlace picture.
8.1.1 Picture layer

Data for each picture consists of a picture header followed by data for the macroblock layer. The bitstream elements that make up the interlace field/frame I, P, B pictures are shown in Figure 70 and Figure 71. The following sections give a short description of each of the bitstream elements in the picture layer.
8.1.1.1 Picture Preample (PICPREAM) (Variable size)

PICPREAM in interlace pictures is the same as described in section 6.1.1.1.
8.1.1.2 Repeat Sequence Header (REPSEQHDR)(1 bit)
REPSEQHDR is present only in interlace frame/field I pictures and it is the same as described in section 6.1.1.8
8.1.1.3 Picture Type (PTYPE) (1 bit or variable size)

PTYPE in interlace pictures is the same as described in section 6.1.1.5.
8.1.1.4 Picture Quantizer Index (PQINDEX) (5 bits)

PQINDEX in interlace pictures is the same as described in section 6.1.1.10.

8.1.1.5 Half QP Step (HALFQP) (1 bit)

HALFQP in interlace pictures is the same as described in section 6.1.1.11.
8.1.1.6 Picture Quantizer Type (PQUANTIZER) (1 bit)

PQUANTIZER in interlace pictures is the same as described in section 6.1.1.12.
8.1.1.7 Post Processing (POSTPROC)(2 bits)

POSTPROC is a 2 bits syntax element that occurs in all pictures for advanced profile when the sequence level flag POSTPROCFLAG is set to. It is the same as described in section 6.1.1.31 for progressive content.
8.1.1.8 Field/Frame Transform Coding (FIELDTX)(Variable size)
The FIELDTX syntax element is only present in interlace frame I pictures. FIELDTX is a bitplane coded syntax element that indicates the field/frame transform coding status for each macroblock in the picture. The decoded bitplane represents the interlaced status for each macroblock as a syntax element of 1-bit values in raster scan order from upper left to lower right. Refer to section 6.2 for a description of the bitplane coding. A value of 0 indicates that the corresponding macroblock is coded in frame mode. A value of 1 indicates that the corresponding macroblock is coded in field mode.
8.1.1.9 AC Prediction (ACPRED)(Variable size)
The ACPRED syntax element is only present in frame / field I pictures and it is the same as described in section 6.1.1.28.
8.1.1.10 Conditional Overlap Flag (CONDOVER) (Variable size)
CONDOVER is present only in frame / field I pictures and it is the same as described in section 6.1.1.28.
8.1.1.11 Conditional Overlap Macroblock Pattern Flags (OVERFLAGS)(Variable size)

OVERFLAGS is present only in frame / field I pictures and it is the same as described in section 6.1.1.30.
8.1.1.12 Frame-level Transform AC Coding Set Index (TRANSACFRM)(Variable size)

TRANSACFRM in interlace pictures is the same as described in section 6.1.1.31.
8.1.1.13 Frame-level Transform AC Table-2 Index (TRANSACFRM2)(Variable size)

TRANSACFRM2 in interlace pictures is the same as described in section 6.1.1.33.
8.1.1.14 Intra Transform DC Table (TRANSDCTAB)(1 bit)

TRANSDCTAB in interlace pictures is the same as described in section 6.1.1.34.
8.1.1.15 Macroblock Quantization (VOPDQUANT) (Variable size)

VOPDQUANT in interlace pictures is the same as described in section 6.1.1.24.

8.1.1.16 Number of Reference Pictures (NUMREF) (1 bit)

NUMREF is a 1 bit syntax element present only in interlace field P pictures.
8.1.1.17 Reference Field Picture Indicator (REFFIELD) (1 bit)

REFFIELD is a 1 bit syntax element present in interlace field P pictures if NUMREF = 0.
8.1.1.18 B Picture Fraction (BFRACTION)(Variable size)

BFRACTION is a VLC symbol that is sent only for interlace frame B and interlace field B pictures. It is the same as described in section 6.1.1.6.
8.1.1.19 Extended MV Range Flag (MVRANGE) (Variable size)

MVRANGE is a variable-sized syntax element present only in field / frame P and B pictures. It is the same as described in section 6.1.1.13.
8.1.1.20 Extended Differential MV Range Flag (DMVRANGE) (Variable size)

DMVRANGE is a variable sized syntax element present in field / frame P and B pictures if the sequence level syntax element EXTENDED_DMV = 1. The following table is used to encode the DMVRANGE element. See section 9.2.4.8 for a description of how the DMVRANGE value is used.
Table 64: DMVRANGE VLC Table
	Extended Horizontal Differential MV Range
	Extended Vertical Differential MV Range
	VLC Codeword (Binary)
	VLC
Size

	No
	No
	0
	1

	Yes
	No
	10
	2

	No
	Yes
	110
	3

	Yes
	Yes
	111
	3

8.1.1.21 Skipped Macroblock Decoding (SKIPMB)(Variable size)

The SKIPMB syntax element is only present in interlace frame P and interlace frame B pictures. The interlace frame P picture layer contains the SKIPMB syntax element which is a bitplane coded syntax element that indicates the skipped/not-skipped status of each macroblock in the picture. The decoded bitplane represents the skipped/not-skipped status for each macroblock as a syntax element of 1-bit values in raster scan order from upper left to lower right. Refer to section 6.2 for a description of the bitplane coding. A value of 0 indicates that the macroblock is not skipped. A value of 1 indicates that the macroblock is coded as skipped. A skipped status for a macroblock in interlace frame P picture means that the decoder shall treat this macroblock as 1 MV with the motion vector differential being zero and the coded block pattern being zero. In addition, no other information is expected to follow for this macroblock.

8.1.1.22 Motion Vector Mode (MVMODE) (Variable size)

The MVMODE syntax element is only present in interlace field P and interlace field B picture headers. It is the same as described in section 6.1.1.17.

8.1.1.23 Motion Vector Mode 2(MVMODE2) (Variable size)

The MVMODE2 syntax element is only present in interlace field P and interlace field B picture headers. It is the same as described in section 6.1.1.18.

8.1.1.24 Four Motion Vector Mode (4MVSWITCH) (1 bit)
4MVSWITCH is a 1 bit syntax element that is only present in interlace frame P and interlace frame B picture headers. 4MVSWITCH is used to indicate whether four motion vectors mode is used in the current frame.
8.1.1.25 Intensity Compensation (INTCOMP)(1 bit)

INTCOMP is a 1 bit syntax element that is only present in interlace frame P and interlace frame B picture headers. INTCOMP is used to indicate whether intensity compensation mode is used in the current frame.
8.1.1.26 Luminance Scale (LUMSCALE)(6 bits)

The LUMSCALE syntax element is present in P and B interlace field pictures if the field picture header syntax element MVMODE signals intensity compensation. It is present in P and B interlace frame pictures if the frame header syntax element INTCOMP = 1. Refer to section 7.2.8 for a description of intensity compensation.

8.1.1.27 Luminance Shift (LUMSHIFT)(6 bits)

The LUMSHIFT syntax element is only if the picture header syntax element MVMODE signals intensity compensation or INTCOMP = 1. Refer to section 7.2.8 for a description of intensity compensation.
8.1.1.28 B Frame Direct Mode Macroblock Bit Syntax Element (DIRECTMB)(Variable size)

The DIRECTMB syntax element is only present in interlace frame B pictures. It is the same as described in 6.1.1.16.
8.1.1.29 B Field Forward Mode Macroblock Bit Syntax Element (FORWARDMB)(Variable size)

The FORWARDMB syntax element is only present in interlace field B pictures. The FORWARDMB syntax element uses bitplane coding to indicate the macroblocks in the B field picture that are coded in forward mode. The FORWARDMB syntax element may also signal that the forward mode is signaled in raw mode in which case the forward mode is signaled at the macroblock level. Refer to section 7.7 for a description of the bitplane coding method.
8.1.1.30 Macroblock Mode Table (MBMODETAB) (2 or 3 bits)

The MBMODETAB syntax element is a fixed length field that is present in interlace frame P, frame B, field P and field B pictures.

For field P and field B pictures, MBMODETAB is a 3 bit value that indicates which one of the eight Huffman tables is used to decode the macroblock mode syntax element (MBMODE) in the macroblock layer. There are two sets of eight Huffman tables and the set that is being used depends on whether 4MV is used or not as indicated by the MVMODE flag.
Table 65: MBMODETAB code-table for interlace field P, B pictures
	FLC
	Macroblock Mode Huffman Table

	000
	Huffman Table 0

	001
	Huffman Table 1

	010
	Huffman Table 2

	011
	Huffman Table 3

	100
	Huffman Table 4

	101
	Huffman Table 5

	110
	Huffman Table 6

	111
	Huffman Table 7

For frame P and frame B pictures, MBMODETAB is a 2 bit value that indicates which one of the four Huffman tables in used to decode the macroblock mode syntax element (MBMODE) in the macroblock layer. There are two sets of four Huffman tables and the set that is being used depends on whether 4MV is used or not as indicated by the 4MVSWITCH flag.
Table 66: MBMODETAB code-table for interlace frame P, B pictures

	FLC
	Macroblock Mode Huffman Table

	00
	Huffman Table 0

	01
	Huffman Table 1

	10
	Huffman Table 2

	11
	Huffman Table 3

8.1.1.31 Motion Vector Table (MVTAB) (2 or 3 bits)

The MVTAB syntax element is a 2 or 3 bit value present in interlace field/frame P and B pictures. For B interlace field pictures and P and B interlace frame pictures MVTAB is a 2 bit syntax element that indicates which of the four progressive (also called one-reference) MV tables is used to code the MVDATA syntax element in the macroblock layer. For P interlace field pictures, if NUMREF = 1, then MVTAB is a 3 bit syntax element that indicates which of eight interlace Huffman tables are used to decode the motion vector data. If NUMREF = 0, MVTAB is a 2 bit syntax element that indicates which of four progressive Huffman tables are used to decode the motion vector data. Refer to section 9.2.4 for a description of the motion vector decoding process.

Table 67: MVTAB code-table
	FLC
	Motion Vector Huffman Table

	00
	Huffman Table 0

	10
	Huffman Table 1

	01
	Huffman Table 2

	11
	Huffman Table 3

	100
	Huffman Table 4

	101
	Huffman Table 5

	110
	Huffman Table 6

	111
	Huffman Table 7

The motion vector Huffman tables are listed in section 10.11.
8.1.1.32 Coded Block Pattern Table (CBPTAB) (3 bits)

The CBPTAB syntax element is a 3 bit value pesent in interlace field P, B and interlace frame P, B pictures. This syntax element signals which of four Huffman tables is used to decode the CBPCY syntax element in intra-coded or inter-coded macroblocks.
Table 68: CBPTAB code-table
	FLC
	CBP Huffman Table

	000
	Huffman Table 0

	001
	Huffman Table 1

	010
	Huffman Table 2

	011
	Huffman Table 3

	100
	Huffman Table 4

	101
	Huffman Table 5

	110
	Huffman Table 6

	111
	Huffman Table 7

8.1.1.33 2MV Block Pattern Table (2MVBPTAB) (2 bits)

The 2MVBPTAB syntax element is a 2 bit value present only in interlace frame P and interlace frame B pictures. This syntax element signals which one of four Huffman tables is used to decode the 2MV block pattern (2MVBP) syntax element in 2 MV field macroblocks.

Table 69: 2MVBP code-table
	FLC
	CBP Huffman Table

	00
	Huffman Table 0

	10
	Huffman Table 1

	01
	Huffman Table 2

	11
	Huffman Table 3

8.1.1.34 4MV Block Pattern Table (4MVBPTAB) (2 bits)

The 4MVBPTAB syntax element is a 2 bit value present only in interlace field P, B and interlace frame P, B pictures. This syntax element signals which of four Huffman tables is used to decode the 4MV block pattern (4MVBP) syntax element in 4MV macroblocks.
For interlace field P and B pictures, this syntax element is only present if the MV mode (signaled be the picture layer syntax element MVMODE) is mixed MV.

For interlace frame P and B pictures, this syntax element is only present if 4MVSWITCH = 1.

Table 70: 4MVBP code-table
	FLC
	CBP Huffman Table

	00
	Huffman Table 0

	10
	Huffman Table 1

	01
	Huffman Table 2

	11
	Huffman Table 3

8.1.1.35 Macroblock-level Transform Type Flag (TTMBF) (1 bit)

This syntax element is present only in interlace field P, B pictures and interlace frame P, B pictures. It is the same as decribed in section 6.1.1.26.
8.1.1.36 Frame-level Transform Type (TTFRM) (2 bits)

This syntax element is present only in interlace field P, B pictures and interlace frame P, B pictures. It is the same as decribed in section 6.1.1.27.

8.1.2 Slice Layer

Slice-layer can be present in interlaced coding of pictures in Advanced Profile. Refer to Section 6.1.2 for a description of the Slice layer.
8.1.3 Macroblock Layer

Data for each macroblock consists of a macroblock header followed by the block layer. Figure 72 to Figure 77 show the macroblock layer structure for interlace field I, P, B pictures and interlace frame I, P, B pictures. The elements that make up the macroblock layer are described in the following sections. The picture types that the macroblock layer syntax elements occur in are indicated in the square brackets.

8.1.3.1 Macroblock Mode (MBMODE)(Variable size)[P,B]
MBMODE is a variable-length syntax element present in interlace field P, B and interlace frame P, B macroblocks. It is described in section 9.2.4.4 for interlace field P, B pictures and section 9.5.2.3 for interlace frame P, B pictures.
8.1.3.2 Conditional Overlap Macroblock Pattern Flag (OVERFLAGMB) (1 bit) [I]

This syntax element is present only in I pictures, only when CONDOVER has the binary value 11, and when the raw mode is chosen to encode the OVERFLAGS plane. In this case, one bit is sent in the macroblock header to indicate whether or not to perform overlap filtering to edge pixels within the block and neighboring blocks. See Section 4.1.1.7 for a description.
8.1.3.3 Skip MB Bit (SKIPMBBIT)(1 bit)[P,B]

SKIPMBBIT is a 1-bit syntax element present in P and B interlace frame macroblocks if the frame level syntax element SKIPMB (see Section 6.1.1.15) indicates that the raw mode is used. If SKIPMBBIT = 1, then the macroblock is skipped.
8.1.3.4 Coded Block Pattern (CBPCY) (Variable size)[I, P,B]

CBPCY is a variable-length syntax element present in both I picture and P picture macroblock layers. Section 7.1.1.6 describes the CBPCY syntax element in I picture macroblocks and section 9.2.4.13 describes the CBPCY syntax element in P picture macroblocks.
8.1.3.5 AC Prediction Flag (ACPRED)(1 bit)[I, P,B]

The ACPRED syntax element is present in all I interlace frame and field picture macroblocks and Intra macroblocks in field and frame P and B pictures. This is a 1-bit syntax element that specifies whether the blocks were coded using AC prediction. ACPRED = 0 indicates that AC prediction is not used. ACPRED = 1 indicates that AC prediction is used. See section 7.1.1.7 for a description of the ACPRED syntax element in I pictures and section 7.2.6.1 for a description of the ACPRED syntax element in P pictures.
8.1.3.6 Macroblock Quantizer Differential (MQDIFF)(Variable size)[I,P,B]

MQDIFF is present in interlace field I, P, B pictures and interlace frame I, P, B pictures and it is the same as described in section 6.1.3.6.
8.1.3.7 Absolute Macroblock Quantizer Scale (ABSMQ)(5 bits)[I,P,B]

ABSMQ is present in interlace field I, P, B pictures and interlace frame I, P, B pictures and it is the same as described in section 6.1.3.7.
8.1.3.8 Motion Vector Data (MVDATA)(Variable size)[P,B]

MVDATA is a variable sized syntax element present in interlace field P, B and interlace frame P, B picture macroblocks. This syntax element encodes the motion vector(s) for the macroblock. See section 9.2.4.7 for a description of the motion vector decode process.

8.1.3.9 Hybrid Motion Vector Prediction (HYBRIDPRED)(1 bit)[P,B]

HYBRIDPRED is a 1-bit syntax element per motion vector, present in interlace field P picture macroblocks. Section 9.2.4.11 describes how HYBRIDPRED is used in the decoding process.

8.1.3.10 MB-level Transform Type (TTMB)(Variable size)[P,B]

TTMB is present in interlace field I, P, B pictures and interlace frame I, P, B pictures and it is the same as described in section 6.1.3.11.
8.1.3.11 Direct B Frame Coding Mode (DIRECTBBIT)(1 bit)[B]

DIRECTBBIT is a 1-bit syntax element present only in interlace frame B picture macroblocks if the frame level syntax element DIRECTMB (see section 6.1.1.16) indicates that the raw mode is used. If DIRECTBBIT = 1, then the macroblock is coded using direct mode.
8.1.3.12 B Macroblock Motion Vector 1 (BMV1)(Variable size)[B]

BMV1 is a variable sized syntax element present in interlace frame and field B picture macroblocks. This syntax element encodes the first motion vector for the macroblock. See section 9.2.4.8 for a description of the motion vector decode process.
8.1.3.13 B Macroblock Motion Vector 2 (BMV2)(Variable size)[B]

BMV2 is a variable sized syntax element present in interlace frame and field B picture macroblocks if the Interpolation mode is used. This syntax element encodes the second motion vector for the macroblock. See section 9.2.4.8 for a description of the motion vector decode process.

8.1.3.14 B Macroblock Motion Prediction Type (BMVTYPE)(Variable size)[B]
BMVTYPE is a variable sized syntax element present in interlace frame and field B picture macroblocks that indicates whether the macroblock uses forward, backward or interpolated prediction. As Table 23 shows, the value of BFRACTION (in the picture header, see section 6.1.1.6) along with BMVTYPE determine whether forward or backward prediction are indicated.

8.1.3.15 Forward B Field Coding Mode (FORWARDBIT)(1 bit)[B]

FORWARDBIT is a 1-bit syntax element present in interlace B field picture macroblocks if the field level syntax element FORWARDMB indicates that the raw mode is used. If FORWARDBIT = 1, then the macroblock is coded using forward mode.

8.1.3.16 Interpolated MV Present (INTERPMVP)(1 bit)[B]

INTERPMVP is a 1-bit syntax element present in B field macroblocks if the field level syntax element BMVTYPE indicates that the macroblock type is interpolated. If INTERPMVP = 1, then the the interpolated MV, i.e. BMV2 is present, else it is not (i.e. zero).

8.1.3.17 B Frame MV Switch (MVSW)(1 bit)[B]

MVSW is a 1-bit syntax element present in B frame macroblocks if the MB is in field mode and if the BMVTYPE is forward or backward. If MVSW = 1, then the MV type and prediction type changes from forward to backward (or backward to forward) in going from the top to the bottom field.
8.1.4 Block Layer Syntax Elements Using 3d Huffman Decoding

Figure 78 and Figure 79 show the block layer syntax elements for intra and inter-coded blocks respectively. This 3D Huffman coding method is used in simple profile, main profile, as well as when CODINGMETHOD = 0 in the advanced profile. The elements that make up the block layer are described in the following sections. Specified in square brackets are the types (intra, inter or both) in which the block elements occur. See section 8.1.5 for the block layer elements for intra and inter-coded blocks when CODINGMETHOD = 1 in the advanced profile.

8.1.4.1 Block AC Prediction Flag (ACPREDBLK)(Variable size)[intra]

The ACPREDBLK syntax element is only present in P picture intra-coded blocks and only under certain conditions. See section 7.2.6.1 for a description of when and how the ACPREDBLK syntax element is used.
8.1.4.2 Transform DC Coefficient (DCCOEF)(Variable size)[intra]

The DCCOEF syntax element is only present in intra-coded blocks. This is a variable-length codeword that encodes the Transform DC differential. Refer to section 7.1.1.8 for a description of the Transform DC decoding process. One of two code tables is used to encode the DC differentials (the table is signaled in the TRANSDCTAB syntax element in the picture header as described in section 7.1.1.3). Section 10.8 lists the DC Huffman tables.

8.1.4.3 Transform DC Coefficient (DCCOEFESC)(Variable size)[intra]

The DCCOEFESC syntax element is only present in intra-coded blocks and only if DCCOEF decodes to the escape code. The size of DCCOEFESC syntax element can be 8, 9 or 10 bits depending on the quantization step size of the block. Refer to section 7.1.1.8 for a description of the Transform DC decoding process.

8.1.4.4 Transform DC Sign (DCSIGN)(1 bit)[intra]

DCSIGN is a one-bit value that indicates the sign of the DC differential. If DCSIGN = 0, then the DC differential is positive. If DCSIGN = 1, then the DC differential is negative.

8.1.4.5 Transform AC Coefficient 1 (ACCOEF1)(Variable size)[both]

ACCOEF1 is present in both intra and inter blocks. This is a variable-length codeword that encodes the run, level and last flag for each non-zero AC coefficient. Refer to section 7.1.1.11 for a description of the Transform AC decoding process. One of three code tables is used to encode ACCOEF1. Section 10.9 lists the AC Huffman tables.

8.1.4.6 Transform AC Coefficient 2 (ACCOEF2)(Variable size)[both]

ACCOEF2 can be present in both intra and inter blocks. It is only present if ACCOEF1 decodes to the escape code and if the ESCMODE syntax element (described in section 6.1.4.7) specifies AC decoding escape mode 1 or 2 (refer to section 7.1.1.11 for a description of the Transform AC decoding process). One of three code tables is used to encode ACCOEF2. Section 10.9 lists the AC Huffman tables.

8.1.4.7 Transform AC Escape Decoding Mode (ESCMODE)(Variable size)[both]

ESCMODE can be present in both intra and inter blocks. It is only present if ACCOEF1 decodes to the escape code. ESCMODE is a variable-length codeword that signals which of three escape decoding methods are used to decode the AC coefficient. Table 24 shows the code table used to encode the escape modes.

If mode 1 or mode 2 decoding is specified, then the bitstream contains the ACCOEF2 element as described in section 6.1.4.6. If mode 3 is specified, then the bitstream contains the ESCLR, ESCRUN, ESCLVL and LVLSIGN2 elements and may contain the ESCLVLSZ and ESCRUNSZ elements as described in sections 6.1.4.13 and 6.1.4.14.

8.1.4.8 Transform AC Level Sign (LVLSIGN)(1 bit)[both]

LVLSIGN can be present in both intra and inter blocks. It will always be present unless ESMODE specifies AC decoding mode 3. LVLSIGN is a one-bit value that specifies the sign of the AC level. Refer to section 7.1.1.11 for a description of the Transform AC decoding process. If LVLSIGN = 0, then the level is positive. If LVSIGN = 1, then the level is negative.

8.1.4.9 Escape Mode 3 Last Run (ESCLR)(1 bit)[both]

ESCLR can be present in both intra and inter blocks. It is only present if ESMODE specifies AC decoding escape mode 3. ESCLR is a one-bit value that specifies whether this coefficient is the last non-zero coefficient in the block. If ESCLR = 1, then this is the last non-zero coefficient. If ESCLR = 0, then this is not the last non-zero coefficient.

8.1.4.10 Escape Mode 3 Run (ESCRUN)(Calculated size)[both]

ESCRUN can be present in both intra and inter blocks. It is only present if ESMODE specifies AC decoding escape mode 3. The size of the ESCRUN codeword is fixed throughout the frame with the size being specified in the ESCRUNSZ syntax element described in section 6.1.4.14. ESCRUN directly encodes the run value for the coefficient. For example if the size (from ESCRUNSZ) is 4 bits and the value is [0101], then the run is decoded as 5.

8.1.4.11 Escape Mode 3 Level (ESCLVL)(Calculated size)[both]

ESCLVL can be present in both intra and inter blocks. It is only present if ESMODE specifies AC decoding escape mode 3. The size of the ESCLVL codeword is fixed throughout the frame with the size being specified in the ESCLVLSZ syntax element described in section 6.1.4.13. ESCLVL directly encodes the level value for the coefficient. For example if the size (from ESCLVLSZ) is 3 bits and the value is [110], then the run is decoded as 6.

8.1.4.12 Escape Mode 3 Level Sign (LVLSGN2)(1 bit)[both]

LVLSGN2 can be present in both intra and inter blocks. It is only present if ESMODE specifies AC decoding escape mode 3. LVLSGN2 is a one-bit value that specifies the sign of the decoded level value (ESCLVL). If LVLSGN2 = 0, then level is positive. If LVLSGN2 = 1, then level is negative.

8.1.4.13 Escape Mode 3 Level Size (ESCLVLSZ)(Variable size)[both]

ESCLVLSZ can be present in both intra and inter blocks. It is only present if ESMODE specifies AC decoding escape mode 3 and if this is the first time mode 3 has been signaled within the current frame (in other words, all subsequent instances of escape mode 3 coding within this frame do not have this syntax element). ESCLVLSZ is used to specify the codeword size for the mode 3 escape-coded level values for the entire frame. Two different VLC tables, Table 25 and Table 26, are used to encode ESCLVLSZ depending on the value of PQUANT.

8.1.4.14 Escape Mode 3 Run Size (ESCRUNSZ)(2 bits)[both]

ESCRUNSZ can be present in both intra and inter blocks. It is only present if ESMODE specifies AC decoding escape mode 3 and is only present the first time escape mode 3 is signaled within the frame. ESCRUNSZ is used to specify the codeword size for the mode 3 escape-coded run values for the entire frame. The run codeword size is encoded according to Table 27.
8.1.4.15 Block-level Transform Type (TTBLK)(Variable size)[inter]

The TTBLK syntax element is present only in inter-coded blocks and only if the macroblock level syntax element TTMB (see section 6.1.3.11) indicates that the signaling level is Block. The 8x8 error blocks can be transformed using an 8x8 Transform, two 8x4 Transforms, two 4x8 Transforms or four 4x4 Transforms. The TTBLK syntax element codes the transform type for the block as well as the subblock pattern if the transform type is 8x4 or 4x8. The table used to decode the TTBLK syntax element depends on the value of PQUANT. If PQUANT is less than or equal to 4, then Table 28 is used. If PQUANT is greater than 4 and less than or equal to 12, then Table 29 is used. If PQUANT is greater than 12, then Table 30 is used. The TTBLK syntax element is not present for the first block in each macroblock since the transform type and subblock pattern decoded in TTMB is used for the first block. TTBLK is present for each coded block after the first. The subblock pattern indicates which of 8x4 or 4x8 subblocks have at least one non-zero coefficient.

8.1.4.16 Transform sub-block pattern (SUBBLKPAT)(Variable size)[inter]

The SUBBLKPAT syntax element is only present in inter-coded blocks and only if the transform type for the block is 8x4, 4x8 or 4x4.

For 4x4 transform types, the SUBBLKPAT syntax element indicates which of the 4 4x4 subblocks have at least one non-zero coefficient.

The subblock pattern is coded as a 4 bit syntax element where each bit indicates whether the corresponding subblock contains at least one non-zero coefficient. Figure 29 shows the labeling of the 4 subblocks that make up an 8x8 block. The subblock pattern is coded is coded as follows:

Subblock pattern = 8 * SB0 + 4 * SB1 + 2 * SB2 + SB3

Where:

SBx = 0 if the corresponding subblock does not contain any non-zero coefficients, and

SBx = 1 if the corresponding subblock contains at least one non-zero coefficient.

Tables 31-33 show the VLC codewords used to encode the subblock pattern. The table used depends on the value of PQUANT. If PQUANT is less than or equal to 4, then Table 31 is used. If PQUANT is greater than 4 and less than or equal to 12, then Table 32 is used. If PQUANT is greater than 12, then Table 33 is used.

For 8x4 or 4x8 transform types, the SUBBLKPAT syntax element specifies which of the two sub-blocks have at least one non-zero coefficient. The data is encoded with the following VLC table (an X indicates that the sub-block contains at least one non-zero coefficient):

Table 71: 8x4 and 4x8 Transform sub-block pattern code-table for Interlace pictures

	SUBBLKPAT VLC
	8x4 Sub-block pattern
	4x8 Sub-block pattern

	
	Top
	Bottom
	Left
	Right

	0
	X
	X
	X
	X

	10
	
	X
	
	X

	11
	X
	
	X
	

8.1.4.17 Block-level Motion Vector Data (BLKMVDATA)(Variable size)[inter]

BLKMVDATA is a syntax element that contains motion information for the block. It is a variable sized syntax element and is only present in certain situations. See section 7.2.5.1 for a description of when the BLKMVDATA syntax element is present and how it is used.

8.1.5 Block Layer Syntax Elements with Advanced 2-Layer Coding (A2LC) Method
Figure 80 and Figure 81 show the block layer syntax elements for intra and inter-coded blocks respectively, when CODINGMETHOD = 1 in the advanced profile. These figures apply to all interlace pictures. The syntax of the advanced 2-layer coding method for interlace pictures is identical to that for progressive pictures. See section 6.1.5 for a description of the syntax elements and section 7.4 for the A2LC decoding process.
9 Interlace Decoding Process

9.1 Intelace Field I Picture Decoding

The following sections describe the process for decoding field I pictures.

9.1.1 Macroblock Layer Decode
The macroblocks are coded in raster scan order form left to right. Figure 17 shows the elements that make up the I picture macroblock layer. Figure 2 shows how the frame is composed of macroblocks.
9.1.1.1 Coded Block Pattern

The coded block pattern is the same as advanced profile I pictures as described in section 7.1.1.6.

9.1.1.2 AC Prediction Flag

The ACPRED syntax element in the macroblock header is a one-bit syntax element that specifies whether AC prediction is used to decode the AC coefficients for all the blocks in the macroblock. Section 7.1.1.14 describes the AC prediction process. If ACPRED is 1, then AC prediction is used, otherwise it is not used.
9.1.2 Block Layer Decode
The 4 blocks that make up the Y component of the macroblock are coded first followed by the Cr and Cb blocks as shown in Figure 2. This section describes the process used to reconstruct the blocks.
Figure 3 shows the forward intra-coding steps used to encode the 8x8 pixel blocks. Figure 33 shows the inverse process used to reconstruct the 8x8 blocks.

As Figure 33 shows, the DC and AC Transform coefficients are coded using separate techniques. The DC coefficient is coded differentially. An optional differential coding of the left or top AC coefficients can be used. The following sections describe the process for reconstructing intra blocks in I pictures

9.1.2.1 DC Differential Bitstream Decode

The DC differential decoding process is the same as described in section 7.1.1.8.
9.1.2.2 DC Predictor
The DC Predictor is formed as described in section 7.1.1.9.
9.1.2.3 DC Inverse-quantization

The DC inverse-quantization process is described in section 7.1.1.10.
9.1.2.4 AC Coefficient Bitstream Decode

The AC Coefficient decoding process is described in section 7.1.1.11 and section 7.4.
9.1.2.5 Zig-zag Scan of AC Coefficients

The zig-zag scanning of AC coefficient is the same as described in section 7.1.1.13.
9.1.2.6 AC Prediction

The AC predition process is the same as described in section 7.1.1.14.
9.1.2.7 Inverse AC Coefficient Quantization

The inverse AC coefficient quantization process is the same as described in section 7.1.1.15.
9.1.2.8 Coefficient Scaling

For DC and AC prediction, the coefficients in the predicted blocks are scaled if the macroblocks quantizers are different than that of the current block as described in section 7.1.1.16.
9.1.2.9 Inverse Transform

After reconstruction of the Transform coefficients, the resulting 8  8 blocks are processed by a separable two‑dimensional inverse transform of size 8 by 8. The inverse transform output has a dynamic range of 10 bits. See section 7.8 regarding transform conformance.

Subsequent to the inverse transform, the process of overlap smoothing is carried out if signaled. This is covered in Section 9.7. Finally, the constant value of 128 is added to the reconstructed and possibly overlap smoothed intra block. This result is clamped to the range [0 255] and forms the reconstruction prior to loop filtering.
9.2 Interlace Field P Picture Decoding

Figure 48 shows the steps required to decode and reconstruct blocks in interlace field P pictures when the 3D Huffman coding method is used. If the advance 2-layer coding is used, the only difference is to replace the 3D decoding by the A2LC decoding. The following sections describe the process for decoding interlace field P pictures.

9.2.1 Out-of-bounds Reference Pixels

The previously one or two decoded field(s) is used as the reference for motion-compensated predictive coding of the current field P picture. The motion vectors used to locate the predicted blocks in the reference frame may include pixel locations that are outside the boundary of the reference field. In these cases, the out-of-bounds pixel values are the replicated values of the edge pixel. Figure 43 illustrates pixel replication for the upper-left corner of the frame. For motion vectors that reference out-of-field pixels, part or all of the reference block of pixels is made up of padded pixel values. The padding is conceptually considered to be infinite for the purpose of motion compensation.
9.2.2 Reference Pictures

A P Field Picture can reference either one or two previously decoded fields. The NUMREF syntax element in the picture layer is a one bit syntax element that indicates whether the current field can reference one or two previous reference field pictures. If NUMREF = 0, then the current P field picture can only reference one field. In this case, the REFFIELD syntax element follows in the picture layer bitstream. The REFFIELD syntax element is a one bit syntax element that indicates which previously decoded field is used as a reference. If REFFIELD = 0, then the temporally closest (in display order) I or P field is used as a reference. If REFFIELD = 1, then the second most temporally recent I or P field picture is used as reference.

If NUMREF = 1, then the current P field picture uses the two temporally closest (in display order) I or P field pictures as reference.
Figure 83 and Figure 82 show examples of reference field pictures for NUMREF = 0 and NUMREF = 1.

[image: image96.emf]P B

I

text

text

text

text

Current Field

B

P

Current Field

P

Temporal order

T

o

p

F

i

e

l

d

B

o

t

t

o

m

F

i

e

l

d

T

o

p

F

i

e

l

d

B

o

t

t

o

m

F

i

e

l

d

Temporal order

Figure 82: Example of two reference field pictures (NUMREF = 1)
[image: image97.emf]P B

I

text

text

text

text

Current Field

B

Temporal order

T

o

p

F

i

e

l

d

B

o

t

t

o

m

F

i

e

l

d

P

Current Field

P

T

o

p

F

i

e

l

d

B

o

t

t

o

m

F

i

e

l

d

Temporal order

Figure 83: Example of one reference field picture (NUMREF = 0) using temporally most recent reference (REFFIELD = 0)

[image: image98.emf]P B

I

text

text

text

text

Current Field

B

Temporal order

T

o

p

F

i

e

l

d

B

o

t

t

o

m

F

i

e

l

d

P

Current Field

P

T

o

p

F

i

e

l

d

B

o

t

t

o

m

F

i

e

l

d

Temporal order

Figure 84: Example of one reference field picture (NUMREF = 0) using temporally second-most recent reference (REFFIELD = 1)

9.2.3 P Picture Types

P pictures can be one of two types: 1-MV or Mixed-MV. The following sections describe each P picture type.

9.2.3.1 1-MV P Picture

In 1-MV P pictures, a single motion vector is used to indicate the displacement of the predicted blocks for all 6 blocks in the macroblock. The 1-MV mode is signaled by the MVMODE and MVMODE2 picture layer syntax elements as described in section 7.2.4.3.

9.2.3.2 Mixed-MV P Picture
In Mixed-MV P pictures, each macroblock can be encoded as a 1-MV or a 4-MV macroblock. In 4-MV macroblocks, each of the 4 luminance blocks has a motion vector associated with it. The 1-MV or 4-MV mode for each macroblock is indicated by the MBMODE syntax element at every macroblock. The Mixed-MV mode is signaled by the MVMODE and MVMODE2 picture layer syntax elements as described in section 7.2.4.3.
9.2.4 Macroblock Layer Decode

Macroblocks in P pictures can be one of 3 possible types: 1MV, 4MV, and Intra. The macroblock type is signaled by the MBMODE syntax element in the macroblock layer. The following sections describe each type and how they are signaled.

9.2.4.1 1MV Macroblocks

1MV macroblocks can occur in 1-MV and Mixed-MV P pictures. A 1MV macroblock is one where a single motion vector represents the displacement between the current and reference pictures for all 6 blocks in the macroblock. For 1MV macroblocks the MBMODE syntax element in the macroblock layer indicates three things:

1) That the macroblock type is 1MV

2) Whether the CBPCY syntax element is present

3) Whether the MVDATA syntax element is present

If the MBMODE syntax element indicates that the CBPCY syntax element is present, then the CBPCY syntax element is present in the macroblock layer in the corresponding position. The CBPCY indicates which of the 6 blocks are coded in the block layer. If the MBMODE syntax element indicates that the CBPCY syntax element is not present, then CBPCY is assumed to equal 0 and no block data is present for any of the 6 blocks in the macroblock.

If the MBMODE syntax element indicates that the MVDATA syntax element is present, then the MVDATA syntax element is present in the macroblock layer in the corresponding position. The MVDATA syntax element encodes the motion vector differential. The motion vector differential is combined with the motion vector predictor to reconstruct the motion vector. If the MBMODE syntax element indicates that the MVDATA syntax element is not present, then the motion vector differential is assumed to be zero and therefore the motion vector is equal to the motion vector predictor.

9.2.4.2 4MV Macroblocks

4MV macroblocks can only occur in Mixed-MV P pictures. A 4MV macroblock is one where each of the 4 luminance blocks in a macroblock has an associated motion vector which indicates the displacement between the current and reference pictures for that block. The displacement for the chroma blocks is derived from the 4 luminance motion vectors. The difference between the current and reference blocks is encoded in the block layer.

For 1MV macroblocks the MBMODE syntax element in the macroblock layer indicates three things:

1) That the macroblock type is 4MV

2) Whether the CBPCY syntax element is present

3) Whether the 4MVBP syntax element is present

The CBPCY syntax element indicates which of the 6 blocks are coded in the block layer. If the MBMODE syntax element indicates that the CBPCY syntax element is not present, then CBPCY is assumed to equal 0 and no block data is present for any of the 6 blocks in the macroblock.

The 4MVBP syntax element indicates which of the 4 luminance blocks contain non-zero motion vector differentials. The 4MVBP syntax element decodes to a value between 0 and 15. This value when expressed as a binary value represents a bit syntax element which indicates whether the motion vector for the corresponding luminance block is present.

[image: image99.emf]0 1

2 3

0 1 2 3

Luminance block

numbering

Corresponding bit

position of 4MVBP

 Figure 85: Association of bits in 4MVBP to luminance blocks
For each of the 4 bit positions in the 4MVBP, a value of 0 indicates that no motion vector differential (BLKMVDATA) is present for that block and the motion vector differential is assumed to be 0. A value of 1 indicates that a motion vector differential (BLKMVDATA) is present for that block in the corresponding position. For example, if 4MVBP decodes to a value of 1100 (binary), then the bitstream contains MVDATA for blocks 0 and 1 and no MVDATA is present for blocks 2 and 3.

If the MBMODE syntax element indicates that the 4MVBP syntax element is not present, then it is assumed that motion vector differential data (BLKMVDATA) is present for all 4 luminance blocks.

9.2.4.3 Intra Macroblocks

Intra macroblocks can occur in 1-MV or Mixed-MV P pictures. An Intra macroblock is one where all six blocks are coded without referencing any previous picture data. The difference between the current block pixel and a constant value of 128 is encoded in the block.

For Intra macroblocks, the MBMODE syntax element in the macroblock layer indicates two things:

1) That the macroblock type is Intra

2) Whether the CBPCY syntax element is present

If the MBMODE syntax element indicates that the CBPCY syntax element is present, then the CBPCY syntax element is present in the macroblock layer in the corresponding position. The CBPCY syntax element indicates which of the 6 blocks has AC coefficient data coded in the block layer. If the MBMODE syntax element indicates that the CBPCY syntax element is not present, then CBPCY is assumed to equal 0 and no AC coefficient data is present for any of the 6 blocks in the macroblock.
9.2.4.4 Macroblock Mode

The MBMODE syntax element indicates the macroblock type (1MV, 4MV or Intra) and also the presence of the CBP flag and MV data, as described above. Depending on whether the MVMODE syntax element indicates mixed-MV or all-1MV the MBMODE signals the information as follows:

9.2.4.5 Macroblock Mode in All-1MV Pictures

 Table 72 shows how the MBMODE signals information about the macroblock in all-1MV pictures.

Table 72: Macroblock Mode in All-1MV Pictures

	Index
	Macroblock Type
	CBP Present
	MV Present

	0
	Intra
	No
	NA

	1
	Intra
	Yes
	NA

	2
	1MV
	No
	No

	3
	1MV
	No
	Yes

	4
	1MV
	Yes
	No

	5
	1MV
	Yes
	Yes

9.2.4.6 Macroblock Mode in Mixed-1MV Pictures

 Table 73 shows how the MBMODE signals information about the macroblock in mixed-MV pictures.

Table 73: Macroblock Mode in Mixed-1MV Pictures

	Index
	Macroblock Type
	CBP Present
	MV Present

	0
	Intra
	No
	NA

	1
	Intra
	Yes
	NA

	2
	1MV
	No
	No

	3
	1MV
	No
	Yes

	4
	1MV
	Yes
	No

	5
	1MV
	Yes
	Yes

	6
	4MV
	No
	NA

	7
	4MV
	Yes
	NA

One of 8 tables is used to signal the MBMODE. The table is signaled at the picture layer via the MBMODETAB syntax element. The Huffman Mixed-MV mode tables are shown in Table 129 through Table 136. The 1-MV mode tables are shown in Table 137 through Table 144.
9.2.4.7 Macroblock Decoding Process
The following sections describe the macroblock layer decoding process for P picture macroblocks.

Refer to section 7.2.6.2 for a description of the inverse quantization process.

9.2.4.8 Decoding Motion Vector Differential
The MVDATA or BLKMVDATA syntax elements encode motion information for the blocks in the macroblock. 1MV macroblocks have a single MVDATA syntax element, and 4MV macroblocks can have between zero and four BLKMVDATA. The following sections describe how to compute the motion vector differential for the one-reference (picture layer syntax element NUMREF = 0) and two-reference (picture layer syntax element NUMREF = 1) cases.

9.2.4.8.1 Motion Vector Differentials in One-Reference Field Pictures

In field pictures that have only one reference field, each MVDATA or BLKMVDATA syntax element in the macroblock layer jointly encodes two things: 1) the horizontal motion vector differential component and 2) the vertical motion vector differential component.

The MVDATA or BLKMVDATA syntax element is a variable length Huffman codeword followed by a fixed length codeword. The value of the Huffman codeword determines the size of the fixed length codeword. The MVTAB syntax element in the picture layer specifies the Huffman table used to decode the variable sized codeword.

The following pseudocode illustrates how the motion vector differential is decoded.

The values dmv_x and dmv_y are computed in the following pseudocode. The values are defined as follows:
dmv_x: differential horizontal motion vector component

dmv_y: differential vertical motion vector component

k_x, k_y: fixed length for long motion vectors

k_x and k_y depend on the motion vector range as defined by the MVRANGE symbol (section 6.1.1.11) according to Table 43.

Table 74: k_x and k_y specified by MVRANGE

	MVRANGE
	k_x
	k_y
	range_x
	range_y

	0 (default)
	9
	8
	256
	128

	10
	10
	9
	512
	256

	110
	12
	10
	2048
	512

	111
	13
	11
	4096
	1024

extend_x: extened range for horizontal motion vector differential

extend_y: extended range for vertical motion vector differential

extend_x and extend_y are derived from the DMVRANGE picture field syntax element. If DMVRANGE indicates that extended range for the horizontal component is used, then extend_x = 1. Otherwise extend_x = 0. Similarly, if DMVRANGE indicates that extended range for the vertical component is used, then extend_y = 1 otherwise extend_y = 0.
The value halfpel_flag used in the following pseudocode is a binary value indicating whether half-pel or quarter-pel precision is used for the picture. The value of halfpel_flag is determined by the picture layer syntax element MVMODE (see section 7.2.4.3). If MVMODE specifies the mode as 1MV or Mixed MV, then halfpel_flag = 0 and quarter-pel precision is used. If MVODE specifies the mode as 1MV Half-pel or 1MV Half-pel Bilinear, then halfpel_flag = 1 and half-pel precision is used.

The offset_table is an array used in the following pseudocode and is defined as follows:

offset_table1[9] = {0, 1, 2, 4, 8, 16, 32, 64, 128,}

offset_table2[9] = {0, 1, 3, 7, 15, 31, 63, 127, 255}

if (extend_x == 1 || extend_y == 1)

offset_table = offset_table2

else

offset_table = offset_table1

index = vlc_decode()
// Use the Huffman table indicated by MVTAB in the picture layer

if (index == 0) {
val = get_bits (1 + extend_x)

 sign = 0 - (val & 1)

 dmv_x = sign ^ ((val >> 1) + 1)

 dmv_x = dmv_x – sign

dmv_y = 0

}

if (index == 71)

{

dmv_x = get_bits(k_x – halfpel_flag)

dmv_y = get_bits(k_y – halfpel_flag)

}

else

{

 index1 = (index + 1) % 9

 val = get_bits (index1 + extend_x)

 sign = 0 - (val & 1)

 dmv_x = sign ^ ((val >> 1) + offset_table[index1])

 dmv_x = dmv_x - sign

 index1 = (index + 1) / 9

 val = get_bits (index1 + extend_y)

 sign = 0 - (val & 1)

 dmv_y = sign ^ ((val >> 1) + offset_table[index1])

 dmv_y = dmv_y – sign

}

9.2.4.8.2 Motion Vector Differentials in Two-Reference Field Pictures
Two-reference Field Pictures occur in the coding of interlace frames using field pictures. Each frame of the sequence is separated into two fields, and each field is coded using what is essentially the progressive code path. Field pictures often have two reference fields and the coding of field picture motion vectors in this case is described below.
In field pictures that have two reference fields, each MVDATA or BLKMVDATA syntax element in the macroblock layer jointly encodes three things: 1) the horizontal motion vector differential component, 2) the vertical motion vector differential component and 3) whether the dominant or non-dominant predictor is used, i.e. which of the two fields is referenced by the motion vector.
The MVDATA or BLKMVDATA syntax element is a variable length Huffman codeword followed by a fixed length codeword. The value of the Huffman codeword determines the size of the fixed length codeword. The MVTAB syntax element in the picture layer specifies the Huffman table used to decode the variable sized codeword.

The following pseudocode illustrates how the motion vector differential, and dominant/non-dominant predictor information are decoded.

The values predictor_flag, dmv_x and dmv_y are computed in the following pseudocode. The values are defined as follows:
predictor_flag: binary flag indicating whether the dominant or non-dominant motion vector predictor is used (0 = dominant predictor used, 1 = non-dominant predictor used)

dmv_x: differential horizontal motion vector component

dmv_y: differential vertical motion vector component

k_x, k_y: fixed length for long motion vectors

extend_x: extened range for horizontal motion vector differential

extend_y: extended range for vertical motion vector differential

k_x and k_y depend on the motion vector range as defined by the MVRANGE symbol (section 6.1.1.11) according to Table 43.

extend_x and extend_y are derived from the DMVRANGE picture field syntax element. If DMVRANGE indicates that extended range for the horizontal component is used, then extend_x = 1. Otherwise extend_x = 0. Similarly, if DMVRANGE indicates that extended range for the vertical component is used, then extend_y = 1 otherwise extend_y = 0.

The value halfpel_flag used in the following pseudocode is a binary value indicating whether half-pel or quarter-pel precision is used for the picture. The value of halfpel_flag is determined by the picture layer syntax element MVMODE (see section 7.2.4.3). If MVMODE specifies the mode as 1MV or Mixed MV, then halfpel_flag = 0 and quarter-pel precision is used. If MVODE specifies the mode as 1MV Half-pel or 1MV Half-pel Bilinear, then halfpel_flag = 1 and half-pel precision is used.

The tables size_table and offset_table are arrays used in the following pseudocode and are defined as follows:

size_table[16] = {0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}

offset_table1[9] = {0, 1, 2, 4, 8, 16, 32, 64, 128}

offset_table2[9] = {0, 1, 3, 7, 15, 31, 63, 127, 255}

if (extend_x == 1 || extend_y == 1)

offset_table = offset_table2

else

offset_table = offset_table1

index = vlc_decode()
// Use the Huffman table indicated by MVTAB in the picture layer

if (index == 0) {

val = get_bits (1 + extend_x)

 sign = 0 - (val & 1)

 dmv_x = sign ^ ((val >> 1) + 1)

 dmv_x = dmv_x – sign

dmv_y = 0

predictor_flag = 0

}

else if (index == 125)

{

dmv_x = get_bits(k_x – halfpel_flag)

dmv_y = get_bits(k_y – halfpel_flag)

predictor_flag = dmv_y & 1

dmv_y = dmv_y >> 1

}

else

{

 index1 = (index + 1) % 9

 val = get_bits (index1 + extend_x)

 sign = 0 - (val & 1)

 dmv_x = sign ^ ((val >> 1) + offset_table[index1])

 dmv_x = dmv_x - sign

 index1 = (index + 1) / 9

 val = get_bits (size_table[index1 + 2 * extend_y])

 sign = 0 - (val & 1)

 dmv_y = sign ^ ((val >> 1) + offset_table[index1 >> 1])

 dmv_y = dmv_y – sign

 predictor_flag = index1 & 1

}

9.2.4.9 Motion Vector Predictors

Motion vectors are computed by adding the motion vector differential computed in the previous section to a motion vector predictor. The predictor is computed from three neighboring motion vectors. The following sections describe how the predictors are calculated for macroblocks in 1MV P pictures and Mixed-MV P pictures.

9.2.4.9.1 Motion Vector Predictors In 1MV P Pictures

Figure 44 shows the three motion vectors used to compute the predictor for the current macroblock. As the figure shows, the predictor is taken from the left, top and top-right macroblocks, except in the case where the macroblock is the last macroblock in the row. In this case, Predictor B is taken from the top-left macroblock instead of the top-right.

For the special case where the frame is one macroblock wide, the predictor is always Predictor A (the top predictor).

9.2.4.9.2 Motion Vector Predictors In Mixed-MV P Pictures

Figure 45 and Figure 46 show the 3 candidate motion vectors for 1MV and 4MV macroblocks in Mixed-MV P pictures. In the following figures, the larger rectangles are macroblock boundaries and the smaller rectangles are block boundaries.

For the special case where the frame is one macroblock wide, the predictor is always Predictor A (the top predictor).
Figure 45 shows the candidate motion vectors for 1MV macroblocks. The neighboring macroblocks may be 1MV or 4 MV macroblocks. The figure shows the candidate motion vectors assuming the neighbors are 4MV (i.e., predictor A is the motion vector for block 2 in the macroblock above the current and predictor C is the motion vector for block 1 in the macroblock immediately to the left of the current). If any of the neighbors are 1MV macroblocks, then the motion vector predictors shown in Figure 45 are taken to be the vectors for the entire macroblock. As the figure shows, if the macroblock is the last macroblock in the row, then Predictor B is from block 3 of the top-left macroblock instead of from block 2 in the top-right macroblock as is the case otherwise.
Figure 46 shows the predictors for each of the 4 luminance blocks in a 4MV macroblock. For the case where the macroblock is the first macroblock in the row, Predictor B for block 0 is handled differently than the remaining blocks in the row. In this case, Predictor B is taken from block 3 in the macroblock immediately above the current macroblock instead of from block 3 in the macroblock above and to the left of current macroblock, as is the case otherwise. Similarly, for the case where the macroblock is the last macroblock in the row, Predictor B for block 1 is handled differently. In this case, the predictor is taken from block 2 in the macroblock immediately above the current macroblock instead of from block 2 in the macroblock above and to the left of the current macroblock, as is the case otherwise. If the macroblock is in the first macroblock column, then Predictor C for blocks 0 and 2 are set equal to 0.

9.2.4.9.3 Dominant and Non-Dominant MV Predictors
In two-reference field P pictures, for each inter-coded macroblock, two motion vector predictors are derived. One is from the dominant field and the other is from the non-dominant field. The dominant field is considered to be the field containing the majority of the motion vector predictor candidates. In the case of a tie, the motion vector derived from the opposite field is considered to be the dominant predictor. Intra-coded macroblocks are not considered in the calculation of the dominant/non-dominant predictor. If all candidate predictor macroblocks are Intra-coded, then the dominant and non-dominant motion vector predictors are set to zero and the dominant predictor is taken to be from the opposite field.
9.2.4.10 Calculating the Motion Vector Predictor

If the NUMREF syntax element in the picture header = 0, then the current field picture can refer to only one previously coded picture. If NUMREF = 1, then the current field picture can refer to the two most recent field pictures. In the former case, a single predictor is calculated for each motion vector. In the latter case, two motion vector predictors are calculated. The following pseudocode describes how the motion vector predictors are calculated for each case. The variables fieldpred_x and fieldpred_y in the pseudocode represent the horizontal and vertical components of the motion vector predictor.

9.2.4.10.1 Motion Vector Predictors in One-Reference Field Pictures

if (predictorA is not out of bounds) {

 if (predictorC is not out of bounds) {

 if (predictorA is intra) {

 predictorA_x = 0

 predictorA_y = 0

 }

 if (predictorB is intra) {

 predictorB_x = 0

 predictorB_y = 0

 }

 if (predictorC is intra) {

 predictorC_x = 0

 predictorC_y = 0

 }

 fieldpred_x =

 median (predictorA_x, predictorB_x, predictorC_x)

 fieldpred_y =

 median (predictorA_y, predictorA_y, predictorC_y)

 }

 else {

 // predictorC is out of bounds

 if (only 1 macroblock per row) {

 if (predictorA is intra) {

 fieldpred_x = 0

 fieldpred_y = 0

 }

 else {

 // Use predictorA

 fieldpred_x = predictorA_x

 fieldpred_y = predictorA_y

 }

 }

 else {

 // Predictor C is out of bounds, use Predictor and PredictorB

 predictorC_x = 0

 predictorC_y = 0

 if (predictorA is intra) {

 predictorA_x = 0

 predictorA_y = 0

 }

 if (predictorB is intra) {

 predictorB_x = 0

 predictorB_y = 0

 }

 if (predictorC is intra) {

 predictorC_x = 0

 predictorC_y = 0

 }

 fieldpred_x =

 median (predictorA_x, predictorB_x, predictorC_x)

 fieldpred_y =

 median (predictorA_y, predictorB_y, predictorC_y)

 }

 }

}

else {

 // Predictor A is out of bounds

 if (predictorC is out of bounds) {

 fieldpred_x = 0

 fieldpred_y = 0

 }

 else {

 // Use predictorC

 fieldpred_x = predictorC_x

 fieldpred_y = predictorC_y

 }

}

9.2.4.10.2 Motion Vector Predictors in Two-Reference Field Pictures

In 2-reference pictures (NUMREF = 1) the current field can reference the two most recent fields. In this case two motion vector predictors are computed for each macroblock. One predictor is from the reference field of the same polarity and the other is from the reference field with the opposite polarity.

Given the 3 motion vector predictor candidates, the following pseudocode illustrates the process for calculating the motion vector predictors. The variables samefieldpred_x and samefieldpred_y in the pseudocode represent the horizontal and vertical components of the motion vector predictor from the same field and oppositefieldpred_x and oppositefieldpred_y represent the horizontal and vertical components of the motion vector predictor from the opposite field. The variable dominantpredictor indicates which field contains the dominant predictor. The value predictor_flag decoded from the motion vector differential indicates whether the dominant or non-dominant predictor is used.
if (predictorA is not out of bounds) {

 if (predictorC is not out of bounds) {

 if (predictorA is intra) {

 predictorA_x = 0

 predictorA_y = 0

 }

 if (predictorB is intra) {

 predictorB_x = 0

 predictorB_y = 0

 }

 if (predictorC is intra) {

 predictorC_x = 0

 predictorC_y = 0

 }

 if (predictorA is from same field) {

 samecount = samecount + 1

 samefieldpredA_x = predictorA_x

 samefieldpredA_y = predictorA_y

 oppositefieldpredA_x = scaleforopposite(predictorA_x)

 oppostiefieldpredA_y = scaleforopposite(predictorA_y)

 }

 else {

 oppositecount = oppositecount + 1

 oppositefieldpredA_x = predictorA_x

 oppostiefieldpredA_y = predictorA_y

 samefieldpredA_x = scaleforsame(predictorA_x)

 samefieldpredA_y = scaleforsame(predictorA_y)

 }

 if (predictorB is from same field) {

 samecount = samecount + 1

 samefieldpredB_x = predictorB_x

 samefieldpredB_y = predictorB_y

 oppositefieldpredB_x = scaleforopposite(predictorB_x)

 oppostiefieldpredB_y = scaleforopposite(predictorB_y)

 }

 else {

 oppositecount = oppositecount + 1

 oppositefieldpredB_x = predictorB_x

 oppostiefieldpredB _y = predictorB_y

 samefieldpredB_x = scaleforsame(predictorB_x)

 samefieldpredB_y = scaleforsame(predictorB_y)

 }

 if (predictorC is from same field) {

 samecount = samecount + 1

 samefieldpredC_x = predictorC_x

 samefieldpredC_y = predictorC_y

 oppositefieldpredC_x = scaleforopposite(predictorC_x)

 oppostiefieldpredC_y = scaleforopposite(predictorC_y)

 }

 else {

 oppositecount = oppositecount + 1

 oppositefieldpredC_x = predictorC_x

 oppostiefieldpredC _y = predictorC_y

 samefieldpredC _x = scaleforsame(predictorC_x)

 samefieldpredC _y = scaleforsame(predictorC_y)

 }

 samefieldpred_x =

 median (samefieldpredA_x, samefieldpredB_x, samefieldpredC_x)

 samefieldpred_y =

 median (samefieldpredA_y, samefieldpredA_y, samefieldpredC_y)

 oppositefieldpred_x =

 median (oppositefieldpredA_x, oppositefieldpredB_x, oppositefieldpredC_x)

 oppositefieldpred_y =

 median (oppositefieldpredA_y, oppostiefieldpredA_y, oppositefieldpredC_y)

 if (samecount > oppositecount)

 dominantpredictor = samefield

 else

 dominantpredictor = oppsositefield

 }

 else {

 // predictorC is out of bounds

 if (only 1 macroblock per row) {

 if (predictorA is intra) {

 samefieldpred_x = oppositefieldpred_x = 0

 samefieldpred_y = oppositefieldpred_y = 0

 dominantpredictor = oppositefield

 }

 else {

 // Use predictorA

 if (predictorA is from same field) {

 samefieldpred_x = predictorA_x

 samefieldpred_y = predictorA_y

 oppositefieldpred_x = scaleforopposite(predictorA_x)

 oppositefieldpred_y = scaleforopposite(predictorA_y)

 dominantpredictor = samefield

 }

 else {

 oppositefieldpred_x = predictorA_x

 oppositefieldpred_y = predictorA_y

 samefieldpred_x = scaleforsame(predictorA_x)

 samefieldpred_y = scaleforsame(predictorA_y)

 dominantpredictor = oppositefield

 }

 }

 }

 else {

 // Predictor C is out of bounds, use Predictor and PredictorB

 predictorC_x = 0

 predictorC_y = 0

 if (predictorA is intra) {

 predictorA_x = 0

 predictorA_y = 0

 }

 if (predictorB is intra) {

 predictorB_x = 0

 predictorB_y = 0

 }

 if (predictorC is intra) {

 predictorC_x = 0

 predictorC_y = 0

 }

 if (predictorA is from same field) {

 samecount = samecount + 1

 samefieldpredA_x = predictorA_x

 samefieldpredA_y = predictorA_y

 oppositefieldpredA_x = scaleforopposite(predictorA_x)

 oppostiefieldpredA_y = scaleforopposite(predictorA_y)

 }

 else {

 oppositecount = oppositecount + 1

 oppositefieldpredA_x = predictorA_x

 oppostiefieldpredA _y = predictorA_y

 samefieldpredA_x = scaleforsame(predictorA_x)

 samefieldpredA_y = scaleforsame(predictorA_y)

 }

 if (predictorB is from same field) {

 samecount = samecount + 1

 samefieldpredB_x = predictorB_x

 samefieldpredB_y = predictorB_y

 oppositefieldpredB_x = scaleforopposite(predictorB_x)

 oppostiefieldpredB_y = scaleforopposite(predictorB_y)

 }

 else {

 oppositecount = oppositecount + 1

 oppositefieldpredB_x = predictorB_x

 oppostiefieldpredB_y = predictorB_y

 samefieldpredB_x = scaleforsame(predictorB_x)

 samefieldpredB_y = scaleforsame(predictorB_y)

 }

 samefieldpred_x =

 median (samefieldpredA_x, samefieldpredB_x, samefieldpredC_x)

 samefieldpred_y =

 median (samefieldpredA_y, samefieldpredA_y, samefieldpredC_y)

 oppositefieldpred_x =

 median (oppositefieldpredA_x, oppositefieldpredB_x, oppositefieldpredC_x)

 oppositefieldpred_y =

 median (oppositefieldpredA_y, oppostiefieldpredA_y, oppositefieldpredC_y)

 if (samecount > oppositecount)

 dominantpredictor = samefield

 else

 dominantpredictor = oppsositefield

 }

 }

}

else {

 // Predictor A is out of bounds

 if (predictorC is out of bounds) {

 samefieldpred_x = oppositefieldpred_x = 0

 samefieldpred_y = oppositefieldpred_y = 0

 dominantpredictor = oppositefield

 }

 else {

 // Use predictorC

 if (predictorC is from same field) {

 samefieldpred_x = predictorC_x

 samefieldpred_y = predictorC_y

 oppositefieldpred_x = scaleforopposite(predictorC_x)

 oppositefieldpred_y = scaleforopposite(predictorC_y)

 dominantpredictor = samefield

 }

 else {

 oppositefieldpred_x = predictorC_x

 oppositefieldpred_y = predictorC_y

 samefieldpred_x = scaleforsame(predictorC_x)

 samefieldpred_y = scaleforsame(predictorC_y)

 dominantpredictor = oppositefield

 }

 }

}

The scaling operation used to derive the other field’s predictor is defined as follows:

scaleforopposite (x) {

x = x >> 1
}

scaleforsame (x) {

x = x * 2

if (x > MAXSEARCHRANGE - 1)

x = MAXSEARCHRANGE - 1

if (x < -MAXSEARCHRANGE)

x = -MAXSEARCHRANGE

}

Where MAXSEARCHRANGE is defined as the maximum allowable search range. This is a range from –MAXSEARCHRANGE to +(MAXSEARCHRANGE – 1). The value of MAXSEARCH range is either the default value or is determined by the picture element MVRANGE. See 9.2.4.8 for a description.
9.2.4.11 Hybrid Motion Vector Prediction

If the P picture is 1MV or Mixed-MV, then the motion predictor calculated in the previous section is tested relative to the A (top) and C (left) predictors to see if the predictor is explicitly coded in the bitstream. If so, then a bit is present that indicates whether to use predictor A or predictor C as the motion vector predictor. The following pseudocode illustrates hybrid motion vector prediction decoding.

The variables are defined as follows in the pseudocode:

predictor_pre_x: The horizontal motion vector predictor as calculated in the above section

predictor_pre_y: The vertical motion vector predictor as calculated in the above section

predictor_post_x: The horizontal motion vector predictor after checking for hybdrid motion vector prediction

predictor_post_y: The vertical motion vector predictor after checking for hybdrid motion vector prediction

if ((predictorA is out of bounds) || (predictorC is out of bounds)) {

 predictor_post_x = predictor_pre_x

 predictor_post_y = predictor_pre_y

}

else {

 if (predictorA is intra)

 sum = abs(predictor_pre_x) + abs(predictor_pre_y)

 else

 sum = abs(predictor_pre_x – predictorA_x) + abs(predictor_pre_y – predictorA_y)

 if (sum > 32) {

 // read next bit to see which predictor candidate to use

 if (get_bits(1) == 0) { // HYBRIDPRED field

 // use top predictor (predictorA)

 predictor_post_x = predictorA_x

 predictor_post_y = predictorA_y

 }

 else {

 // use left predictor (predictorC)

 predictor_post_x = predictorC_x

 predictor_post_y = predictorC_y

 }

 }

 else {

 if (predictorC is intra)

 sum = abs(predictor_pre_x) + abs(predictor_pre_y)

 else

 sum = abs(predictor_pre_x – predictorC_x) + abs(predictor_pre_y – predictorC_y)

 if (sum > 32) {

 // read next bit to see which predictor candidate to use

 if (get_bits(1) == 0) {

 // use top predictor (predictorA)

 predictor_post_x = predictorA_x

 predictor_post_y = predictorA_y

 }

 else {

 // use left predictor (predictorC)

 predictor_post_x = predictorC_x

 predictor_post_y = predictorC_y

 }

 }

 }

}

9.2.4.12 Reconstructing Motion Vectors
The following sections describe how to reconstruct the luminance and chroma motion vectors for 1MV and 4MV macroblocks.

9.2.4.12.1 Luminance Motion Vector Reconstruction

In all cases (1MV and 4MV macroblocks) the luminance motion vector is reconstructed by adding the differential to the predictor as follows:

mv_x = (dmv_x + predictor_x) smod range_x

mv_y = (dmv_y + predictor_y) smod range_y

The modulus operation “smod” is a signed modulus, defined as follows:

A smod b = ((A + b) % (2*b)) - b

ensures that the reconstructed vectors are valid. (A smod b) lies within –b and b – 1. range_x and range_y depend on MVRANGE and are specified in Table 43.

If the picture uses two reference pictures (NUMREF = 1), then the predictor_flag derived after decoding the motion vector differential is combined with the value of dominantpredictor derived from motion vector prediction to determine which field is used as reference. The following pseudocode describes how the reference field is determined:

if (predictor_flag == 0) {

if (dominantpredictor == samefield)

reference is from same field as current field

else

reference is from opposite field as current field

}

else {

// predictor_flag == 1

if (dominantpredictor == samefield)

reference is from opposite field as current field

else

reference is from same field as current field

}
1MV Macroblock Notes

In 1MV macroblocks there will be a single motion vector for the 4 blocks that make up the luminance component of the macroblock.

If the MBMODE syntax element indicates that no MV data is present in the macroblock layer, then dmv_x = 0 and dmv_y = 0 (mv_x = predictor_x and mv_y = predictor_y).

4MV Macroblock Notes

Each of the Inter-coded luminance blocks in a macroblock will have its own motion vector. Therefore there will be between 0 and 4 luminance motion vectors in each 4MV macroblock.

If the 4MVBP syntax element indicates that no motion vector information is present for a block, then dmv_x = 0 and dmv_y for that block (mv_x = predictor_x and mv_y = predictor_y).
9.2.4.12.2 Chroma Motion Vector Reconstruction

The chroma motion vectors are derived from the luminance motion vectors. Also, for 4MV macroblocks, the decision on whether to code the chroma blocks as Inter or Intra is made based on the status of the luminance blocks or fields. The following sections describe how to reconstruct the chroma motion vectors for 1MV and 4MV macroblocks. The chroma vectors are reconstructed in two steps.

As a first step, the nominal chroma motion vector is obtained by combining and scaling the luminance motion vectors appropriately. The scaling is performed in such a way that half-pixel offsets are preferred over quarter pixel locations.

In the second stage, a sequence level 1-bit FASTUVMC syntax element is used to determine if further rounding of chroma motion vectors is necessary. The purpose of this mode is speed optimization of the decoder. If FASTUVMC = 0, no rounding is performed in the second stage. If FASTUVMC = 1, the chroma motion vectors that are at quarter pel offsets will be rounded to the nearest full pel positions.

In addition, if FASTUVMC = 1, only bilinear filtering will be used for all chroma interpolation

The motivation for this rounding is the significant difference between the complexities of interpolating pixel offsets that are at a) integer pel; b) half pel; c) at least one coordinate (of x and y) at a quarter pel; and d) both coordinates at quarter pel positions. The ratio of a:b:c:d is roughly 1:4:4.7:6.6. By applying this mode we can favor a) and b), thus cutting down on decoding time. Since this is being done only for chroma interpolation, the coding and quality loss (especially visible quality) are both negligible.
In the sections below cmv_x and cmv_y denote the chroma motion vector components and lmv_x and lmv_y denote the luminance motion vector components.

9.2.4.12.3 First-stage Chroma Motion Vector Reconstruction - 1MV Chroma Motion Vector Case:
In a 1MV macroblock, the chroma motion vectors are derived from the luminance motion vectors as follows:

cmv_x = (lmv_x + round[1mv_x & 3]) >> 1

cmv_y = (lmv_y + round[1mv_y & 3]) >> 1

Where round[0] = 0, round[1] = 0, round[2] = 0, round[3] = 1

9.2.4.12.4 First-stage Chroma Motion Vector Reconstruction - 4MV Chroma Motion Vector Case:
The following pseudocode illustrates how the chroma motion vectors are derived from the motion information in the 4 luminance blocks in 4MV macroblocks. In this section, ix and iy are temporary variables.

Chroma Motion Vector Derivation in 1-Reference P Pictures
// lmv0_x, lmv0_y is the motion vector for block 0

// lmv1_x, lmv1_y is the motion vector for block 1

// lmv2_x, lmv2_y is the motion vector for block 2

// lmv3_x, lmv3_y is the motion vector for block 3

ix = median4(lmv0_x, lmv1_x, lmv2_x, lmv3_x)

iy = median4(lmv0_y, lmv1_y, lmv2_y, lmv3_y)

cmv_x = (ix + round[ix & 3]) >> 1

cmv_y = (iy + round[iy & 3]) >> 1

Where round[0] = 0, round[1] = 0, round[2] = 0 and round[3] = 1
Chroma Motion Vector Derivation in 2-Reference P Pictures

if (all 4 luminance block motion vectors are from same field)

{

// lmv0_x, lmv0_y is the motion vector for block 0

// lmv1_x, lmv1_y is the motion vector for block 1

// lmv2_x, lmv2_y is the motion vector for block 2

// lmv3_x, lmv3_y is the motion vector for block 3

ix = median4(lmv0_x, lmv1_x, lmv2_x, lmv3_x)

iy = median4(lmv0_y, lmv1_y, lmv2_y, lmv3_y)

}

else if (3 of the luminance block motion vectors are from same field)

{

// lmv0_x, lmv0_y,

// lmv1_x, lmv1_y,

// lmv2_x, lmv2_y are the 3 motion vectors from the same field

ix = median3(lmv0_x, lmv1_x, lmv2_x)

iy = median3(lmv0_y, lmv1_y, lmv2_y)

}

else if (2 of the luminance block motion vectors are from same field)

{

// Use the 2 motion vectors from the field which has the same polarity as the current field.

// lmv0_x, lmv0_y,

// lmv1_x, lmv1_y are the motion vectors that have the same polarity as the current field

ix = (lmv0_x + lmv1_x) / 2

iy = (lmv0_y + lmv1_y) / 2

}

cmv_x = (ix + round[ix & 3]) >> 1

cmv_y = (iy + round[iy & 3]) >> 1

Where round[0] = 0, round[1] = 0, round[2] = 0 and round[3] = 1

See section 3.8 for the definition of median3 and median4.

9.2.4.12.5 Second Stage Chroma Rounding

If the sequence level bit FASTUVMC = 1, then a second level of rounding is done on the chroma motion vectors as follows:
if (FASTUVMC)

{

// RndTbl[-3] = -1, RndTbl[-2] = 0, RndTbl[-1] = +1, RndTbl[0] = 0

// RndTbl[1] = -1, RndTbl[2] = 0, RndTbl[3] = +1

cmv_x =

cmv_x + RndTbl[cmv_x % 4];

cmv_y =

cmv_y + RndTbl[cmv_y % 4];

}

In the above, cmv_x and cmv_y represent the x and y coordinates of the chroma motion vector in units of quarter pels. % represents the modulus (or remainder) operation, which for negative numbers is defined thus: (x % a) = -(-x % a), i.e. the modulus of a negative number is equal to the negative of the modulus of the corresponding positive number. Thus, when cmv_x (or cmv_y) is divisible by 4 , we have an integer offset; when cmv_x % 4 = +/-2, we have a half pel offset, and when cmv_x % 4 = +/-1 or +/-3 we have a quarter pel offset. As can be seen by the above re-mapping operation, the quarter pel positions are being disallowed by rounding the chroma motion vector to the nearest integer position (half pel positions are left unaltered).

This forces the chroma coordinates to be remapped to integer and half pel positions. Furthermore, bilinear filtering is used for all chroma interpolations if FASTUVMC = 1 for further speedup. Note that the second stage rounding is not performed if FASTUVMC = 0.
9.2.4.13 Coded Block Pattern
The CBPCY syntax element in the intra and inter-coded macroblock layer indicates the transform coefficient status for each block in the macroblock. The CBPCY element decodes to a 6-bit field which indicates whether coefficients are present for the corresponding block. Table 36 shows the correspondence between the bit positions in CBPCY and the block number. For intra-coded macroblocks, a value of 0 in a particular bit position indicates that the corresponding block does not contain any non-zero AC coefficients. A value of 1 indicates that at least one non-zero AC coefficient is present. The DC coefficient is still present for each block in all cases. For inter-coded macroblocks, a value of 0 in a particular bit position indicates that the corresponding block does not contain any non-zero coefficients. A value of 1 indicates that at least one non-zero coefficient is present. For cases where the bit is 0, no data is encoded for that block.
9.2.5 Block Layer Decode

9.2.5.1 Intra Coded Block Decode

The decoding process for Intra coded blocks is the same as described in section 7.2.6.1. The only exception is that unlike progressive P frames, field picture P frames do not contain Intra blocks within 4MV-coded macroblocks, so the section describing the decoding process for those blocks can be ignored.
9.2.5.2 Inter Coded Block Decode

Figure 48 shows the steps for reconstructing Inter blocks when the 3D Huffman coding method is used. If the advance 2-layer coding is used, the only difference is to replace the 3D decoding by the A2LC decoding. For illustration the figure shows the reconstruction of a block whose 8x8 error signal is coded with two 8x4 Transforms. The 8x8 error block can also be transformed with two 4x8 Transforms, four 4x4 Transforms, or one 8x8 Transform. The steps required to reconstruct an inter-coded block include: 1) transform type selection, 2) sub-block pattern decode, 3) coefficient decode, 4) inverse Transform, 5) obtain predicted block and 6) motion compensation (add predicted and error blocks). The following sections describe these steps.

9.2.5.2.1 Transform Type Selection

If variable-sized transform coding is enabled (signaled by the sequence-level syntax element VSTRANSFORM = 1 as described in section 5.1.13), then the 8x8 error block can be transformed using one 8x8 Transform, or as shown in Figure 49, divided vertically and transformed with two 8x4 Transforms or divided horizontally and transformed with two 4x8 Transforms or divided into 4 quadrants and transformed with 4 4x4 Transforms. The transform type is signaled at the picture, macroblock or block level. As shown in Tables Table 20, Table 21 and Table 22, if TTMB indicates that the signal level is Block, then the transform type is signaled at the block level. If the transform type is specified at the block level, then the TTBLK syntax element is present within the bitstream as shown in Figure 22. This syntax element indicates the transform type used for the block. Tables Table 28

 REF _Ref15825136 \h
Table 29

 REF _Ref15825139 \h
Table 30 show the code tables used to encode the transform types if block mode signaling is used.

If variable-sized transform coding is not enabled, then the 8x8 Transform is used for all blocks.

9.2.5.2.2 Subblock Pattern Decode

If the transform type is 8x4, 4x8 or 4x4, then the decoder needs information about which of the subblocks have non-zero coefficients. For 8x4 and 4x8 transform types, the subblock pattern is decoded as part of the TTMB or TTBLK syntax element. If the transform type is 4x4, then the SUBBLKPAT syntax element is present in the bitstream as shown in Figure 22. Section 6.1.4.16 describes the SUBBLKPAT syntax element.

If the subblock pattern indicates that no non-zero coefficients are present for the subblock, then no other information for that subblock is present in the bitstream. For the 8x4 transform type, the data for the top subblock (if present) is coded first followed by the bottom subblock. For the 4x8 transform type, the data for the left subblock (if present) is coded first followed by the right subblock. For the 4x4 transform type, the data for the upper left subblock is coded first followed, in order, by the upper right, lower left and lower right subblocks.

9.2.5.2.3 Coefficient Bitstream Decode

The process of transform coefficient decoding is described in Section 7.2.6.2.3 and Section 7.4.
9.2.5.2.4 Inverse Quantization

The non-zero quantized coefficients reconstructed as described in the sections above are inverse quantized in one of two ways depending on the value of PQUANT.

If the uniform quantizer is used, the following formula describes the inverse quantization process:

dequant_coeff = quant_coeff * (2 * quant_scale + halfstep)

If the nonuniform quantizer is used, the following formula describes the inverse quantization process:

dequant_coeff = quant_coeff * (2 * quant_scale + halfstep) + sign(quant_coeff) * quant_scale

where:

quant_coeff is the quantized coefficient

dequant_coeff is the inverse quantized coefficient

quant_scale = The quantizer scale for the block (either PQUANT or MQUANT)

halfstep = The half step encoded in the picture layer as described in section 6.1.1.11.
PQUANT is encoded in the picture layer as described in section 6.1.1.8.

MQUANT is encoded as described in section 7.2.5.2.

9.2.5.2.5 Inverse Transform
After reconstruction of the TRANSFORM coefficients, the resulting 8x8, 8x4, 4x8 or 4x4 blocks are processed by the appropriate two‑dimensional inverse transforms (INVERSETRANSFORM). The 8x8 blocks are transformed using the 8x8 INVERSETRANSFORM, the 8x4 blocks are transformed using the 8x4 INVERSETRANSFORM, the 4x8 blocks are transformed using the 4x8 INVERSETRANSFORM and the 4x4 blocks are transformed using the 4x4 INVERSETRANSFORM. The inverse transforms output has a dynamic range of 10 bits. For P blocks, the inverse transform may be clamped to the range [-255 255] without loss of bit-exactness.
See section 7.8 regarding INVERSETRANSFORM implementation and conformance.
9.2.5.2.6 Motion Compensation

The motion compensation process is the same as described in section 7.2.6.2.
9.2.6 Rounding Control

The rounding control process is the same as described in section 7.2.7.
9.2.7 Intensity Compensation

The intensity compensation process is the same as described in section 7.2.8.
9.3 Interlace Field B Picture Decoding

Figure 71 shows the steps required to decode B field pictures. The following sections describe this process. B field syntax is very close to P field syntax, so we will not repeat all the common syntax elements here. We will instead focus only on the differences between P and B syntax.
The following are the salient features of B-field coding.
1) The top B field references top and bottom fields from the previous and next pictures (Figure 86).
2) The bottom field references the top field from the current frame (i.e. top B field) as the “opposite polarity” and the bottom field of the previous picture (“same polarity”), plus top and bottom fields of the next picture. In this way the bottom B field is unique because it references part of the same picture – this may be viewed as a slight deviation from the norm of not using any parts of B pictures to predict other pictures (see Figure 86 below). The exeception to this rule is when TFF (top field first) indicates that bottom field is being sent first. In this case, bottom field references top field from the previous frame as the “opposite polarity” and bottom field of the previous picture (same polarity), plus top and bottom fields of the next picture. Thus, in the case of TFF = 0, neither top nor bottom field refers to the other field in the same B picture.

3) We send the “forward/not forward” (0/1) decision (per MB) as a frame level bit (this is different from progressive B frames, where the frame level bit plane codes “direct/not direct”).
4) MV prediction follows similar logic as field P pictures, but we retain forward and backward contexts separately. We also fill in the “holes” e.g. when backward, we fill in the forward buffer’s MV with what would be the predicted MV.
5) We use 4MV for forward and backward modes (not direct and interpolated).

6) We also follow the MB mode (comprising 1/4MV/Intra, skipped MB, CBP present, 4MV block pattern) joint coding, new MV tables and MV architecture as are being defined for P field pictures.

[image: image100.png]Fisld Pictures

Fild B pictues

p3

*

p3

Figure 86: B field references
9.3.1 B Macroblock Layer Decode

At the MB level, the B field syntax is also similar to P field MB (e.g see Figure 73 and Figure 74). We will once again focus on describing the differences and avoid repeating the elements that remain the same.

9.3.1.1 Forward Bit
If the picture-level syntax element FORWARDMB is coded in raw mode, then the forward bit is needed to signal forward/non-forward at the MB level.

9.3.1.2 MB Mode
In case the MB mode is not forward, we send additional bits in BMVTYPE to signal if the B-MB is backward, direct or interpolated. This is a simple VLC, where backward = 0, direct = 10, interpolated = 11.

9.3.1.3 Non-zero interpolated MV
If the MB is interpolated, then we send an extra bit to signal non-zero interpolated MV (INTERPMVP).

9.3.1.4 1 MV mode Motion Vectors (BMV1, BMV2)

In 1 MV mode, the first motion vector, BMV1 is signaled exactly the same way as MVDATA in P-fields 1 MV mode. If we are in interpolated mode and INTERPMVP = 1, then BMV1 is followed by BMV2, which corresponds to the backward reference motion vector.
9.3.1.5 4 MV mode Motion Vectors

Note that only forward and backward modes use 4MV, direct and interpolated always work with 1MV.

9.3.1.6 B Frame Modes

Macro blocks in B fields are identified as belonging to one of four modes, viz. backward, forward, direct and interpolated. The forward mode is akin to conventional P picture prediction. In the forward mode, the macro block is interpolated from its temporally previous anchor fields. Likewise, backward mode macro blocks are entirely interpolated from their temporally subsequent anchor frame.
Direct mode and interpolated mode macro blocks use both the anchors for prediction. Since there are two reference images for these modes, there are two motion vectors for each macro block. The direct mode implicitly derives these motion vectors by appropriately scaling and bounding the motion vectors of the collocated macro block in the temporally subsequent anchor frame.

The direct and interpolated modes use two motion vectors to predict from the two reference (anchor) frames. Both the direct and interpolated motion modes use round-up averaging for combining the pixel values of the two interpolated references into one set of macro block pixels:

Average pixel value = (Forward interpolated value + Backward interpolated value + 1) >> 1

The interpolation processes (e.g. bicubic, bilinear, quarter or half pel) are signaled and implemented exactly the same way as with P fields.

9.3.2 B Block Layer Decode

Block layer decoding is identical to P field pictures.

9.3.3 MV Prediction in B fields

Motion vectors are computed by adding the motion vector differential sent by the encoder to a motion vector predictor. The predictor is computed from three neighboring motion vectors. The following sections describe how the predictors are calculated.

Polarity – This is defined as the binary set: {same = 0, opposite = 1}. When the MV predictors refer to the same field as that being decoded, we say that the polarity is same (0), else it is opposite (1). This is easy to check – if the Y offset of the MV is an odd number of integer pixels, then the MV points to the opposite field. When we need to re-interpret a MV of same (or opposite) polarity as an MV of opposite (same) polarity, we scale that MV down (or up), much in the same way as we scale MVs to derive the direct mode MVs in B frames (see below).

Dominant polarity: If two or three of the MV predictors have similar polarities, then that polarity is known as the dominant polarity of prediction.

Polarity conversion: In order to convert a same polarity MV into an opposite polarity MV, we need to scale down the x and y components – this is because the opposite field pixels are temporally closer than the same polar pixels. Likewise, to convert from opposite to same polar MVs we scale up the MV. The following pseudo-code illustrates these operations.

Scale_Opposite_To_Same(IN MV_Opposite, OUT MV_Same)

MV_Same.x = MV_Opposite.x << 1;
// x 2
if (MV_Opposite.x & 2)
{

 MV_Same.x = MV_Same.x + 1;
}

if (m_iCurrentField = 0) // top field

 MV_Same.y = (MV_Opposite.y – 1) * 2;

else

 MV_Same.y = (MV_Opposite.y + 1) * 2;

End Opposite_To_Same
Scale_Same_To_Opposite(IN MV_Same, OUT MV_Opposite)

MV_Opposite.x = MV_Same.x >> 1;
// div 2

if (m_iCurrentField = 0) // top field

 MV_Opposite.y = (MV_Same.y >> 2) * 2 + 1;

else

 MV_Opposite.y = (MV_Same.y >> 2) * 2 - 1;

End Same_To_Opposite
9.3.3.1.1 Motion Vector Predictors In 1MV mode
Figure 44 shows the three motion vectors used to compute the predictor for the current macroblock. As the figure shows, the predictor is taken from the left, top and top-right macroblocks, except in the case where the macroblock is the last macroblock in the row. In this case, Predictor B is taken from the top-left macroblock instead of the top-right.

Once we have the MV predictors, we form two sets of 3 predictors, one set with polarity = same, and the other set with polarity = opposite. To do this we have to convert each candidate MV to flip its polarity (by temporal scaling) as shown by the pseudo-code procedures above, and store both its original value (by true polarity) and its converted value after flipping its polarity. Then, at the end we take the median of each set, i.e. computing one median for the same polarity set and one for the opposite polarity set. We also keep track of the dominant polarity of the predictors – e.g. if two or more predictors’ true polarity is opposite, then the dominant polarity = opposite. Thus, we end up with a dominant MV predictor and a non-dominant predictor, both resulting from median of three operations on the two sets of MVs.

We then use the LSB of the prediction error to decide whether to use the dominant predictor or the non-dominant one. If the LSB = 1, we pick the non-dominant predictor, otherwise we pick the dominant one.

Finally, we compute the actual motion vectors by adding the prediction error sent by the encoder to the MV predictor that we have selected.
9.3.3.1.2 Motion Vector Predictors In 4MV mode
Figure 45 shows the 3 candidate motion vectors for 4MV macroblocks. In the following figures, the larger rectangles are macroblock boundaries and the smaller rectangles are block boundaries.

The logic for calculating the dominant and non-dominant MV predictors and deciding the one to pick for the actual prediction is the same as in the 1 MV case.

9.3.3.1.3 Calculating the Motion Vector Predictors
Given the 2 motion vector predictors (dominant, non-dominant), the following pseudocode illustrates the process for calculating the motion vector predictors.

Compute_MV_From_Predictors(IN MV_Pred_Dominant, IN MV_Pred_Non_Dominant, IN MV_Pred_Err, OUT MV)

if (LSB of MV_Pred_Err.y = 1) {

// Use non-dominant polarity predictor

MV.x = MV_Pred_Non_Dominant.x + MV_Pred_Err.x;

MV.y = MV_Pred_Non_Dominant.y + MV_Pred_Err.y;

} else {
// Use dominant polarity predictor

MV.x = MV_Pred_Dominant.x + MV_Pred_Err.x;

MV.y = MV_Pred_Dominant.y + MV_Pred_Err.y;

}

End Compute_MV_From_Predictors
Given the 3 motion vector predictor candidates, the following pseudo-code illustrates the process of calculating the dominant and non-dominant predictors.

Compute_MV__Predictors(IN MV_Candidate_Left, IN MV_Candidate_Top, IN MV_Candidate_TopRight, OUT MV_Pred_Dominant, OUT MV_Pred_Non_Dominant)

for candidates = [1 .. 3] do {

if (Polarity = same)

SameCount++;

Store in Same MV array;

Scale_Same_To_Opposite and place output in Opposite MV array;

} else { // Polarity = opposite

OppositeCount++;

Store in Opposite MV array;

Scale_Opposite_To_Same and place output in Same MV array;

} // end for

MV_Same_Predictor = Median3 (Same MV array);

MV_Opposite_Predictor = Median3 (Opposite MV array);

If (OppositeCount > SameCount) {

MV_Pred_Dominant = MV_Opposite_Predictor;

MV_Pred_Non_Dominant = MV_Same_Predictor;

} else {

MV_Pred_Dominant = MV_Same_Predictor;

MV_Pred_Non_Dominant = MV_Opposite_Predictor;

}
End Compute_MV__Predictors

See Section 3.8 for the definition of Median3.

MV prediction in B fields follows the above logic of using dominant MV predictors. However, we only use forward MVs as predictors for a forward MV, and backward MVs to predict a backward MV. We buffer the two sets of MVs separately for this purpose. For macroblocks that use either direct or interpolated prediction modes, we store both the forward and backward MV components. These components are computed implicitly in the case of direct and explicitly from received motion vector information in the case of interpolated mode.

[image: image101.emf]Current

Macroblock

Predictor

A

Predictor

C

Predictor

B

Current

Macroblock

Predictor

A

Predictor

C

Predictor

B

Not last macroblock in macroblock row Last macroblock in macroblock row

Figure 87: MV Prediction in B Frames

The scheme for B field MV prediction is as follows –

1) If the MB is forward predicted, then median predict its MV from the neighborhood of the “forward MV buffer”. Store the forward MV (computed by Compute_MV__Predictors) in the forward buffer, and the dominant predictor in the backward buffer.

2) If the MB is backward predicted, then median predict its MV from the neighborhood of the “backward MV buffer”. Store the backward MV (computed by Compute_MV__Predictors) in the backward buffer, and the dominant predictor in the forward buffer.

3) If the MB is interpolated, then use the forward MV buffer to predict the forward component, the backward buffer to predict the backward component, and store the forward and backward MVs (both computed by Compute_MV__Predictors), once these have been calculated, in the forward and backward MV buffers, respectively.

4) If the MB is direct predicted, we compute the direct mode MVs as described in 7.3.3.2
9.4 Interlace Frame I Picture Decoding

The following sections describe interlace frame I picture type.

9.4.1 Macroblock Layer Decode

The macroblocks are coded in raster scan order from left to right. Figure 75 shows the elements that make up the intra MB layer. Each macroblock can be either frame or field coded as indicated by FIELDTX which indicates the internal organization of a macroblock. For frame coded macroblocks, the luminance blocks is interlaced with each field occurring alternatively. For field coded macroblocks, the top two luminance blocks contain only the lines from top field while the bottom two luminance blocks contain only lines from the bottom field. The U and V blocks remains interlaced for both field coded and frame coded macroblocks. Once the blocks are formed, AC/DC prediction is done using the permuted blocks if the macroblock is field transform coded.
9.4.2 Block Decode

This section describes the process used to reconstruct the blocks which is very similar to advanced profile progressive I picture’s block decoding. Figure 88 shows the process used to reconstruct the 8x8 blocks.

[image: image102.emf]DC/AC VLD

DC prediction

AC prediction

(row or column)

Inverse

Quantization

Inverse

Transform

Add 128 to

 each pixel

Inverse 8x8

zig-zag scan

Figure 88: Intra Block Decode

The DC coefficients are coded differentially using neighboring block’s DC coefficients. The quantized DC value for the current block is obtained by adding the DC predictor to the DC differential. The process of DC inverse quantization and DC differential decoding is the same as advanced profile I picture.
The ACPRED flag for each macroblock indicates whether some of AC coefficients are coded differentially. If the AC coefficients are differentially coded, then the AC coefficients for the current block is obtained by adding the AC predictor (either the quantized AC coefficients of the first row of the top block or the first column of the left block) to the AC differential. The process of decoding AC (possibly differential) coefficient coding is the same as advanced profile I picture.

After the inverse transform, we add 128 to each pixel in the block and clip it to be between 0 and 255 to form the decoded blocks. In addition, we permutate the decoded luminance blocks if the current macroblock is field coded.

9.4.2.1 DC Predictor

The DC predictor is obtained from one of the previously decoded adjacent blocks. Figure 35 shows the current block and the candidate predictors from the adjacent blocks. The values A, B and C represent the quantized DC values prior to the addition of 128 for the top-left, top and left adjacent blocks respectively.

The adjacent blocks A, B, C are considered missing if they are outside the picture boundary or if the blocks are not intra coded (the last provision is for intra blocks in Interlace frame p or b pictures).

If all three blocks A, B, and C are present, then a prediction direction is formed based on the values of A, B and C and either the B or C predictor is chosen. The prediction direction is calculated the same way as the baseline I frame as shown in Figure 36.

If an adjacent block is missing, then the following rules apply:

· If block C is missing and block B is not, then use block B as the predictor.

· If block B is missing and block C is not, then use block C as the predictor.

· If both block B and block C are missing, then no predictor is used.

· If block A is missing and B, C are present, then we choose block B if the DC predictor for block C is smaller than the DC predictor for block B, otherwise, we choose block C.

In addition, the DC predictor is scaled in the same way as advanced profile I picture if MQUANT mode is on.

9.4.2.2 AC Prediction
If AC prediction is turned on for the current block, then the AC coefficients on either the top row or the left column might be differentially encoded. The decision for the direction is based on the DC predictor. There are three cases, DC is predicted from the left block, the top block, or not predicted.

· If DC is predicted from the top, then the top row of the current block is differentially coded.

· If DC is predicted from the left, then the left column of the current block is differentially coded.

· If DC is not predicted, then the AC coefficients are not differentially coded.

The AC coefficients in the predicted row or column are added to the corresponding decoded AC coefficients in the current block to produce the fully reconstructed quantized Transform coefficient block. In addition, the AC predictor is scaled in the same way as advanced profile I picture if MQUANT mode is on.

9.5 Interlace Frame P Picture Decoding

The following sections describe interlace frame P picture type.

9.5.1 Out-of-bounds Reference Pixels

The previously interlaced frame is used as the reference for motion-compensated predictive coding of the current frame P picture. The motion vectors used to locate the predicted blocks in the reference frame may include pixel locations that are outside the boundary of the reference frame In these cases, the out-of-bounds pixel values are the replicated values of the edge pixel for the left and right boundary while the top and bottom boundaries are formed by repeating the top two and bottom two field lines thus preserving the interlace structure into the repeatpad region. The padding is conceptually considered to be infinite for the purpose of motion compensation.

9.5.2 Macroblock Layer Decode

In interlace frame P picture, each macroblock can be motion compensated in frame mode using 1 or 4 motion vector(s) or in field mode using 2 or 4 motion vectors. Frame motion compensation treats a macroblock as a whole entity while field motion compensation treats a macroblock as composed of two separate fields. A macroblock that is inter-coded does not contain any intra blocks. In additon, the residual after motion compensation can be coded in frame transform mode or field transform mode same as the interlace frame I picture. More specifically, the luminance component of the residual are re-arranged according to fields if it is coded in field transform mode and it remains unchanged in frame transform mode while the chroma component remains the same. A macroblock can also be coded as intra, in this case, the decoding process is the same as I macroblocks decoding in interlace frame I picture.
The motion compensation can be restricted to not include 4 (both field/frame) motion vectors and this is signaled through 4MVSWITCH. The type of motion compensation / residual coding is jointly indicated for each macroblock through MBMODE and SKIPMB. MBMODE employs different set of tables according to 4MVSWITCH.

Macroblocks in interlace frame P pictures are classified into 5 types: 1 MV, 2 Field MV, 4 Frame MV, 4 Field MV, and Intra. The first four types of macroblock are inter-coded while the last type indicates that the macroblock is intra-coded. The macroblock type is signaled by MBMODE syntax element in the macroblock layer along with the skip bit. MBMODE jointly encode macroblock types along with various pieces of information regarding the macroblock for different types of macroblock.
9.5.2.1 Inter Macroblock Types

The following sections describe four types of motion compensation:

9.5.2.1.1 1 MV Macroblock

In 1 MV macroblock, the displacement of the four luminance blocks is represented by a single motion vector. A corresponding chroma motion vector is derived to represent the displacements of each of the two 8x8 chroma blocks.

9.5.2.1.2 2 Field MV Macroblock

In 2 Field MV macroblock, the displacement of each field of the luminance blocks described by a different motion vector (see Figure 89). The top field motion vector describes the displacement of the even lines of the luminance blocks while the bottom field motion vector describes the displacement of the odd lines of the luminance blocks. Using the top field motion vector, we derive a corresponding top field chroma motion vector that describes the displacement of the even lines of the chroma blocks. Similarly, a bottom field chroma motion vector is derived from the bottom field motion vector that describes the displacements of the odd lines of the chroma blocks.

[image: image103.emf]Luminance Blocks

Top Field MV

Bottom Field MV

Derived Top Field MV

Chrominance Block

Derived Bottom Field MV

Figure 89: Two Field MV Macroblock

9.5.2.1.3 4 Frame MV Macroblock

In 4 Frame MV macroblock, each one of the four luminance block’s displacement is described by a different motion vector (see Figure 90). Similarly, each chroma block is motion compensated using four derived chroma motion vector that describes the displacement of the four 4x4 subblocks. Each 4x4 subblock’s chroma motion vector is derived from the spatially corresponding luminance block’s motion vector.

[image: image104.emf]MV1' MV2'

MV3' MV4'

MV1 MV2

MV3 MV4

Luminance Blocks

Chrominance Block

Figure 90: 4 Frame MV Macroblock

9.5.2.1.4 4 Field MV Macroblock

In 4 Field MV macroblock, the displacement of each field in the luminance blocks is described by two different motion vectors (see Figure 91). The even lines of the luminance blocks are subdivided vertically to form two eight by eight regions. The displacement of the left region is described by the top left field block motion vector and the displacement of the right region is described by the top right field block motion vector. Similarly, the odd lines in the luminance blocks are subdivided vertically to form two eight by eight regions. The displacement of the left region is described by the bottom left field block motion vector and the displacement of the right region is described by the bottom right field block motion vector. Similarly, each chroma block is partitioned into four regions in the same way as the luminance blocks and each region is motion compensated using a derived field chroma motion vector.

[image: image105.emf]Luminance Blocks

Top Left

Field Block MV

Bottom Left

Field Block MV

Top Right

Field Block MV

Bottom Right

 Field Block MV

Figure 91: 4 Field MV Macroblock – Luminance Block

[image: image106.emf]Derived Top

Left Field MV

Chrominance Block

Derived Bottom

Left Field MV

Derived Top

Right Field MV

Derived Bottom

Right Field MV

Figure 92: 4 Field MV Macroblock – Chrominance Block

9.5.2.2 Skipped Macroblock Signaling

The SKIPMB field indicates the skip condition for a macroblock. If the SKIPMB field is 1, then the current macroblock is said to be skipped and there are no other information sent after the SKIPMB field. The skip condition implies that the current macroblock is 1 MV with zero differential motion vector (i.e. the macroblock is motion compensated using its 1 MV motion predictor) and there are no coded blocks (CBP = 0).

On the other hand, if the SKIPMB field is not 1, then the MBMODE field will have be decoded to indicate the type of macroblock and various other key pieces of information regarding the current macroblock.

9.5.2.3 Macroblock Mode Signaling
There are fifteen possible events that are indicated by MBMODE which jointly specifies the type of macroblock (inter-1mv, 4mv, 2 field mv, 4 field mv, or intra), types of transform for inter-coded macroblock (i.e. field or frame or no coded blocks), and in addition, whether there is differential motion vector for the 1MV macroblock.

Let <MVP> denote a binary event that signals whether there is nonzero 1 MV differential motion vector or not.

Let <Field/Frame transform> denote a ternary event that signals whether the residual of the macroblock is frame transform coded, field transform coded, or zero coded blocks (i.e. CBP = 0).

Then the MBMODE signals the following set of events jointly:
MBMODE = { <1MV, MVP, Field/Frame transform>, <2 Field MV, Field/Frame transform>, <4 Frame MV, Field/Frame transform>, <4 Field MV, Field/Frame transform>, <INTRA> }

For inter-coded macroblocks, the CBPCY syntax element does not need to be decoded when the Field/Frame Transform event in MBMODE indicates no coded blocks. On the other hand, if the Field/Frame transform event in MBMODE indicates field or frame transform, then CBPCY needs to be decoded.

For non-1MV inter-coded macroblocks, an additional field is sent to indicate the zero differential motion vectors event. In the case of 2 Field MV macroblocks, the 2MVBP field is sent to indicate which of the two motion vectors contain nonzero differential motion vectors. Similarly, the 4MVBP field is sent to indicate which of the four motion vectors contain nonzero differential motion vectors.

For intra-coded macroblocks, the Field/Frame transform and zero coded blocks are coded in separate fields.

9.5.2.4 Motion Vector Predictors

The process of computing the motion vector predictor(s) for the current macroblock consists of two steps.
First, three candidate motion vectors for the current macroblock are gathered from its neighboring macroblocks. Figure 93 shows the neighboring macroblock from which we gather the candidate motion vectors from. The order of the collection of candidate motion vectors is important and it always start from A, to B, and ends at C.

Second, the motion vector predictor(s) for the current macroblock is computed from the set of candidate motion vectors.

[image: image107.emf]Current

MB -D

Candidate

MB -A

Candidate

MB -B

Candidate

MB -C

Current

MB -D

Candidate

MB -A

Candidate

MB -B

Candidate

MB -C

Not last MB in MB row Last MB in MB row

Figure 93: Candidate Neighboring Macroblocks for Interlace Frame Picture

The following sections describe how the candidate motion vectors are collected for different types of macroblock and how the motion vector predictor(s) is computed.
9.5.2.4.1 1 MV Candidate Motion Vectors Derivation

The following pseudocode is used to collect the (possibly) three candidate motion vectors for 1 MV:

if (A exists and A is not intra coded) {

 if (A is 1 MV) {

 Add MV of A to the set of candidate motion vector.

 } else if (A is 4 Frame MV) {

 Add the top right block MV of A to the set of

 candidate motion vector.

 } else if (A is 2 Field MV) {

 Average the two field motion vectors of A and add the

 resulting MV to the set of candidate motion vector.

 } else if (A is 4 Field MV) {

 Average the top right block field MV and bottom right

 block field MV of A and add the resulting MV to the set

 of candidate motion vector.

 }

}

if (B exists and B is not intra coded) {

 if (B is 1 MV) {

 Add MV of B to the set of candidate motion vector.

 } else if (B is 4 Frame MV) {

 Add the bottom left block MV of B to the set of

 candidate motion vector.

 } else if (B is 2 Field MV) {

 Average the two field motion vectors of B and add the

 resulting MV to the set of candidate motion vector.

 } else if (B is 4 Field MV) {

 Average the top left block field MV and bottom left

 block field MV of B and add the resulting MV to the set

 of candidate motion vector.

 }

}

if (C exists and C is not intra coded) {

 if (C is 1 MV) {

 Add MV of C to the set of candidate motion vector.

 } else if (C is 4 Frame MV) {

 if (C is top right MB) {

 Add the bottom left block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right block MV of C to the set of

 candidate motion vector.

 }

 } else if (C is 2 Field MV) {

 Average the two field motion vectors of C and add the

 resulting MV to the set of candidate motion vector.

 } else if (C is 4 Field MV) {

 if (C is top right MB) {

 Average the top left block field MV and bottom left

 block field MV of C and add the resulting MV to the

 set of candidate motion vector.

 } else { // C is top left MB

 Average the top right block field MV and bottom right

 block field MV of C and add the resulting MV to the

 set of candidate motion vector.

 }

 }

}
9.5.2.4.2 4 Frame MV Candidate Motion Vectors Derivation

In this case, we need to collect candidate motion vectors from the neighboring blocks for each of the four frame block motion vectors in the current macroblock.

The following pseudocode is used to collect the (possibly) three candidate motion vectors for the top left frame block MV:

// Top Left Block MV

if (A exists and A is not intra coded) {

 if (A is 1 MV) {

 Add MV of A to the set of candidate motion vector.

 } else if (A is 4 Frame MV) {

 Add the top right block MV of A to the set of

 candidate motion vector.

 } else if (A is 2 Field MV) {

 Average the two field motion vectors of A and add the

 resulting MV to the set of candidate motion vector.

 } else if (A is 4 Field MV) {

 Average the top right block field MV and bottom right

 block field MV of A and add the resulting MV to the set

 of candidate motion vector.

 }

}

if (B exists and B is not intra coded) {

 if (B is 1 MV) {

 Add MV of B to the set of candidate motion vector.

 } else if (B is 4 Frame MV) {

 Add the bottom left block MV of B to the set of

 candidate motion vector.

 } else if (B is 2 Field MV) {

 Average the two field motion vectors of B and add the

 resulting MV to the set of candidate motion vector.

 } else if (B is 4 Field MV) {

 Average the top left block field MV and bottom left

 block field MV of B and add the resulting MV to the set

 of candidate motion vector.

 }

}

if (C exists and C is not intra coded) {

 if (C is 1 MV) {

 Add MV of C to the set of candidate motion vector.

 } else if (C is 4 Frame MV) {

 if (C is top right MB) {

 Add the bottom left block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right block MV of C to the set of

 candidate motion vector.

 }

 } else if (C is 2 Field MV) {

 Average the two field motion vectors of C and add the

 resulting MV to the set of candidate motion vector.

 } else if (C is 4 Field MV) {

 if (C is top right MB) {

 Average the top left block field MV and bottom left

 block field MV of C and add the resulting MV to the

 set of candidate motion vector.

 } else { // C is top left MB

 Average the top right block field MV and bottom right

 block field MV of C and add the resulting MV to the

 set of candidate motion vector.

 }

 }

}
The following pseudocode is used to collect the (possibly) three candidate motion vectors for the top right frame block MV:

// Top Right Block MV

Add the top left block MV of the current MB to the set of

candidate motion vector.

if (B exists and B is not intra coded) {

 if (B is 1 MV) {

 Add MV of B to the set of candidate motion vector.

 } else if (B is 4 Frame MV) {

 Add the bottom right block MV of B to the set of

 candidate motion vector.

 } else if (B is 2 Field MV) {

 Average the two field motion vectors of B and add the

 resulting MV to the set of candidate motion vector.

 } else if (B is 4 Field MV) {

 Average the top right block field MV and bottom right

 block field MV of B and add the resulting MV to the set

 of candidate motion vector.

 }

}

if (C exists and C is not intra coded) {

 if (C is 1 MV) {

 Add MV of C to the set of candidate motion vector.

 } else if (C is 4 Frame MV) {

 if (C is top right MB) {

 Add the bottom left block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right block MV of C to the set of

 candidate motion vector.

 }

 } else if (C is 2 Field MV) {

 Average the two field motion vectors of C and add the

 resulting MV to the set of candidate motion vector.

 } else if (C is 4 Field MV) {

 if (C is top right MB) {

 Average the top left block field MV and bottom left

 block field MV of C and add the resulting MV to the

 set of candidate motion vector.

 } else { // C is top left MB

 Average the top right block field MV and bottom right

 block field MV of C and add the resulting MV to the

 set of candidate motion vector.

 }

 }

}
The following pseudocode is used to collect the (possibly) three candidate motion vectors for the bottom left frame block MV:

// Bottom Left Block MV

if (A exists and A is not intra coded) {

 if (A is 1 MV) {

 Add MV of A to the set of candidate motion vector.

 } else if (A is 4 Frame MV) {

 Add the bottom right block MV of A to the set of

 candidate motion vector.

 } else if (A is 2 Field MV) {

 Average the two field motion vectors of A and add the

 resulting MV to the set of candidate motion vector.

 } else if (A is 4 Field MV) {

 Average the top right block field MV and bottom right

 block field MV of A and add the resulting MV to the set

 of candidate motion vector.

 }

}

Add the top left block MV of the current MB to the set of

candidate motion vector.

Add the top right block MV of the current MB to the set of candidate motion vector.
The following pseudocode is used to collect the three candidate motion vectors for the bottom right frame block MV:

// Bottom Right Block MV

Add the bottom left block MV of the current MB to the set of candidate motion vector.

Add the top left block MV of the current MB to the set of candidate motion vector.

Add the top right block MV of the current MB to the set of candidate motion vector.
9.5.2.4.3 2 Field MV Candidate Motion Vectors Derivation

In this case, we need to collect candidate motion vectors from the neighboring blocks for each of the four blocks in the current macroblock.

The following pseudocode is used to collect the (possibly) three candidate motion vectors for the top field MV:

// Top Field MV

if (A exists and A is not intra coded) {

 if (A is 1 MV) {

 Add MV of A to the set of candidate motion vector.

 } else if (A is 4 Frame MV) {

 Add the top right block MV of A to the set of

 candidate motion vector.

 } else if (A is 2 Field MV) {

 Add the top field MV of A to the set of candidate motion

 vector.

 } else if (A is 4 Field MV) {

 Add the top right field block MV of A to the set of

 candidate motion vector.

 }

}

if (B exists and B is not intra coded) {

 if (B is 1 MV) {

 Add MV of B to the set of candidate motion vector.

 } else if (B is 4 Frame MV) {

 Add the bottom left block MV of B to the set of

 candidate motion vector.

 } else if (B is 2 Field MV) {

 Add the top field MV of B to the set of candidate motion

 vector.

 } else if (B is 4 Field MV) {

 Add the top left field block MV of B to the set of

 candidate motion vector.

 }

}

if (C exists and C is not intra coded) {

 if (C is 1 MV) {

 Add MV of C to the set of candidate motion vector.

 } else if (C is 4 Frame MV) {

 if (C is top right MB) {

 Add the bottom left block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right block MV of C to the set of

 candidate motion vector.

 }

 } else if (C is 2 Field MV) {

 Add the top field MV of C to the set of candidate motion

 vector.

 } else if (C is 4 Field MV) {

 if (C is top right MB) {

 Add the top left field block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the top right field block MV of C to the set of

 candidate motion vector.

 }

 }

}

The following pseudocode is used to collect the (possibly) three candidate motion vectors for the bottom field MV:

// Bottom Field MV

if (A exists and A is not intra coded) {

 if (A is 1 MV) {

 Add MV of A to the set of candidate motion vector.

 } else if (A is 4 Frame MV) {

 Add the bottom right block MV of A to the set of

 candidate motion vector.

 } else if (A is 2 Field MV) {

 Add the bottom field MV of A to the set of candidate

 motion vector.

 } else if (A is 4 Field MV) {

 Add the bottom right field block MV of A to the set of

 candidate motion vector.

 }

}

if (B exists and B is not intra coded) {

 if (B is 1 MV) {

 Add MV of B to the set of candidate motion vector.

 } else if (B is 4 Frame MV) {

 Add the bottom left block MV of B to the set of

 candidate motion vector.

 } else if (B is 2 Field MV) {

 Add the bottom field MV of B to the set of candidate

 motion vector.

 } else if (B is 4 Field MV) {

 Add the bottom left field block MV of B to the set of

 candidate motion vector.

 }

}

if (C exists and C is not intra coded) {

 if (C is 1 MV) {

 Add MV of C to the set of candidate motion vector.

 } else if (C is 4 Frame MV) {

 if (C is top right MB) {

 Add the bottom left block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right block MV of C to the set of

 candidate motion vector.

 }

 } else if (C is 2 Field MV) {

 Add the bottom field MV of C to the set of candidate
 motion vector.

 } else if (C is 4 Field MV) {

 if (C is top right MB) {

 Add the bottom left field block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right field block MV of C to the set

 of candidate motion vector.

 }

 }

}
9.5.2.4.4 4 Field MV Candidate Motion Vectors Derivation

In this case, we need to collect candidate motion vectors from the neighboring blocks for each of the four field blocks in the current macroblock.

The following pseudocode is used to collect the (possibly) three candidate motion vectors for the top left field block MV:

// Top Left Field Block MV

if (A exists and A is not intra coded) {

 if (A is 1 MV) {

 Add MV of A to the set of candidate motion vector.

 } else if (A is 4 Frame MV) {

 Add the top right block MV of A to the set of

 candidate motion vector.

 } else if (A is 2 Field MV) {

 Add the top field MV of A to the set of

 candidate motion vector.

 } else if (A is 4 Field MV) {

 Add the top right field block MV of A to the set of

 candidate motion vector.

 }

}

if (B exists and B is not intra coded) {

 if (B is 1 MV) {

 Add MV of B to the set of candidate motion vector.

 } else if (B is 4 Frame MV) {

 Add the bottom left block MV of B to the set of

 candidate motion vector.

 } else if (B is 2 Field MV) {

 Add the top field MV of B to the set of

 candidate motion vector.

 } else if (B is 4 Field MV) {

 Add the top left field block MV of B to the set of

 candidate motion vector.

 }

}

if (C exists and C is not intra coded) {

 if (C is 1 MV) {

 Add MV of C to the set of candidate motion vector.

 } else if (C is 4 Frame MV) {

 if (C is top right MB) {

 Add the bottom left block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right block MV of C to the set of

 candidate motion vector.

 }

 } else if (C is 2 Field MV) {

 Add the top field MV of C to the set of

 candidate motion vector.

 } else if (C is 4 Field MV) {

 if (C is top right MB) {

 Add the top left field block MV of C to the set of

candidate motion vector.

 } else { // C is top left MB

 Add the top right field block MV of C to the set of

candidate motion vector.

 }

 }

}
The following pseudocode is used to collect the (possibly) three candidate motion vectors for the top right field block MV:

// Top Right Field Block MV

Add the top left field block MV of the current MB to the set of

candidate motion vector.

if (B exists and B is not intra coded) {

 if (B is 1 MV) {

 Add MV of B to the set of candidate motion vector.

 } else if (B is 4 Frame MV) {

 Add the bottom right block MV of B to the set of

 candidate motion vector.

 } else if (B is 2 Field MV) {

 Add the top field MV of B to the set of

 candidate motion vector.

 } else if (B is 4 Field MV) {

 Add the top right field block MV of B to the set of

 candidate motion vector.

 }

}

if (C exists and C is not intra coded) {

 if (C is 1 MV) {

 Add MV of C to the set of candidate motion vector.

 } else if (C is 4 Frame MV) {

 if (C is top right MB) {

 Add the bottom left block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right block MV of C to the set of

 candidate motion vector.

 }

 } else if (C is 2 Field MV) {

 Add the top field MV of C to the set of

 candidate motion vector.

 } else if (C is 4 Field MV) {

 if (C is top right MB) {

 Add the top left field block MV of C to the set of

candidate motion vector.

 } else { // C is top left MB

 Add the top right field block MV of C to the set of

candidate motion vector.

 }

 }

}
The following pseudocode is used to collect the (possibly) three candidate motion vectors for the bottom left field block MV:

// Bottom Left Field Block MV

if (A exists and A is not intra coded) {

 if (A is 1 MV) {

 Add MV of A to the set of candidate motion vector.

 } else if (A is 4 Frame MV) {

 Add the bottom right block MV of A to the set of

 candidate motion vector.

 } else if (A is 2 Field MV) {

 Add the bottom field MV of A to the set of

 candidate motion vector.

 } else if (A is 4 Field MV) {

 Add the bottom right field block MV of A to the set of

 candidate motion vector.

 }

}

if (B exists and B is not intra coded) {

 if (B is 1 MV) {

 Add MV of B to the set of candidate motion vector.

 } else if (B is 4 Frame MV) {

 Add the bottom left block MV of B to the set of

 candidate motion vector.

 } else if (B is 2 Field MV) {

 Add the bottom field MV of B to the set of

 candidate motion vector.

 } else if (B is 4 Field MV) {

 Add the bottom left field block MV of B to the set of

 candidate motion vector.

 }

}

if (C exists and C is not intra coded) {

 if (C is 1 MV) {

 Add MV of C to the set of candidate motion vector.

 } else if (C is 4 Frame MV) {

 if (C is top right MB) {

 Add the bottom left block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right block MV of C to the set of

 candidate motion vector.

 }

 } else if (C is 2 Field MV) {

 Add the bottom field MV of C to the set of

 candidate motion vector.

 } else if (C is 4 Field MV) {

 if (C is top right MB) {

 Add the bottom left field block MV of C to the set of

candidate motion vector.

 } else { // C is top left MB

 Add the bottom right field block MV of C to the set

of candidate motion vector.

 }

 }

}
The following pseudocode is used to collect the (possibly) three candidate motion vectors for the bottom right field block MV:

// Bottom Right Field Block MV

Add the bottom left field block MV of the current MB to the set of candidate motion vector.

if (B exists and B is not intra coded) {

 if (B is 1 MV) {

 Add MV of B to the set of candidate motion vector.

 } else if (B is 4 Frame MV) {

 Add the bottom right block MV of B to the set of

 candidate motion vector.

 } else if (B is 2 Field MV) {

 Add the bottom field MV of B to the set of

 candidate motion vector.

 } else if (B is 4 Field MV) {

 Add the bottom right field block MV of B to the set of

 candidate motion vector.

 }

}

if (C exists and C is not intra coded) {

 if (C is 1 MV) {

 Add MV of C to the set of candidate motion vector.

 } else if (C is 4 Frame MV) {

 if (C is top right MB) {

 Add the bottom left block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right block MV of C to the set of

 candidate motion vector.

 }

 } else if (C is 2 Field MV) {

 Add the top field MV of C to the set of

 candidate motion vector.

 } else if (C is 4 Field MV) {

 if (C is top right MB) {

 Add the bottom left field block MV of C to the set of

candidate motion vector.

 } else { // C is top left MB

 Add the bottom right field block MV of C to the set

of candidate motion vector.

 }

 }

}
9.5.2.4.5 Average Field Motion Vectors

Given two field motion vectors (MVX1, MVY1) and (MVX2, MVY2), the average operation used to form a candidate motion vector (MVXA, MVYA) is:

MVXA = (MVX1 + MVX2 + 1) >> 1;

MVYA = (MVY1 + MVY2 + 1) >> 1;
9.5.2.4.6 Computing Frame MV predictor(s) from Candidate Motion Vectors

This section describes how we compute the MV predictor for frame MVs given the set of candidate motion vectors. The operation is the same for computing the predictor for 1 MV or for each one of the four frame block MVs (4 MV Frame).

Let TotalValidMV denote the total number of motion vector(s) in the set of candidate motion vectors (TotalValidMV = 0, 1, 2, or 3).

Let ValidMV array denote the motion vector in the set of candidate motion vectors.

The following pseudocode describes how the MV predictor (PMVx, PMVy) is computed:

if (TotalValidMV >= 2) {

 // Note that if there are only two valid MVs, then the

 // third ValidMV is set to be (0, 0)

 PMVx = median3 (ValidMVx [0], ValidMVx [1], ValidMVx [2]);

 PMVy = median3 (ValidMVy [0], ValidMVy [1], ValidMVy [2]);

} else if (TotalValidMV is 1) {

 PMVx = ValidMVx [0];

 PMVy = ValidMVy [0];

} else {

 PMVx = 0;

 PMVy = 0;

}

9.5.2.4.7 Computing Field MV predictor(s) from Candidate Motion Vectors

This section describes how we compute the MV predictor(s) for field MVs given the set of candidate motion vectors. The operation is the same for computing the predictor for each of the two field MVs or for each one of the four field block MVs (4 MV Frame).

First, the candidate motion vectors are separated into two sets, where one set contains only motion vectors that point to the same field as the current field and the other set contains motion vectors that point to the opposite field. Assuming that the motion vectors are represented in quarter pixel units, then we can check whether a candidate motion vector points to the same field by the following check on its y component:

if (ValidMVy & 4) {

 ValidMV points to the opposite field.

} else {

 ValidMV points to the same field.

}

Let SameFieldMV, OppFieldMV denote the two sets and let NumSameFieldMV and NumOppFieldMV denote the number of motion vectors that belongs to each set. The following pseudocode describes how the MV predictor (PMVx, PMVy) is computed:

if (TotalValidMV == 3) {

 if (NumSameFieldMV == 3 || NumOppFieldMV == 3) {

 PMVx = median3 (ValidMVx [0], ValidMVx [1],

 ValidMVx [2]);

 PMVy = median3 (ValidMVy [0], ValidMVy [1],

 ValidMVy [2]);

 } else if (NumSameFieldMV >= NumOppFieldMV) {
 PMVx = SameFieldMVx [0];

 PMVy = SameFieldMVy [0];
 } else {
 PMVx = OppFieldMVx [0];

 PMVy = OppFieldMVy [0];
 }
} else if (TotalValidMV == 2) {
 if (NumSameFieldMV >= NumOppFieldMV) {
 PMVx = SameFieldMVx [0];

 PMVy = SameFieldMVy [0];
 } else {
 PMVx = OppFieldMVx [0];

 PMVy = OppFieldMVy [0];
 }
} else if (TotalValidMV == 1) {

 PMVx = ValidMVx [0];

 PMVy = ValidMVy [0];

} else {

 PMVx = 0;

 PMVy = 0;

}
9.5.2.5 Decoding Motion Vector Differential

The MVDATA syntax elements contain motion vector differential information for the macroblock. Depending on the type of motion compensation and motion vector block pattern signaled at each macroblock, there can be 0 up to 4 MVDATA syntax elements per macroblock. More specifically,

· For 1 MV macroblocks, there can be either 0 or 1 MVDATA syntax element present depending on the MVP field in MBMODE.

· For 2 Field MV macroblocks, there can be either 0, 1, or 2 MVDATA syntax element(s) present depending on 2MVBP.

· For 4 Frame / Field MV macroblocks, there can be either 0, 1, 2, 3, or 4 MVDATA syntax element(s) present depending on 4MVBP.

The motion vector differential is decoded the same way as one reference field motion vector differential for field P picture described in section 9.2.4.8.1 with no halfpel mode.
9.5.2.6 Reconstructing Motion Vectors
Given the motion vecotor differential dmv, the luminance motion vector is reconstructed by adding the differential to the predictor as follows:

mv_x = (dmv_x + predictor_x) smod range_x

mv_y = (dmv_y + predictor_y) smod range_y

The modulus operation “smod” is a signed modulus, defined as follows:

A smod b = ((A + b) % 2 b) - b

ensures that the reconstructed vectors are valid. (A smod b) lies within –b and b – 1. range_x and range_y depend on MVRANGE and are specified in Table 43.

Given a luma frame or field motion vector, a corresponding chroma frame or field motion vector is derived to compensate a portion (could be the entire portion) of the U and V block. The FASTUVMC syntax element is ignored in interlace frame P, B pictures. The following pseudocode describes how a chroma motion vector CMV is derived from a luma motion vector LMV:
Int s_RndTbl [] = {0, 0, 0, 1};

Int s_RndTblField [] = {0, 0, 1, 2, 4, 4, 5, 6, 2, 2, 3, 8, 6, 6, 7, 12};

CMVX = (LMVX + s_RndTbl[LMVX & 3]) >> 1;

if (LMV is a field motion vector) {
CMVY = (LMVY >> 4)*8 + s_RndTblField [LMVY & 0xF];

} else {

CMVY = (LMVY + s_RndTbl[LMVY & 3]) >> 1;

}

9.5.3 Block Layer Decode

If the current macroblock is intra-coded, then the block layer is equivalent to decoding of an macroblock in interlace frame I pictures as described in section 9.4.2.

If the current macroblock is inter-coded, then the block layer consists of decoding the residual after motion compensation and the process is the same as described in section 9.2.5.2.
9.6 Interlace Frame B Picture Decoding

Interlace frame B picture decoding is very similar to interlace P picture decoding in terms of bitstream syntax. We will focus here on the differences in bitstream and decoding steps, and omit the elements that are identical, for the sake of brevity. The additional elements are: a) the BFRACTION at the picture level that tells us how to scale the direct mode MVs; b) the DIRECTMB bit plane coding that is sent at the picture layer for direct/non-direct MB’s; c) the DIRECTBIT bit at the MB level in the case where the direct mode bit plane is coded raw; d) the BMVTYPE VLC at the MB level that indicates if the MB is forward, backward or interpolated; and e) one bit (MVSW) at the MB level if we are in field mode and BMVTYPE is forward or backward, to indicate if we are going to switch mode from forward to backward (or backward to forward) in going from the top to the bottom field’s MV.

As with B frame MV decoding in progressive and field coding, we maintain 2 buffers, one each for forward and backward motion, and use the rule “forward predicts forward, backward predicts backward”. MV prediction follows similar logic as frame P pictures, but we retain forward and backward contexts separately. We also fill in the “holes” e.g. when backward, we fill in the forward buffer’s MV with what would be the predicted MV.
9.6.1 B Macroblock Layer Decode

At the MB level, the B frame syntax is also similar to P frame MB (e.g see Figure 76 and Figure 77). We will once again focus on describing the deltas and avoid repeating the elements that remain the same.

9.6.1.1 Direct Bit
If the picture-level syntax element DIRECTMB is coded in raw mode, then the direct bit is needed to signal direct/non-direct at the MB level.

9.6.1.2 MB Mode
In case the MB mode is not direct, we send additional bits in BMVTYPE to signal if the B-MB is forward, backward or interpolated. BMVTYPE is a variable sized syntax element present in B frame macroblocks that indicates whether the macroblock uses forward, backward or interpolated prediction. As Table 23 shows, the value of BFRACTION in the picture header along with BMVTYPE determine whether forward or backward prediction are indicated.

9.6.1.3 Field level MV Switch
If the MB is forward or backward AND the MB is “field” type, then we send an additional bit to signal if we are going to switch from forward to backward (or backward to forward) in going from the top to the bottom field’s MV.

9.6.1.4 B Frame Modes

Macro blocks in B frames are identified as belonging to one of four modes, viz. backward, forward, direct and interpolated. Additionally, in frame mode B pictures we have the ability to switch from backward to forward or forward to backward at the field level – this applies to field mode MB’s. The forward mode is akin to conventional P picture prediction. In the forward mode, the B macro block is interpolated from its temporally previous anchor frame. Likewise, backward mode macro blocks are entirely interpolated from their temporally subsequent anchor frame.
Direct mode and interpolated modes are implemented according to the description in 7.3.3.2.

The interpolation processes (e.g. bicubic, bilinear, quarter or half pel) are signaled and implemented exactly the same way as with frame P pictures.

9.6.1.5 Motion Vector Prediction in Frame B Pictures

MV prediction for frame B pictures follows exactly the same rules as with frame P, and will not be repeated here. The only additional point to note is that two separate MV buffers are kept for forward and backward MV’s, and the MV prediction rules are applied on each of these while decoding an MV of the like type, i.e. forward MV’s are used to predict an incoming forward MV, and backward MV’s are used to predict an incoming backward MV. In the interpolated mode we use both forward and backward prediction to predict the two incoming MV’s, and in the direct mode we scale the next field P’s collocated MV.
The scheme for frame B MV prediction is as follows –

1) If the MB is forward predicted, then median predict its MV from the neighborhood of the “forward MV buffer”. Store the forward MV (after adding the prediction error) in the forward buffer, and the backward predicted MV in the backward buffer.

2) If the MB is backward predicted, then median predict its MV from the neighborhood of the “backward MV buffer”. Store the backward MV (after adding the prediction error) in the backward buffer, and the forward predicted MV in the forward buffer.

3) If the MB is interpolated, then use the forward MV buffer to predict the forward component, the backward buffer to predict the backward component, and store the forward and backward MVs (after adding the two sets of prediction errors), once these have been calculated, in the forward and backward MV buffers respectively.

4) If the MB is direct predicted, we compute the direct mode MVs as follows -
For a description of how the direct mode scales MV’s, please refer to section 7.3.3.2.
9.6.2 B Block Layer Decode

Block decoding syntax and operations are the same as for P pictures and will not be repeated. I-MB’s in B frames are also the same as those in P frames.
9.7 Overlapped Transform

If the sequence layer syntax element OVERLAP is set to 1, then a filtering operation is conditionally performed across edges of two neighboring Intra blocks, for both the luminance and chrominance channels. This filtering operation (referred to as overlap smoothing) is performed subsequent to decoding the frame, and prior to in-loop deblocking. However, overlap smoothing may be done after the relevant macroblock slices are decoded as this is functionally equivalent to smoothing after decoding the entire frame.

Overlapped transforms are modified block based transforms that exchange information across the block boundary. With a well designed overlapped transform, blocking artifacts can be minimized. For intra blocks, VC9 simulates an overlapped transform by coupling an 8x8 DCT-like block transform with overlap smoothing. Edges of an 8x8 block that separate two intra blocks are smoothed – in effect an overlapped transform is implemented at this interface.

Figure 57 shows a portion of a P frame with I blocks. This could be either the Y or U/V channel. I blocks are gray (or crosshatched) and P blocks are white. The edge interface over which overlap smoothing is applied is marked with a crosshatch pattern. Overlap smoothing is applied to two pixels on either side of the separating boundary. The right bottom area of frame is shown here as an example. Pixels occupy individual cells and blocks are separated by heavy lines. The dark circle marks the 2x2 pixel corner subblock that is filtered in both directions.

The lower inset in Figure 57 shows four labeled pixels, a0 and a1 are to the left and b1, b0 to the right of the vertical block edge. The upper inset shows pixels marked p0, p1, q1 and q0 straddling a horizontal edge. The next section describes the filter applied to these four pixel locations.
[image: image108.emf]

a0 a1 b1 b0

p0 p1 q1 q0

Figure 94: Example showing overlap smoothing

9.7.1 Overlap Smoothing

The overlap smoothing in interlace field pictures is identical to the overlap smoothing for progressive I-frames in advanced profile, and is described in Section 7.5.2.
9.7.2 Overlap Smoothing for Interlace Frame Pictures

The overlap smoothing process in interlace frame pictures is the same as the above description for vertical edges between I blocks. However, only intra-macroblock 8x8 horizontal block boundaries of a frame transform coded macroblock are overlap smoothed. Horizontal block boundaries between macroblocks and intra-macroblock horizontal edges of field coded I macroblocks are not smoothed.
The conditional overlap smoothing applies only to interlace frame I picture. The rule is the same with the added restriction that only intra-macroblock horizontal boundary of a frame transform coded macroblock is smoothed. The vertical edges between two horizontally adjacent macroblocks is smoothed if and only if both macroblocks have their respective OVERFLAG bits set to 1, or the entire frame is enabled for overlap filtering implicitly (based on PQUANT) or explicitly (based on CONDOVER).

9.8 In-loop Deblock Filtering

If the sequence layer syntax element LOOPFILTER = 1, then a filtering operation is performed on each reconstructed frame. This filtering operation is performed prior to using the reconstructed frame as a reference for motion predictive coding. Therefore, it is necessary that the decoder perform the filtering operation strictly as defined.

Since the intent of loop filtering is to smooth out the discontinuities at block boundaries, the filtering process operates on the pixels that border neighboring blocks. For P pictures, the block boundaries can occur at every 4th, 8th, 12th, etc pixel row or column, depending on whether an 8x8, 8x4, 4x8 or 4x4 Inverse Transform is used. For I pictures filtering occurs at every 8th, 16th, 24th, etc pixel row and column.

9.8.1 I Picture In-loop Deblocking

For I pictures, deblock filtering is performed at all 8x8 block boundaries. Figure 58 and Figure 59 show the pixels that are filtered along the horizontal and vertical border regions. The figures show the upper left corner of a component (luma, Cr or Cb) plane. The crosses represent pixels and the circled crosses represent the pixels that are filtered.

[image: image109.emf]
Figure 95: Filtered horizontal block boundary pixels in I picture

[image: image110.emf]
Figure 96: Filtered vertical block boundary pixels in I picture

As the figures show, the top horizontal line and first vertical line are not filtered. Although not depicted, the bottom horizontal line and last vertical line are also not filtered. In more formal terms, the following lines are filtered:

N = the number of horizontal 8x8 blocks in the plane (N*8 = horizontal frame size)

M = the number of vertical 8x8 blocks in the frame (M*8 = vertical frame size)

Horizontal lines (7,8), (15,16) … ((N – 1)*8 – 1, (N –1)*8) are filtered

Vertical lines (7, 8), (15, 16) … ((M-1)*8 - 1, (M – 1)*8) are filtered

The order in which the pixels are filtered is important. All the horizontal boundary lines in the frame are filtered first followed by the vertical boundary lines.

9.8.2 P Picture In-loop Deblocking

Section 7.6.2 describes in-loop deblocking of P pictures and section 7.6.3 describes the filtering process.
9.8.3 Interlace Frame Pictures In-loop Deblocking

In interlace frame pictures, each macroblock can be frame transform coded or field transform coded according to its FIELDTX flag. The state of the FIELDTX flag along with the size of the transform (4x4, 4x8, 8x4, 8x8) used has an effect on where the in-loop deblocking takes place in the macroblock.
9.8.3.1 Field-based Filtering

The filtering process is the same as described in section 7.6.3 with one important difference, the filtering is always done using the same field lines, never mixing different field. Figure 97 illustrates the field-based filtering for horizontal and vertical block boundaries.
For a horizontal block boundary, we filter the two top field lines across the block boundary using top field lines only and the two bottom field lines across the block boundary using bottom field lines only. For a vertical block boundary, we filter the top field block boundary and the bottom field block boundary separately.

[image: image111.emf]Block Boundary

Horiz. filtering

of bottom field

Horiz. filtering

of top field

Current

Block

Neighboring

Block

Current

Block

Neighboring

Block

Block Boundary

T

T

T

T

T

T

T

T

B

B

B

B

B

B

B

B

T

T

B

B

Horizontal field based filtering Vertical field based filtering

Vertical filtering of

Top field

Figure 97: Field based horizontal / vertical block boundaries filtering

9.8.3.2 Filtering order

For both inter (P, B) and intra (I) frame picture, the in-loop deblocking process starts by processing all the horizontals edges first followed by all the vertical edges. The horizontal edges are processed a macroblock at a time following the raster scan order. Similarly, the vertical edges are processed a macroblock at a time following the raster scan order. The following pseudocode decribes this process:
// Processing horizontal edges

for (Y = 0; Y < number of MBs in a MB row; Y++) {

 for (X = 0; X < number of MBs in a MB col; X++) {

 Filter horizontal edges of MB located at Yth row, Xth col

 }

}

// Processing vertical edges

for (Y = 0; Y < number of MBs in a MB row; Y++) {

 for (X = 0; X < number of MBs in a MB col; X++) {

 Filter vertical edges of MB located at Yth row, Xth col

 }

}
9.8.3.3 Interlace Frame I Picture
In interlace frame I picture, each macroblock is 8x8 transform coded.
For each macroblock, the horizontal block boundary filtering starts by filtering the intra-macroblock horizontal boundary only if the current macroblock is frame transform coded. Next, the horizontal block boundary between the current macroblock and the macroblock directly below it (if available) is filtered. The following pseudocode describes the process of horizontal filtering a macroblock:
// Horizontal filtering of MB

// Luminance

if (FIELDTX of current MB is false) {
 - Filter all 16 pixels in row 6 and 8 of Y.

 - Filter all 16 pixels in row 7 and 9 of Y.

}

- Filter all 16 pixels in row 14 and 16 of Y.

- Filter all 16 pixels in row 15 and 17 of Y.

// Chrominance

- Filter all 8 pixels in row 6 and 8 of U and V.

- Filter all 8 pixels in row 7 and 9 of U and V.

For each macroblock, the vertical block boundary filtering starts by filtering the intra-macroblock vertical boundary and then followed by the filtering of the inter-macroblock boundary between the current macroblock and the macroblock to its immediate right (if available). The following pseudocode describes the process of the vertical filtering a macroblock:

// Vertical filtering of MB

// Luminance

- Filter the 8 even numbered pixels in column 7 and 8 of Y.

- Filter the 8 odd numbered pixels in column 7 and 8 of Y.

- Filter the 8 even numbered pixels in column 15 and 16 of Y.

- Filter the 8 odd numbered pixels in column 16 and 16 of Y.

// Chrominance

- Filter the 4 even numbered pixels in column 7 and 8 of U.

- Filter the 4 odd numbered pixels in column 7 and 8 of U.

- Filter the 4 even numbered pixels in column 7 and 8 of V.

- Filter the 4 odd numbered pixels in column 7 and 8 of V.
9.8.3.4 Interlace Frame P, B Picture

In interlace frame P, B picture, each macroblock can be 4x4, 4x8, 8x4, or 8x8 transform coded.
For each macroblock, the horizontal block boundary filtering occurs in the order of block Y0, Y1, Y2, Y3, U, and then V. The luminance blocks are processed differently according to FIELDTX. The following pseudocode describes the process of horizontal filtering a macroblock:

// Horizontal filtering of MB

// Luminance

if (FIELDTX of current MB is false) {

 // Block Y0

 if (current MB is not in the first MB row and the

 transform of Block Y0 is 8x4 or 4x4) {

 - Filter first 8 pixels in row 2 and 4 of Y.

 - Filter first 8 pixels in row 3 and 5 of Y.

 }

 - Filter first 8 pixels in row 6 and 8 of Y.

 - Filter first 8 pixels in row 7 and 9 of Y.

 // Block Y1

 if (current MB is not in the first MB row and the

 transform of Block Y1 is 8x4 or 4x4) {

 - Filter last 8 pixels in row 2 and 4 of Y.

 - Filter last 8 pixels in row 3 and 5 of Y.

 }

 - Filter last 8 pixels in row 6 and 8 of Y.

 - Filter last 8 pixels in row 7 and 9 of Y.

 // Block Y2

 if (current MB is not in the last MB row and the

 transform of Block Y2 is 8x4 or 4x4) {

 - Filter first 8 pixels in row 10 and 12 of Y.

 - Filter first 8 pixels in row 11 and 13 of Y.

 }

 if (current MB is not in the last MB row and the

 transform of Block Y2 is 8x4 or 4x4) {

 - Filter first 8 pixels in row 14 and 16 of Y.

 - Filter first 8 pixels in row 15 and 17 of Y.

 }

 // Block Y3

 if (current MB is not in the last MB row and the

 transform of Block Y3 is 8x4 or 4x4) {

 - Filter last 8 pixels in row 10 and 12 of Y.

 - Filter last 8 pixels in row 11 and 13 of Y.

 }

 if (current MB is not in the last MB row and the

 transform of Block Y3 is 8x4 or 4x4) {

 - Filter last 8 pixels in row 14 and 16 of Y.

 - Filter last 8 pixels in row 15 and 17 of Y.

 }

} else {

 // Block Y0

 if (the transform of Block Y0 is 8x4 or 4x4) {

 - Filter first 8 pixels in row 6 and 8 of Y.

 }

 if (current MB is not in the last MB row) {

 - Filter first 8 pixels in row 14 and 16 of Y.

 }

 // Block Y1

 if (the transform of Block Y1 is 8x4 or 4x4) {

 - Filter last 8 pixels in row 6 and 8 of Y.

 }

 if (current MB is not in the last MB row) {

 - Filter last 8 pixels in row 14 and 16 of Y.

 }

 // Block Y2

 if (the transform of Block Y2 is 8x4 or 4x4) {

 - Filter first 8 pixels in row 7 and 9 of Y.

 }

 if (current MB is not in the last MB row) {

 - Filter first 8 pixels in row 15 and 17 of Y.

 }

 // Block Y3

 if (the transform of Block Y3 is 8x4 or 4x4) {

 - Filter last 8 pixels in row 7 and 9 of Y.

 }

 if (current MB is not in the last MB row) {

 - Filter last 8 pixels in row 15 and 17 of Y.

 }

}

// Chrominance

if (current MB is not in the first or last MB row and the

 transform used for the U block is 8x4 or 4x4) {

 - Filter all 8 pixels in row 2 and 4 of U.

 - Filter all 8 pixels in row 3 and 5 of U.

}

If (current MB is not in the last MB column) {

 - Filter all 8 pixels in row 6 and 8 of U.

 - Filter all 8 pixels in row 7 and 9 of U.

}

if (current MB is not in the first or last MB row and the

 transform used for the V block is 8x4 or 4x4) {

 - Filter all 8 pixels in row 2 and 4 of V.

 - Filter all 8 pixels in row 3 and 5 of V.

}

If (current MB is not in the last MB column) {

 - Filter all 8 pixels in row 6 and 8 of V.

 - Filter all 8 pixels in row 7 and 9 of V.

}

Similarly, for each macroblock, the vertical block boundary filtering occurs in the order of block Y0, Y1, Y2, Y3, U, and then V. The luminance blocks are processed differently according to FIELDTX. The following pseudocode describes the process of vertical filtering a macroblock:

// Vertical filtering of MB

// Luminance

if (FIELDTX of current MB is false) {

 // Block Y0

 if (the transform of Block Y0 is 4x8 or 4x4) {

 - Filter the 4 even numbered pixels of the

 first 8 pixels in column 3 and 4 of Y.

 - Filter the 4 odd numbered pixels of the

 first 8 pixels in column 3 and 4 of Y.

 }

 - Filter the 4 even numbered pixels of the

 first 8 pixels in column 7 and 8 of Y.

 - Filter the 4 odd numbered pixels of the

 first 8 pixels in column 7 and 8 of Y.

 // Block Y1

 if (the transform of Block Y1 is 4x8 or 4x4) {

 - Filter the 4 even numbered pixels of the

 first 8 pixels in column 11 and 12 of Y.

 - Filter the 4 odd numbered pixels of the

 first 8 pixels in column 11 and 12 of Y.

 }

 if (current MB is not in the last MB column) {

 - Filter the 4 even numbered pixels of the

 first 8 pixels in column 15 and 16 of Y.

 - Filter the 4 odd numbered pixels of the

 first 8 pixels in column 15 and 16 of Y.

 }

 // Block Y2

 if (the transform of Block Y2 is 4x8 or 4x4) {

 - Filter the 4 even numbered pixels of the

 last 8 pixels in column 3 and 4 of Y.

 - Filter the 4 odd numbered pixels of the

 last 8 pixels in column 3 and 4 of Y.

 }

 - Filter the 4 even numbered pixels of the

 last 8 pixels in column 7 and 8 of Y.

 - Filter the 4 odd numbered pixels of the

 last 8 pixels in column 7 and 8 of Y.

 // Block Y3

 if (the transform of Block Y3 is 4x8 or 4x4) {

 - Filter the 4 even numbered pixels of the

 last 8 pixels in column 11 and 12 of Y.

 - Filter the 4 odd numbered pixels of the

 last 8 pixels in column 11 and 12 of Y.

 }

 if (current MB is not in the last MB column) {

 - Filter the 4 even numbered pixels of the

 last 8 pixels in column 15 and 16 of Y.

 - Filter the 4 odd numbered pixels of the

 last 8 pixels in column 15 and 16 of Y.

 }

} else {

 // Block Y0

 if (the transform of Block Y0 is 4x8 or 4x4) {

 - Filter the 8 even numbered pixels

 in column 3 and 4 of Y.

 }

 - Filter the 8 even numbered pixels in column 7 and 8 of Y.

 // Block Y1

 if (the transform of Block Y1 is 4x8 or 4x4) {

 - Filter the 8 even numbered pixels

 in column 11 and 12 of Y.

 }

 if (current MB is not in the last MB column) {

 - Filter the 8 even numbered pixels

 in column 15 and 16 of Y.

 }

 // Block Y2

 if (the transform of Block Y2 is 4x8 or 4x4) {

 - Filter the 8 odd numbered pixels

 in column 3 and 4 of Y.

 }

 - Filter the 8 odd numbered pixels in column 7 and 8 of Y.

 // Block Y3

 if (the transform of Block Y3 is 4x8 or 4x4) {

 - Filter the 8 odd numbered pixels

 in column 11 and 12 of Y.

 }

 if (current MB is not in the last MB column) {

 - Filter the 8 odd numbered pixels

 in column 15 and 16 of Y.

 }

}

 // Chrominance

 if (the transform of U Block is 4x8 or 4x4) {

 - Filter the 4 even numbered pixels

 in column 3 and 4 of U.

 - Filter the 4 odd numbered pixels

 in column 3 and 4 of U.

 }

 if (current MB is not in the last MB column) {

 - Filter the 4 even numbered pixels

 in column 7 and 8 of U.

 - Filter the 4 odd numbered pixels

 in column 7 and 8 of U.

 }

 if (the transform of V Block is 4x8 or 4x4) {

 - Filter the 4 even numbered pixels

 in column 3 and 4 of V.

 - Filter the 4 odd numbered pixels

 in column 3 and 4 of V.

 }

 if (current MB is not in the last MB column) {

 - Filter the 4 even numbered pixels

 in column 7 and 8 of V.

 - Filter the 4 odd numbered pixels

 in column 7 and 8 of V.

 }

10 Tables

10.1 Transform Coefficient Tables For the Advanced 2-Layer Coding Method
Table 75: VLC Table for Inter 8x8 Block NUMCOEF.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	37
	0
	1
	1
	1
	0
	2
	2
	7
	4
	3
	12
	5
	4
	26
	6

	
	5
	10
	5
	6
	27
	6
	7
	23
	6
	8
	9
	5
	9
	22
	6

	
	10
	35
	7
	11
	33
	7
	12
	68
	8
	13
	64
	8
	14
	131
	9

	
	15
	279
	10
	16
	277
	10
	17
	260
	10
	18
	556
	11
	19
	523
	11

	
	20
	522
	11
	21
	1107
	12
	22
	1105
	12
	23
	2228
	13
	24
	2229
	13

	
	25
	4463
	14
	26
	2212
	13
	27
	4462
	14
	28
	4426
	14
	29
	4418
	14

	
	30
	8855
	15
	31
	4419
	14
	32
	8832
	15
	33
	4417
	14
	34
	8833
	15

	
	35
	8854
	15
	36
	2230
	13
	
	
	
	
	
	
	
	
	

	37
	0
	2
	2
	1
	7
	3
	2
	2
	3
	3
	12
	4
	4
	14
	6

	
	5
	14
	5
	6
	27
	5
	7
	2
	4
	8
	0
	3
	9
	6
	4

	
	10
	15
	5
	11
	6
	5
	12
	52
	6
	13
	106
	7
	14
	30
	7

	
	15
	214
	8
	16
	62
	8
	17
	127
	9
	18
	863
	10
	19
	861
	10

	
	20
	253
	10
	21
	1724
	11
	22
	1720
	11
	23
	505
	11
	24
	3450
	12

	
	25
	3442
	12
	26
	6903
	13
	27
	6887
	13
	28
	2017
	13
	29
	2018
	13

	
	30
	2016
	13
	31
	4039
	14
	32
	13772
	14
	33
	4038
	14
	34
	27546
	15

	
	35
	27547
	15
	36
	6902
	13
	
	
	
	
	
	
	
	
	

	37
	0
	10
	4
	1
	9
	4
	2
	7
	4
	3
	4
	4
	4
	58
	8

	
	5
	109
	7
	6
	55
	6
	7
	22
	5
	8
	0
	3
	9
	15
	4

	
	10
	14
	4
	11
	12
	4
	12
	8
	4
	13
	5
	4
	14
	2
	4

	
	15
	23
	5
	16
	12
	5
	17
	6
	5
	18
	53
	6
	19
	27
	6

	
	20
	15
	6
	21
	108
	7
	22
	104
	7
	23
	52
	7
	24
	211
	8

	
	25
	107
	8
	26
	59
	8
	27
	56
	8
	28
	421
	9
	29
	212
	9

	
	30
	114
	9
	31
	840
	10
	32
	231
	10
	33
	230
	10
	34
	1683
	11

	
	35
	1682
	11
	36
	213
	9
	
	
	
	
	
	
	
	
	

	68
	0
	23
	6
	1
	13
	6
	2
	12
	6
	3
	121
	7
	4
	2231
	12

	
	5
	556
	10
	6
	57
	8
	7
	175
	8
	8
	50
	6
	9
	8
	5

	
	10
	12
	5
	11
	16
	5
	12
	19
	5
	13
	23
	5
	14
	27
	5

	
	15
	29
	5
	16
	1
	4
	17
	0
	4
	18
	2
	4
	19
	31
	5

	
	20
	28
	5
	21
	26
	5
	22
	24
	5
	23
	22
	5
	24
	20
	5

	
	25
	18
	5
	26
	15
	5
	27
	14
	5
	28
	10
	5
	29
	9
	5

	
	30
	61
	6
	31
	51
	6
	32
	42
	6
	33
	35
	6
	34
	27
	6

	
	35
	22
	6
	36
	15
	6
	37
	120
	7
	38
	86
	7
	39
	68
	7

	
	40
	52
	7
	41
	29
	7
	42
	174
	8
	43
	138
	8
	44
	106
	8

	
	45
	279
	9
	46
	215
	9
	47
	113
	9
	48
	112
	9
	49
	428
	10

	
	50
	1114
	11
	51
	1719
	12
	52
	1717
	12
	53
	1718
	12
	54
	1716
	12

	
	55
	8923
	14
	56
	8920
	14
	57
	71383
	17
	58
	17844
	15
	59
	35684
	16

	
	60
	71370
	17
	61
	35690
	16
	62
	71371
	17
	63
	71372
	17
	64
	71373
	17

	
	65
	71374
	17
	66
	71375
	17
	67
	71382
	17
	
	
	
	
	
	

Table 76: VLC Table for Inter 8x4/4x8 Block NUMCOEF.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	21
	0
	0
	1
	1
	2
	2
	2
	15
	4
	3
	29
	5
	4
	51
	6

	
	5
	24
	5
	6
	57
	6
	7
	55
	6
	8
	26
	5
	9
	54
	6

	
	10
	113
	7
	11
	101
	7
	12
	225
	8
	13
	200
	8
	14
	448
	9

	
	15
	402
	9
	16
	898
	10
	17
	806
	10
	18
	1615
	11
	19
	1614
	11

	
	20
	899
	10
	
	
	
	
	
	
	
	
	
	
	
	

	21
	0
	2
	2
	1
	0
	2
	2
	3
	3
	3
	12
	4
	4
	114
	7

	
	5
	9
	5
	6
	29
	5
	7
	30
	5
	8
	13
	4
	9
	31
	5

	
	10
	11
	5
	11
	8
	5
	12
	56
	6
	13
	20
	6
	14
	43
	7

	
	15
	230
	8
	16
	85
	8
	17
	462
	9
	18
	169
	9
	19
	168
	9

	
	20
	463
	9
	
	
	
	
	
	
	
	
	
	
	
	

	21
	0
	4
	3
	1
	2
	3
	2
	15
	4
	3
	10
	4
	4
	52
	7

	
	5
	15
	6
	6
	6
	5
	7
	25
	5
	8
	0
	3
	9
	13
	4

	
	10
	11
	4
	11
	7
	4
	12
	2
	4
	13
	28
	5
	14
	24
	5

	
	15
	12
	5
	16
	58
	6
	17
	27
	6
	18
	14
	6
	19
	53
	7

	
	20
	59
	6
	
	
	
	
	
	
	
	
	
	
	
	

	36
	0
	28
	5
	1
	27
	5
	2
	26
	5
	3
	24
	5
	4
	950
	10

	
	5
	105
	8
	6
	119
	7
	7
	27
	6
	8
	2
	4
	9
	4
	4

	
	10
	9
	4
	11
	7
	4
	12
	11
	4
	13
	10
	4
	14
	8
	4

	
	15
	5
	4
	16
	3
	4
	17
	1
	4
	18
	31
	5
	19
	30
	5

	
	20
	25
	5
	21
	12
	5
	22
	0
	5
	23
	58
	6
	24
	3
	6

	
	25
	2
	6
	26
	53
	7
	27
	236
	8
	28
	104
	8
	29
	951
	10

	
	30
	949
	10
	31
	1897
	11
	32
	3793
	12
	33
	7585
	13
	34
	15169
	14

	
	35
	15168
	14
	
	
	
	
	
	
	
	
	
	
	
	

Table 77: VLC Table for Inter 4x4 Block NUMCOEF.

	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	20
	0
	3
	2
	1
	1
	2
	2
	4
	3
	3
	10
	4
	4
	1
	6

	
	5
	7
	5
	6
	1
	4
	7
	23
	5
	8
	2
	4
	9
	22
	5

	
	10
	1
	5
	11
	13
	6
	12
	0
	6
	13
	24
	7
	14
	50
	8

	
	15
	102
	9
	16
	207
	10
	17
	413
	11
	18
	825
	12
	19
	824
	12

	20
	0
	2
	2
	1
	7
	3
	2
	2
	3
	3
	12
	4
	4
	8
	6

	
	5
	5
	5
	6
	1
	4
	7
	3
	4
	8
	13
	4
	9
	6
	4

	
	10
	0
	4
	11
	14
	5
	12
	31
	6
	13
	9
	6
	14
	60
	7

	
	15
	123
	8
	16
	245
	9
	17
	489
	10
	18
	977
	11
	19
	976
	11

	20
	0
	6
	3
	1
	3
	3
	2
	0
	3
	3
	10
	4
	4
	135
	8

	
	5
	56
	6
	6
	29
	5
	7
	3
	4
	8
	2
	3
	9
	15
	4

	
	10
	11
	4
	11
	9
	4
	12
	2
	4
	13
	17
	5
	14
	57
	6

	
	15
	32
	6
	16
	66
	7
	17
	269
	9
	18
	537
	10
	19
	536
	10

	20
	0
	12
	4
	1
	9
	4
	2
	8
	4
	3
	30
	5
	4
	361
	9

	
	5
	91
	7
	6
	13
	5
	7
	31
	5
	8
	0
	3
	9
	1
	3

	
	10
	2
	3
	11
	14
	4
	12
	13
	4
	13
	10
	4
	14
	7
	4

	
	15
	23
	5
	16
	12
	5
	17
	44
	6
	18
	181
	8
	19
	360
	9

Table 78: VLC Table for Intra 8x8 Block NUMCOEF.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	36
	0
	2
	2
	1
	2
	3
	2
	7
	4
	3
	30
	5
	4
	0
	4

	
	5
	12
	4
	6
	14
	4
	7
	6
	4
	8
	13
	4
	9
	2
	4

	
	10
	31
	5
	11
	6
	5
	12
	2
	5
	13
	14
	6
	14
	31
	7

	
	15
	15
	7
	16
	13
	7
	17
	61
	8
	18
	29
	8
	19
	24
	8

	
	20
	120
	9
	21
	51
	9
	22
	243
	10
	23
	115
	10
	24
	112
	10

	
	25
	100
	10
	26
	484
	11
	27
	227
	11
	28
	970
	12
	29
	203
	11

	
	30
	202
	11
	31
	452
	12
	32
	971
	12
	33
	906
	13
	34
	907
	13

	
	35
	114
	10
	
	
	
	
	
	
	
	
	
	
	
	

	36
	0
	12
	5
	1
	6
	5
	2
	1
	5
	3
	60
	6
	4
	247
	8

	
	5
	26
	6
	6
	7
	5
	7
	28
	5
	8
	9
	4
	9
	11
	4

	
	10
	12
	4
	11
	10
	4
	12
	8
	4
	13
	7
	4
	14
	4
	4

	
	15
	1
	4
	16
	31
	5
	17
	29
	5
	18
	26
	5
	19
	11
	5

	
	20
	4
	5
	21
	0
	5
	22
	54
	6
	23
	27
	6
	24
	20
	6

	
	25
	10
	6
	26
	122
	7
	27
	110
	7
	28
	22
	7
	29
	246
	8

	
	30
	47
	8
	31
	222
	8
	32
	46
	8
	33
	447
	9
	34
	446
	9

	
	35
	21
	6
	
	
	
	
	
	
	
	
	
	
	
	

	67
	0
	38
	7
	1
	218
	8
	2
	185
	8
	3
	78
	8
	4
	144
	10

	
	5
	316
	10
	6
	73
	9
	7
	184
	8
	8
	93
	7
	9
	114
	7

	
	10
	3
	6
	11
	103
	7
	12
	8
	6
	13
	2
	6
	14
	39
	6

	
	15
	38
	6
	16
	55
	6
	17
	58
	6
	18
	60
	6
	19
	3
	5

	
	20
	8
	5
	21
	10
	5
	22
	12
	5
	23
	13
	5
	24
	20
	5

	
	25
	21
	5
	26
	17
	5
	27
	18
	5
	28
	11
	5
	29
	14
	5

	
	30
	15
	5
	31
	2
	5
	32
	0
	5
	33
	6
	5
	34
	62
	6

	
	35
	61
	6
	36
	56
	6
	37
	59
	6
	38
	50
	6
	39
	52
	6

	
	40
	49
	6
	41
	53
	6
	42
	48
	6
	43
	47
	6
	44
	45
	6

	
	45
	18
	6
	46
	15
	6
	47
	44
	6
	48
	33
	6
	49
	32
	6

	
	50
	11
	6
	51
	14
	6
	52
	127
	7
	53
	10
	6
	54
	126
	7

	
	55
	115
	7
	56
	108
	7
	57
	102
	7
	58
	19
	7
	59
	219
	8

	
	60
	37
	8
	61
	159
	9
	62
	317
	10
	63
	291
	11
	64
	580
	12

	
	65
	1162
	13
	66
	1163
	13
	
	
	
	
	
	
	
	
	

Table 79: VLC Table for the decoding of NUMZERO for Interlace-Mode Inter 8x8 Blocks.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	64
	0
	3
	2
	1
	2
	3
	2
	7
	4
	3
	12
	5
	4
	7
	5

	
	5
	9
	4
	6
	2
	4
	7
	13
	6
	8
	90
	7
	9
	1
	6

	
	10
	3
	6
	11
	107
	8
	12
	0
	7
	13
	55
	7
	14
	23
	5

	
	15
	1
	4
	16
	8
	4
	17
	10
	4
	18
	52
	7
	19
	24
	7

	
	20
	11
	8
	21
	213
	9
	22
	50
	8
	23
	91
	7
	24
	54
	7

	
	25
	3
	8
	26
	354
	9
	27
	711
	10
	28
	353
	9
	29
	4
	7

	
	30
	89
	7
	31
	51
	8
	32
	2
	8
	33
	710
	10
	34
	1410
	11

	
	35
	41
	10
	36
	425
	10
	37
	43
	10
	38
	42
	10
	39
	3399
	13

	
	40
	1411
	11
	41
	1408
	11
	42
	1698
	12
	43
	1697
	12
	44
	2819
	12

	
	45
	80
	11
	46
	163
	12
	47
	5636
	13
	48
	5637
	13
	49
	3392
	13

	
	50
	324
	13
	51
	217196
	19
	52
	108599
	18
	53
	6796
	14
	54
	6797
	14

	
	55
	651
	14
	56
	6786
	14
	57
	650
	14
	58
	27151
	16
	59
	27150
	16

	
	60
	27148
	16
	61
	217197
	19
	62
	108596
	18
	63
	108597
	18
	
	
	

	63
	0
	2
	3
	1
	13
	4
	2
	20
	5
	3
	22
	5
	4
	0
	3

	
	5
	12
	4
	6
	4
	5
	7
	43
	6
	8
	11
	6
	9
	10
	6

	
	10
	64
	7
	11
	123
	7
	12
	33
	6
	13
	9
	4
	14
	3
	4

	
	15
	14
	4
	16
	3
	3
	17
	46
	6
	18
	34
	6
	19
	70
	7

	
	20
	190
	8
	21
	188
	8
	22
	120
	7
	23
	126
	7
	24
	191
	8

	
	25
	131
	8
	26
	491
	9
	27
	244
	8
	28
	42
	6
	29
	62
	6

	
	30
	121
	7
	31
	255
	8
	32
	143
	8
	33
	1019
	10
	34
	1017
	10

	
	35
	378
	9
	36
	261
	9
	37
	284
	9
	38
	4064
	12
	39
	571
	10

	
	40
	981
	10
	41
	521
	10
	42
	758
	10
	43
	759
	10
	44
	1018
	10

	
	45
	520
	10
	46
	1960
	11
	47
	1961
	11
	48
	1140
	11
	49
	4066
	12

	
	50
	9128
	14
	51
	9131
	14
	52
	8131
	13
	53
	8134
	13
	54
	8135
	13

	
	55
	2283
	12
	56
	16261
	14
	57
	9130
	14
	58
	16260
	14
	59
	18259
	15

	
	60
	36516
	16
	61
	73034
	17
	62
	73035
	17
	
	
	
	
	
	

	62
	0
	17
	5
	1
	6
	5
	2
	11
	5
	3
	13
	4
	4
	9
	4

	
	5
	13
	5
	6
	4
	5
	7
	32
	6
	8
	114
	7
	9
	67
	7

	
	10
	17
	6
	11
	58
	6
	12
	12
	4
	13
	7
	4
	14
	0
	3

	
	15
	5
	3
	16
	9
	5
	17
	7
	5
	18
	16
	6
	19
	49
	7

	
	20
	244
	8
	21
	112
	7
	22
	123
	7
	23
	239
	8
	24
	231
	8

	
	25
	230
	8
	26
	118
	7
	27
	10
	5
	28
	31
	5
	29
	60
	6

	
	30
	25
	6
	31
	10
	6
	32
	97
	8
	33
	44
	8
	34
	96
	8

	
	35
	47
	8
	36
	132
	8
	37
	185
	10
	38
	454
	9
	39
	455
	9

	
	40
	267
	9
	41
	477
	9
	42
	45
	8
	43
	226
	8
	44
	490
	9

	
	45
	93
	9
	46
	983
	10
	47
	533
	10
	48
	952
	10
	49
	2128
	12

	
	50
	2130
	12
	51
	184
	10
	52
	1965
	11
	53
	1907
	11
	54
	1964
	11

	
	55
	3812
	12
	56
	7627
	13
	57
	2131
	12
	58
	2129
	12
	59
	30507
	15

	
	60
	15252
	14
	61
	30506
	15
	
	
	
	
	
	
	
	
	

	61
	0
	51
	7
	1
	6
	5
	2
	20
	5
	3
	4
	4
	4
	15
	5

	
	5
	4
	5
	6
	44
	6
	7
	52
	7
	8
	87
	7
	9
	42
	6

	
	10
	61
	6
	11
	9
	4
	12
	8
	4
	13
	0
	3
	14
	6
	3

	
	15
	14
	5
	16
	29
	5
	17
	57
	6
	18
	121
	7
	19
	20
	7

	
	20
	53
	7
	21
	54
	7
	22
	183
	8
	23
	248
	8
	24
	21
	7

	
	25
	24
	6
	26
	23
	5
	27
	5
	4
	28
	7
	5
	29
	63
	6

	
	30
	56
	6
	31
	251
	8
	32
	100
	8
	33
	180
	8
	34
	181
	8

	
	35
	241
	8
	36
	962
	10
	37
	47
	8
	38
	45
	8
	39
	44
	8

	
	40
	111
	8
	41
	249
	8
	42
	86
	7
	43
	182
	8
	44
	101
	8

	
	45
	500
	9
	46
	220
	9
	47
	480
	9
	48
	369
	11
	49
	885
	11

	
	50
	963
	10
	51
	1003
	10
	52
	1002
	10
	53
	93
	9
	54
	185
	10

	
	55
	887
	11
	56
	886
	11
	57
	884
	11
	58
	737
	12
	59
	1473
	13

	
	60
	1472
	13
	
	
	
	
	
	
	
	
	
	
	
	

	60
	0
	32
	7
	1
	43
	6
	2
	0
	5
	3
	9
	5
	4
	1
	5

	
	5
	32
	6
	6
	33
	7
	7
	84
	7
	8
	46
	6
	9
	3
	5

	
	10
	6
	4
	11
	7
	4
	12
	15
	4
	13
	6
	3
	14
	22
	5

	
	15
	2
	4
	16
	7
	5
	17
	20
	6
	18
	67
	7
	19
	43
	7

	
	20
	35
	7
	21
	162
	8
	22
	230
	8
	23
	82
	7
	24
	47
	6

	
	25
	29
	5
	26
	9
	4
	27
	17
	5
	28
	11
	5
	29
	6
	5

	
	30
	80
	7
	31
	226
	8
	32
	225
	8
	33
	224
	8
	34
	229
	8

	
	35
	266
	9
	36
	170
	8
	37
	163
	8
	38
	132
	8
	39
	10
	7

	
	40
	83
	7
	41
	4
	6
	42
	42
	7
	43
	231
	8
	44
	227
	8

	
	45
	68
	8
	46
	23
	8
	47
	535
	10
	48
	277
	10
	49
	343
	9

	
	50
	342
	9
	51
	456
	9
	52
	22
	8
	53
	139
	9
	54
	914
	10

	
	55
	915
	10
	56
	534
	10
	57
	553
	11
	58
	1104
	12
	59
	1105
	12

	59
	0
	45
	8
	1
	114
	7
	2
	45
	6
	3
	43
	6
	4
	10
	6

	
	5
	231
	8
	6
	75
	7
	7
	56
	6
	8
	3
	5
	9
	0
	4

	
	10
	4
	4
	11
	15
	4
	12
	6
	3
	13
	23
	5
	14
	6
	4

	
	15
	19
	5
	16
	42
	6
	17
	88
	7
	18
	42
	7
	19
	234
	8

	
	20
	148
	8
	21
	40
	7
	22
	116
	7
	23
	4
	5
	24
	3
	4

	
	25
	8
	4
	26
	11
	5
	27
	14
	5
	28
	15
	5
	29
	4
	6

	
	30
	10
	7
	31
	235
	8
	32
	179
	8
	33
	23
	7
	34
	323
	9

	
	35
	165
	8
	36
	178
	8
	37
	149
	8
	38
	81
	7
	39
	119
	7

	
	40
	36
	6
	41
	83
	7
	42
	43
	7
	43
	11
	7
	44
	160
	8

	
	45
	164
	8
	46
	88
	9
	47
	922
	10
	48
	475
	9
	49
	82
	8

	
	50
	83
	8
	51
	236
	8
	52
	460
	9
	53
	322
	9
	54
	474
	9

	
	55
	89
	9
	56
	1846
	11
	57
	3694
	12
	58
	3695
	12
	
	
	

	58
	0
	112
	9
	1
	93
	7
	2
	6
	6
	3
	50
	7
	4
	240
	8

	
	5
	31
	7
	6
	27
	6
	7
	2
	5
	8
	19
	5
	9
	31
	5

	
	10
	10
	4
	11
	6
	3
	12
	0
	4
	13
	7
	4
	14
	29
	5

	
	15
	47
	6
	16
	9
	6
	17
	49
	7
	18
	242
	8
	19
	150
	8

	
	20
	51
	7
	21
	12
	6
	22
	10
	5
	23
	4
	4
	24
	8
	4

	
	25
	11
	5
	26
	22
	5
	27
	28
	5
	28
	13
	6
	29
	48
	7

	
	30
	20
	7
	31
	15
	7
	32
	21
	7
	33
	493
	9
	34
	185
	8

	
	35
	151
	8
	36
	14
	7
	37
	8
	6
	38
	11
	6
	39
	36
	6

	
	40
	122
	7
	41
	74
	7
	42
	53
	7
	43
	184
	8
	44
	243
	8

	
	45
	492
	9
	46
	208
	9
	47
	105
	8
	48
	241
	8
	49
	247
	8

	
	50
	29
	7
	51
	60
	8
	52
	57
	8
	53
	61
	8
	54
	113
	9

	
	55
	418
	10
	56
	838
	11
	57
	839
	11
	
	
	
	
	
	

	57
	0
	330
	10
	1
	405
	9
	2
	484
	9
	3
	485
	9
	4
	6
	7

	
	5
	122
	7
	6
	42
	6
	7
	6
	5
	8
	24
	5
	9
	7
	4

	
	10
	13
	4
	11
	2
	4
	12
	1
	4
	13
	11
	5
	14
	21
	6

	
	15
	94
	7
	16
	40
	7
	17
	95
	7
	18
	45
	6
	19
	17
	5

	
	20
	31
	5
	21
	4
	4
	22
	9
	4
	23
	6
	4
	24
	29
	5

	
	25
	28
	5
	26
	7
	5
	27
	1
	6
	28
	82
	7
	29
	246
	8

	
	30
	203
	8
	31
	240
	8
	32
	243
	8
	33
	103
	7
	34
	0
	6

	
	35
	33
	6
	36
	44
	6
	37
	40
	6
	38
	46
	6
	39
	2
	6

	
	40
	102
	7
	41
	7
	7
	42
	200
	8
	43
	167
	8
	44
	166
	8

	
	45
	241
	8
	46
	86
	7
	47
	65
	7
	48
	87
	7
	49
	64
	7

	
	50
	247
	8
	51
	201
	8
	52
	83
	8
	53
	404
	9
	54
	164
	9

	
	55
	662
	11
	56
	663
	11
	
	
	
	
	
	
	
	
	

	53
	0
	2452
	12
	1
	2453
	12
	2
	1227
	11
	3
	839
	10
	4
	152
	8

	
	5
	246
	8
	6
	94
	7
	7
	28
	6
	8
	46
	6
	9
	39
	6

	
	10
	113
	7
	11
	112
	7
	12
	17
	6
	13
	53
	6
	14
	13
	5

	
	15
	24
	5
	16
	2
	4
	17
	8
	4
	18
	10
	4
	19
	5
	4

	
	20
	29
	5
	21
	1
	4
	22
	25
	5
	23
	18
	5
	24
	62
	6

	
	25
	57
	6
	26
	60
	6
	27
	1
	5
	28
	63
	6
	29
	7
	5

	
	30
	9
	5
	31
	12
	5
	32
	15
	5
	33
	0
	5
	34
	55
	6

	
	35
	45
	6
	36
	44
	6
	37
	29
	6
	38
	16
	6
	39
	105
	7

	
	40
	109
	7
	41
	122
	7
	42
	13
	6
	43
	12
	6
	44
	108
	7

	
	45
	95
	7
	46
	77
	7
	47
	247
	8
	48
	208
	8
	49
	418
	9

	
	50
	307
	9
	51
	838
	10
	52
	612
	10
	
	
	
	
	
	

	64
	0
	5
	4
	1
	12
	5
	2
	56
	6
	3
	33
	6
	4
	1
	5

	
	5
	14
	5
	6
	8
	5
	7
	11
	6
	8
	8
	6
	9
	31
	6

	
	10
	37
	6
	11
	79
	7
	12
	114
	7
	13
	2
	5
	14
	29
	5

	
	15
	13
	4
	16
	5
	3
	17
	15
	4
	18
	3
	5
	19
	10
	6

	
	20
	64
	7
	21
	72
	7
	22
	38
	6
	23
	17
	5
	24
	0
	5

	
	25
	97
	7
	26
	60
	7
	27
	61
	7
	28
	13
	5
	29
	3
	4

	
	30
	25
	5
	31
	49
	6
	32
	18
	6
	33
	193
	8
	34
	130
	8

	
	35
	192
	8
	36
	19
	7
	37
	73
	7
	38
	157
	8
	39
	37
	8

	
	40
	156
	8
	41
	36
	8
	42
	463
	9
	43
	79
	8
	44
	230
	8

	
	45
	77
	8
	46
	263
	9
	47
	262
	9
	48
	152
	9
	49
	156
	9

	
	50
	1850
	11
	51
	3699
	12
	52
	1851
	11
	53
	307
	10
	54
	314
	10

	
	55
	315
	10
	56
	1848
	11
	57
	613
	11
	58
	3698
	12
	59
	1225
	12

	
	60
	4899
	14
	61
	4897
	14
	62
	4896
	14
	63
	4898
	14
	
	
	

	62
	0
	306
	9
	1
	103
	8
	2
	162
	8
	3
	83
	7
	4
	82
	7

	
	5
	48
	7
	6
	230
	8
	7
	197
	8
	8
	196
	8
	9
	163
	8

	
	10
	52
	7
	11
	6
	6
	12
	0
	5
	13
	21
	5
	14
	13
	4

	
	15
	1
	3
	16
	23
	5
	17
	2
	5
	18
	96
	7
	19
	64
	7

	
	20
	97
	7
	21
	39
	6
	22
	44
	6
	23
	99
	7
	24
	66
	7

	
	25
	114
	7
	26
	29
	5
	27
	2
	3
	28
	15
	4
	29
	7
	4

	
	30
	25
	5
	31
	45
	6
	32
	80
	7
	33
	72
	7
	34
	3
	6

	
	35
	35
	6
	36
	7
	6
	37
	65
	7
	38
	73
	7
	39
	53
	7

	
	40
	77
	7
	41
	27
	6
	42
	56
	6
	43
	37
	6
	44
	2
	6

	
	45
	68
	7
	46
	231
	8
	47
	49
	7
	48
	138
	8
	49
	268
	9

	
	50
	100
	8
	51
	135
	8
	52
	139
	8
	53
	152
	8
	54
	102
	8

	
	55
	269
	9
	56
	307
	9
	57
	203
	9
	58
	405
	10
	59
	1617
	12

	
	60
	809
	11
	61
	1616
	12
	
	
	
	
	
	
	
	
	

	60
	0
	916
	11
	1
	856
	10
	2
	228
	9
	3
	404
	9
	4
	429
	9

	
	5
	39
	9
	6
	38
	9
	7
	405
	9
	8
	115
	8
	9
	8
	7

	
	10
	114
	7
	11
	37
	6
	12
	29
	5
	13
	4
	4
	14
	13
	5

	
	15
	56
	6
	16
	105
	7
	17
	43
	7
	18
	4
	7
	19
	62
	7

	
	20
	100
	7
	21
	5
	7
	22
	15
	7
	23
	106
	7
	24
	20
	5

	
	25
	15
	4
	26
	1
	3
	27
	11
	4
	28
	8
	4
	29
	19
	5

	
	30
	20
	6
	31
	102
	7
	32
	0
	6
	33
	36
	6
	34
	30
	6

	
	35
	104
	7
	36
	3
	6
	37
	115
	7
	38
	29
	6
	39
	12
	5

	
	40
	27
	5
	41
	24
	5
	42
	11
	5
	43
	43
	6
	44
	5
	6

	
	45
	1
	6
	46
	63
	7
	47
	203
	8
	48
	56
	7
	49
	85
	7

	
	50
	103
	7
	51
	6
	6
	52
	84
	7
	53
	14
	7
	54
	42
	7

	
	55
	215
	8
	56
	18
	8
	57
	857
	10
	58
	459
	10
	59
	917
	11

	58
	0
	70
	12
	1
	71
	12
	2
	1292
	11
	3
	34
	11
	4
	1293
	11

	
	5
	647
	10
	6
	322
	9
	7
	464
	9
	8
	233
	8
	9
	99
	7

	
	10
	42
	6
	11
	59
	6
	12
	36
	6
	13
	13
	6
	14
	35
	7

	
	15
	162
	8
	16
	465
	9
	17
	5
	8
	18
	163
	8
	19
	3
	7

	
	20
	7
	6
	21
	7
	5
	22
	25
	5
	23
	6
	4
	24
	11
	4

	
	25
	8
	4
	26
	31
	5
	27
	15
	5
	28
	12
	6
	29
	112
	7

	
	30
	117
	7
	31
	6
	6
	32
	19
	6
	33
	113
	7
	34
	41
	6

	
	35
	1
	5
	36
	26
	5
	37
	2
	4
	38
	5
	4
	39
	30
	5

	
	40
	19
	5
	41
	2
	5
	42
	43
	6
	43
	18
	6
	44
	28
	6

	
	45
	16
	6
	46
	37
	6
	47
	57
	6
	48
	55
	6
	49
	54
	6

	
	50
	48
	6
	51
	29
	6
	52
	0
	6
	53
	98
	7
	54
	34
	7

	
	55
	160
	8
	56
	9
	9
	57
	16
	10
	
	
	
	
	
	

	54
	0
	11456
	14
	1
	11457
	14
	2
	5729
	13
	3
	2865
	12
	4
	1433
	11

	
	5
	717
	10
	6
	42
	8
	7
	236
	8
	8
	22
	7
	9
	60
	7

	
	10
	237
	8
	11
	47
	8
	12
	92
	9
	13
	93
	9
	14
	359
	9

	
	15
	178
	8
	16
	77
	7
	17
	31
	6
	18
	4
	5
	19
	17
	5

	
	20
	31
	5
	21
	26
	5
	22
	24
	5
	23
	14
	5
	24
	22
	6

	
	25
	88
	7
	26
	61
	7
	27
	76
	7
	28
	101
	7
	29
	100
	7

	
	30
	23
	6
	31
	0
	5
	32
	20
	5
	33
	1
	4
	34
	4
	4

	
	35
	6
	4
	36
	30
	5
	37
	18
	5
	38
	7
	5
	39
	58
	6

	
	40
	45
	6
	41
	51
	6
	42
	6
	5
	43
	21
	5
	44
	23
	5

	
	45
	27
	5
	46
	28
	5
	47
	16
	5
	48
	10
	5
	49
	1
	5

	
	50
	39
	6
	51
	119
	7
	52
	20
	7
	53
	43
	8
	
	
	

	50
	0
	7424
	14
	1
	7425
	14
	2
	3713
	13
	3
	1857
	12
	4
	929
	11

	
	5
	685
	10
	6
	687
	10
	7
	684
	10
	8
	465
	10
	9
	1372
	11

	
	10
	1373
	11
	11
	233
	9
	12
	117
	8
	13
	59
	7
	14
	117
	7

	
	15
	40
	6
	16
	2
	5
	17
	9
	5
	18
	16
	5
	19
	10
	5

	
	20
	16
	6
	21
	57
	7
	22
	233
	8
	23
	170
	8
	24
	232
	8

	
	25
	56
	7
	26
	17
	6
	27
	43
	6
	28
	17
	5
	29
	23
	5

	
	30
	27
	5
	31
	31
	5
	32
	25
	5
	33
	22
	5
	34
	11
	5

	
	35
	52
	6
	36
	53
	6
	37
	59
	6
	38
	15
	5
	39
	30
	5

	
	40
	2
	4
	41
	6
	4
	42
	9
	4
	43
	3
	4
	44
	0
	4

	
	45
	28
	5
	46
	24
	5
	47
	3
	5
	48
	41
	6
	49
	84
	7

	46
	0
	30824
	15
	1
	30825
	15
	2
	15415
	14
	3
	30826
	15
	4
	30827
	15

	
	5
	30828
	15
	6
	30829
	15
	7
	3852
	12
	8
	1927
	11
	9
	962
	10

	
	10
	2
	8
	11
	45
	8
	12
	23
	7
	13
	1
	6
	14
	38
	6

	
	15
	46
	6
	16
	10
	6
	17
	0
	7
	18
	44
	8
	19
	480
	9

	
	20
	3
	8
	21
	241
	8
	22
	121
	7
	23
	24
	6
	24
	1
	5

	
	25
	9
	5
	26
	26
	5
	27
	27
	5
	28
	22
	5
	29
	13
	5

	
	30
	4
	5
	31
	47
	6
	32
	39
	6
	33
	61
	6
	34
	18
	5

	
	35
	1
	4
	36
	3
	4
	37
	8
	4
	38
	14
	4
	39
	12
	4

	
	40
	10
	4
	41
	7
	4
	42
	5
	4
	43
	31
	5
	44
	8
	5

	
	45
	25
	6
	
	
	
	
	
	
	
	
	
	
	
	

	42
	0
	23116
	15
	1
	23117
	15
	2
	23118
	15
	3
	23119
	15
	4
	11556
	14

	
	5
	11557
	14
	6
	2888
	12
	7
	1445
	11
	8
	723
	10
	9
	200
	9

	
	10
	366
	9
	11
	101
	8
	12
	365
	9
	13
	364
	9
	14
	360
	9

	
	15
	201
	9
	16
	367
	9
	17
	181
	8
	18
	51
	7
	19
	24
	6

	
	20
	30
	6
	21
	44
	6
	22
	56
	6
	23
	0
	5
	24
	57
	6

	
	25
	1
	5
	26
	2
	5
	27
	3
	5
	28
	13
	5
	29
	23
	5

	
	30
	4
	4
	31
	8
	4
	32
	10
	4
	33
	13
	4
	34
	1
	3

	
	35
	15
	4
	36
	12
	4
	37
	9
	4
	38
	5
	4
	39
	29
	5

	
	40
	14
	5
	41
	31
	6
	
	
	
	
	
	
	
	
	

	34
	0
	28328
	15
	1
	28329
	15
	2
	28330
	15
	3
	28331
	15
	4
	28332
	15

	
	5
	14167
	14
	6
	28333
	15
	7
	7080
	13
	8
	7081
	13
	9
	1771
	11

	
	10
	884
	10
	11
	440
	9
	12
	441
	9
	13
	443
	9
	14
	80
	7

	
	15
	81
	7
	16
	111
	7
	17
	41
	6
	18
	54
	6
	19
	14
	5

	
	20
	15
	5
	21
	26
	5
	22
	4
	4
	23
	6
	4
	24
	8
	4

	
	25
	12
	4
	26
	14
	4
	27
	1
	3
	28
	15
	4
	29
	0
	3

	
	30
	11
	4
	31
	9
	4
	32
	5
	4
	33
	21
	5
	
	
	

Table 80: VLC Table for the decoding of NUMZERO for Interlace-Mode Inter 8x4/4x8 Blocks.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	32
	0
	1
	2
	1
	9
	4
	2
	0
	4
	3
	15
	4
	4
	2
	5

	
	5
	23
	5
	6
	52
	6
	7
	14
	4
	8
	20
	5
	9
	33
	6

	
	10
	44
	6
	11
	1
	3
	12
	42
	6
	13
	27
	5
	14
	35
	6

	
	15
	6
	6
	16
	12
	4
	17
	107
	7
	18
	86
	7
	19
	45
	6

	
	20
	7
	6
	21
	32
	6
	22
	213
	8
	23
	87
	7
	24
	138
	8

	
	25
	212
	8
	26
	136
	8
	27
	139
	8
	28
	275
	9
	29
	548
	10

	
	30
	1098
	11
	31
	1099
	11
	
	
	
	
	
	
	
	
	

	31
	0
	12
	4
	1
	5
	4
	2
	3
	3
	3
	3
	5
	4
	0
	4

	
	5
	9
	5
	6
	1
	3
	7
	18
	5
	8
	60
	6
	9
	17
	5

	
	10
	5
	3
	11
	2
	5
	12
	26
	5
	13
	38
	6
	14
	17
	6

	
	15
	14
	4
	16
	32
	6
	17
	126
	7
	18
	27
	5
	19
	61
	6

	
	20
	62
	6
	21
	79
	7
	22
	127
	7
	23
	78
	7
	24
	33
	7

	
	25
	67
	7
	26
	32
	7
	27
	133
	8
	28
	264
	9
	29
	531
	10

	
	30
	530
	10
	
	
	
	
	
	
	
	
	
	
	
	

	30
	0
	17
	5
	1
	3
	4
	2
	5
	5
	3
	31
	5
	4
	22
	5

	
	5
	3
	3
	6
	18
	5
	7
	58
	6
	8
	30
	5
	9
	6
	3

	
	10
	23
	5
	11
	19
	5
	12
	56
	6
	13
	43
	6
	14
	0
	3

	
	15
	57
	6
	16
	33
	6
	17
	4
	4
	18
	20
	5
	19
	11
	5

	
	20
	21
	6
	21
	59
	6
	22
	9
	6
	23
	20
	6
	24
	32
	6

	
	25
	8
	6
	26
	85
	7
	27
	168
	8
	28
	339
	9
	29
	338
	9

	29
	0
	29
	6
	1
	9
	5
	2
	0
	4
	3
	24
	5
	4
	10
	4

	
	5
	13
	5
	6
	8
	5
	7
	5
	4
	8
	7
	3
	9
	1
	4

	
	10
	16
	5
	11
	51
	6
	12
	55
	6
	13
	1
	3
	14
	50
	6

	
	15
	46
	6
	16
	9
	4
	17
	26
	5
	18
	15
	5
	19
	45
	6

	
	20
	12
	5
	21
	47
	6
	22
	44
	6
	23
	54
	6
	24
	35
	6

	
	25
	28
	6
	26
	68
	7
	27
	139
	8
	28
	138
	8
	
	
	

	28
	0
	113
	7
	1
	61
	6
	2
	23
	5
	3
	3
	4
	4
	1
	5

	
	5
	4
	5
	6
	10
	4
	7
	4
	3
	8
	7
	4
	9
	13
	5

	
	10
	0
	5
	11
	5
	5
	12
	2
	3
	13
	62
	6
	14
	59
	6

	
	15
	13
	4
	16
	1
	4
	17
	22
	5
	18
	58
	6
	19
	24
	5

	
	20
	60
	6
	21
	63
	6
	22
	12
	5
	23
	57
	6
	24
	51
	6

	
	25
	112
	7
	26
	100
	7
	27
	101
	7
	
	
	
	
	
	

	27
	0
	104
	7
	1
	60
	6
	2
	15
	5
	3
	53
	6
	4
	3
	5

	
	5
	6
	4
	6
	1
	3
	7
	12
	4
	8
	20
	5
	9
	8
	5

	
	10
	22
	5
	11
	4
	3
	12
	63
	6
	13
	62
	6
	14
	14
	4

	
	15
	5
	4
	16
	23
	5
	17
	61
	6
	18
	27
	5
	19
	1
	5

	
	20
	9
	5
	21
	21
	5
	22
	2
	5
	23
	14
	5
	24
	1
	6

	
	25
	0
	6
	26
	105
	7
	
	
	
	
	
	
	
	
	

	26
	0
	120
	7
	1
	22
	6
	2
	121
	7
	3
	61
	6
	4
	31
	5

	
	5
	14
	4
	6
	12
	4
	7
	14
	5
	8
	10
	5
	9
	27
	5

	
	10
	5
	3
	11
	8
	5
	12
	9
	5
	13
	1
	3
	14
	8
	4

	
	15
	18
	5
	16
	2
	5
	17
	0
	4
	18
	3
	5
	19
	12
	5

	
	20
	26
	5
	21
	13
	5
	22
	19
	5
	23
	31
	6
	24
	23
	6

	
	25
	30
	6
	
	
	
	
	
	
	
	
	
	
	
	

	25
	0
	252
	8
	1
	253
	8
	2
	127
	7
	3
	16
	5
	4
	1
	4

	
	5
	9
	4
	6
	8
	5
	7
	6
	5
	8
	0
	4
	9
	5
	3

	
	10
	7
	5
	11
	11
	5
	12
	3
	3
	13
	14
	4
	14
	25
	5

	
	15
	9
	5
	16
	2
	4
	17
	10
	5
	18
	24
	5
	19
	30
	5

	
	20
	17
	5
	21
	27
	5
	22
	53
	6
	23
	52
	6
	24
	62
	6

	24
	0
	0
	7
	1
	1
	7
	2
	1
	6
	3
	14
	5
	4
	3
	4

	
	5
	9
	5
	6
	5
	5
	7
	31
	5
	8
	4
	3
	9
	13
	5

	
	10
	27
	5
	11
	5
	3
	12
	14
	4
	13
	26
	5
	14
	12
	5

	
	15
	5
	4
	16
	24
	5
	17
	15
	5
	18
	1
	4
	19
	25
	5

	
	20
	30
	5
	21
	4
	5
	22
	1
	5
	23
	8
	5
	
	
	

	23
	0
	16
	7
	1
	17
	7
	2
	9
	6
	3
	20
	5
	4
	62
	6

	
	5
	63
	6
	6
	29
	5
	7
	2
	3
	8
	5
	5
	9
	27
	5

	
	10
	4
	3
	11
	0
	3
	12
	30
	5
	13
	23
	5
	14
	12
	4

	
	15
	21
	5
	16
	26
	5
	17
	6
	4
	18
	28
	5
	19
	3
	4

	
	20
	14
	5
	21
	15
	5
	22
	22
	5
	
	
	
	
	
	

	22
	0
	24
	7
	1
	25
	7
	2
	34
	6
	3
	35
	6
	4
	13
	6

	
	5
	16
	5
	6
	0
	3
	7
	7
	5
	8
	30
	5
	9
	5
	3

	
	10
	2
	3
	11
	25
	5
	12
	28
	5
	13
	13
	4
	14
	24
	5

	
	15
	2
	4
	16
	7
	4
	17
	29
	5
	18
	6
	4
	19
	18
	5

	
	20
	19
	5
	21
	31
	5
	
	
	
	
	
	
	
	
	

	21
	0
	84
	8
	1
	85
	8
	2
	43
	7
	3
	34
	6
	4
	16
	5

	
	5
	1
	4
	6
	6
	4
	7
	12
	4
	8
	1
	3
	9
	15
	4

	
	10
	11
	4
	11
	13
	4
	12
	14
	4
	13
	10
	4
	14
	9
	4

	
	15
	7
	4
	16
	4
	4
	17
	0
	4
	18
	11
	5
	19
	35
	6

	
	20
	20
	6
	
	
	
	
	
	
	
	
	
	
	
	

	32
	0
	15
	4
	1
	22
	5
	2
	24
	5
	3
	8
	4
	4
	15
	5

	
	5
	20
	5
	6
	59
	6
	7
	13
	4
	8
	25
	5
	9
	57
	6

	
	10
	14
	5
	11
	1
	3
	12
	9
	5
	13
	5
	4
	14
	12
	5

	
	15
	56
	6
	16
	0
	3
	17
	42
	6
	18
	38
	6
	19
	23
	5

	
	20
	8
	5
	21
	18
	5
	22
	27
	6
	23
	39
	6
	24
	26
	6

	
	25
	87
	7
	26
	86
	7
	27
	116
	7
	28
	234
	8
	29
	470
	9

	
	30
	943
	10
	31
	942
	10
	
	
	
	
	
	
	
	
	

	31
	0
	37
	6
	1
	58
	6
	2
	26
	5
	3
	36
	6
	4
	10
	5

	
	5
	54
	6
	6
	10
	4
	7
	17
	5
	8
	63
	6
	9
	19
	5

	
	10
	1
	3
	11
	24
	5
	12
	0
	4
	13
	8
	5
	14
	3
	5

	
	15
	3
	3
	16
	11
	5
	17
	62
	6
	18
	11
	4
	19
	28
	5

	
	20
	30
	5
	21
	2
	5
	22
	9
	5
	23
	59
	6
	24
	55
	6

	
	25
	51
	6
	26
	50
	6
	27
	32
	6
	28
	66
	7
	29
	135
	8

	
	30
	134
	8
	
	
	
	
	
	
	
	
	
	
	
	

	30
	0
	28
	7
	1
	4
	6
	2
	106
	7
	3
	44
	6
	4
	15
	6

	
	5
	0
	4
	6
	52
	6
	7
	45
	6
	8
	11
	5
	9
	15
	4

	
	10
	25
	5
	11
	24
	5
	12
	4
	5
	13
	5
	5
	14
	3
	3

	
	15
	19
	5
	16
	6
	5
	17
	14
	4
	18
	8
	4
	19
	4
	4

	
	20
	23
	5
	21
	27
	5
	22
	20
	5
	23
	18
	5
	24
	21
	5

	
	25
	10
	5
	26
	3
	5
	27
	5
	6
	28
	107
	7
	29
	29
	7

	29
	0
	148
	8
	1
	149
	8
	2
	120
	7
	3
	75
	7
	4
	61
	6

	
	5
	121
	7
	6
	24
	6
	7
	4
	5
	8
	11
	4
	9
	19
	5

	
	10
	13
	5
	11
	52
	6
	12
	5
	5
	13
	2
	3
	14
	15
	5

	
	15
	14
	5
	16
	0
	3
	17
	10
	4
	18
	8
	4
	19
	25
	5

	
	20
	3
	4
	21
	29
	5
	22
	28
	5
	23
	31
	5
	24
	27
	5

	
	25
	24
	5
	26
	53
	6
	27
	36
	6
	28
	25
	6
	
	
	

	28
	0
	496
	9
	1
	497
	9
	2
	249
	8
	3
	125
	7
	4
	88
	7

	
	5
	89
	7
	6
	46
	6
	7
	2
	4
	8
	17
	5
	9
	47
	6

	
	10
	45
	6
	11
	54
	6
	12
	0
	3
	13
	12
	5
	14
	13
	5

	
	15
	14
	4
	16
	12
	4
	17
	9
	4
	18
	26
	5
	19
	10
	4

	
	20
	30
	5
	21
	5
	4
	22
	7
	4
	23
	4
	4
	24
	3
	4

	
	25
	16
	5
	26
	63
	6
	27
	55
	6
	
	
	
	
	
	

	27
	0
	16
	8
	1
	17
	8
	2
	10
	7
	3
	9
	7
	4
	11
	7

	
	5
	29
	6
	6
	19
	5
	7
	5
	5
	8
	48
	6
	9
	28
	6

	
	10
	49
	6
	11
	14
	4
	12
	3
	5
	13
	4
	5
	14
	15
	4

	
	15
	13
	4
	16
	5
	4
	17
	0
	4
	18
	10
	4
	19
	3
	4

	
	20
	4
	4
	21
	11
	4
	22
	6
	4
	23
	8
	4
	24
	25
	5

	
	25
	18
	5
	26
	15
	5
	
	
	
	
	
	
	
	
	

	26
	0
	982
	10
	1
	983
	10
	2
	490
	9
	3
	244
	8
	4
	14
	6

	
	5
	60
	6
	6
	50
	6
	7
	123
	7
	8
	15
	6
	9
	24
	5

	
	10
	1
	4
	11
	51
	6
	12
	31
	5
	13
	13
	4
	14
	7
	4

	
	15
	0
	4
	16
	5
	4
	17
	8
	4
	18
	6
	4
	19
	10
	4

	
	20
	11
	4
	21
	14
	4
	22
	9
	4
	23
	4
	4
	24
	2
	4

	
	25
	6
	5
	
	
	
	
	
	
	
	
	
	
	
	

	24
	0
	40
	9
	1
	41
	9
	2
	21
	8
	3
	68
	7
	4
	4
	6

	
	5
	11
	7
	6
	69
	7
	7
	3
	5
	8
	16
	5
	9
	35
	6

	
	10
	25
	5
	11
	9
	4
	12
	4
	4
	13
	24
	5
	14
	5
	4

	
	15
	7
	4
	16
	6
	4
	17
	11
	4
	18
	14
	4
	19
	1
	3

	
	20
	15
	4
	21
	10
	4
	22
	13
	4
	23
	0
	4
	
	
	

	22
	0
	348
	10
	1
	349
	10
	2
	175
	9
	3
	86
	8
	4
	42
	7

	
	5
	44
	6
	6
	45
	6
	7
	20
	6
	8
	23
	5
	9
	8
	4

	
	10
	28
	5
	11
	11
	5
	12
	29
	5
	13
	10
	4
	14
	4
	4

	
	15
	12
	4
	16
	13
	4
	17
	0
	3
	18
	1
	3
	19
	15
	4

	
	20
	3
	3
	21
	9
	4
	
	
	
	
	
	
	
	
	

	20
	0
	1904
	11
	1
	1905
	11
	2
	953
	10
	3
	477
	9
	4
	118
	7

	
	5
	239
	8
	6
	58
	6
	7
	28
	5
	8
	15
	5
	9
	14
	5

	
	10
	0
	4
	11
	6
	4
	12
	1
	4
	13
	12
	4
	14
	15
	4

	
	15
	1
	3
	16
	4
	3
	17
	2
	3
	18
	5
	3
	19
	13
	4

	18
	0
	452
	10
	1
	453
	10
	2
	227
	9
	3
	112
	8
	4
	57
	7

	
	5
	54
	6
	6
	55
	6
	7
	29
	6
	8
	15
	5
	9
	6
	4

	
	10
	26
	5
	11
	12
	4
	12
	0
	3
	13
	1
	3
	14
	4
	3

	
	15
	5
	3
	16
	7
	3
	17
	2
	3
	
	
	
	
	
	

	16
	0
	112
	9
	1
	113
	9
	2
	57
	8
	3
	29
	7
	4
	15
	6

	
	5
	6
	5
	6
	2
	4
	7
	10
	4
	8
	14
	4
	9
	15
	4

	
	10
	3
	3
	11
	4
	3
	12
	6
	3
	13
	2
	3
	14
	0
	3

	
	15
	11
	4
	
	
	
	
	
	
	
	
	
	
	
	

Table 81: VLC Table for the decoding of NUMZERO for Interlace-Mode Inter 4x4 Blocks.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	16
	0
	0
	2
	1
	4
	3
	2
	5
	3
	3
	7
	4
	4
	27
	5

	
	5
	7
	3
	6
	25
	5
	7
	5
	4
	8
	24
	5
	9
	8
	5

	
	10
	26
	5
	11
	12
	5
	12
	26
	6
	13
	9
	5
	14
	55
	7

	
	15
	54
	7
	
	
	
	
	
	
	
	
	
	
	
	

	15
	0
	4
	3
	1
	6
	3
	2
	6
	4
	3
	4
	4
	4
	0
	2

	
	5
	10
	4
	6
	28
	5
	7
	29
	5
	8
	23
	5
	9
	15
	4

	
	10
	22
	5
	11
	14
	5
	12
	5
	4
	13
	31
	6
	14
	30
	6

	14
	0
	4
	3
	1
	5
	4
	2
	6
	4
	3
	0
	2
	4
	13
	4

	
	5
	30
	5
	6
	31
	5
	7
	4
	4
	8
	5
	3
	9
	29
	5

	
	10
	28
	5
	11
	12
	4
	12
	15
	5
	13
	14
	5
	
	
	

	13
	0
	22
	5
	1
	10
	4
	2
	7
	3
	3
	0
	3
	4
	23
	5

	
	5
	9
	4
	6
	7
	4
	7
	6
	3
	8
	3
	4
	9
	6
	4

	
	10
	2
	3
	11
	2
	4
	12
	8
	4
	
	
	
	
	
	

	12
	0
	2
	4
	1
	12
	4
	2
	2
	3
	3
	3
	4
	4
	9
	4

	
	5
	7
	4
	6
	7
	3
	7
	6
	4
	8
	8
	4
	9
	5
	3

	
	10
	13
	4
	11
	0
	3
	
	
	
	
	
	
	
	
	

	11
	0
	22
	5
	1
	13
	4
	2
	23
	5
	3
	10
	4
	4
	7
	4

	
	5
	0
	2
	6
	6
	4
	7
	12
	4
	8
	7
	3
	9
	2
	3

	
	10
	4
	3
	
	
	
	
	
	
	
	
	
	
	
	

	10
	0
	23
	5
	1
	22
	5
	2
	2
	4
	3
	10
	4
	4
	7
	3

	
	5
	3
	4
	6
	0
	3
	7
	1
	2
	8
	4
	3
	9
	6
	3

	9
	0
	16
	5
	1
	17
	5
	2
	9
	4
	3
	7
	3
	4
	10
	4

	
	5
	11
	4
	6
	1
	2
	7
	6
	3
	8
	0
	2
	
	
	

	8
	0
	4
	5
	1
	5
	5
	2
	6
	3
	3
	3
	4
	4
	0
	3

	
	5
	1
	2
	6
	7
	3
	7
	2
	2
	
	
	
	
	
	

	7
	0
	12
	5
	1
	7
	4
	2
	13
	5
	3
	2
	3
	4
	2
	2

	
	5
	0
	2
	6
	3
	2
	
	
	
	
	
	
	
	
	

	6
	0
	24
	5
	1
	25
	5
	2
	13
	4
	3
	7
	3
	4
	2
	2

	
	5
	0
	1
	
	
	
	
	
	
	
	
	
	
	
	

	5
	0
	0
	4
	1
	1
	4
	2
	1
	3
	3
	1
	2
	4
	1
	1

	4
	0
	0
	3
	1
	1
	3
	2
	1
	2
	3
	1
	1
	
	
	

	3
	0
	0
	2
	1
	1
	2
	2
	1
	1
	
	
	
	
	
	

	2
	0
	0
	1
	1
	1
	1
	
	
	
	
	
	
	
	
	

	16
	0
	0
	3
	1
	14
	4
	2
	2
	3
	3
	9
	4
	4
	7
	4

	
	5
	6
	3
	6
	3
	4
	7
	11
	4
	8
	2
	4
	9
	21
	5

	
	10
	8
	4
	11
	6
	4
	12
	20
	5
	13
	30
	5
	14
	63
	6

	
	15
	62
	6
	
	
	
	
	
	
	
	
	
	
	
	

	15
	0
	26
	5
	1
	12
	4
	2
	18
	5
	3
	27
	5
	4
	7
	3

	
	5
	10
	4
	6
	8
	4
	7
	7
	4
	8
	3
	4
	9
	2
	3

	
	10
	0
	3
	11
	6
	4
	12
	11
	4
	13
	2
	4
	14
	19
	5

	14
	0
	30
	5
	1
	62
	6
	2
	63
	6
	3
	3
	3
	4
	11
	4

	
	5
	2
	4
	6
	3
	4
	7
	8
	4
	8
	6
	3
	9
	0
	3

	
	10
	14
	4
	11
	2
	3
	12
	10
	4
	13
	9
	4
	
	
	

	13
	0
	32
	6
	1
	33
	6
	2
	0
	3
	3
	9
	4
	4
	17
	5

	
	5
	6
	4
	6
	7
	4
	7
	5
	3
	8
	14
	4
	9
	15
	4

	
	10
	6
	3
	11
	1
	3
	12
	2
	3
	
	
	
	
	
	

	12
	0
	28
	6
	1
	15
	5
	2
	31
	5
	3
	29
	6
	4
	30
	5

	
	5
	6
	4
	6
	5
	3
	7
	14
	4
	8
	2
	3
	9
	0
	2

	
	10
	4
	3
	11
	6
	3
	
	
	
	
	
	
	
	
	

	11
	0
	32
	6
	1
	17
	5
	2
	33
	6
	3
	28
	5
	4
	29
	5

	
	5
	5
	3
	6
	9
	4
	7
	15
	4
	8
	1
	2
	9
	6
	3

	
	10
	0
	2
	
	
	
	
	
	
	
	
	
	
	
	

	10
	0
	109
	7
	1
	108
	7
	2
	55
	6
	3
	26
	5
	4
	3
	3

	
	5
	12
	4
	6
	2
	3
	7
	0
	2
	8
	7
	3
	9
	2
	2

	9
	0
	88
	7
	1
	89
	7
	2
	45
	6
	3
	10
	4
	4
	23
	5

	
	5
	4
	3
	6
	1
	2
	7
	0
	2
	8
	3
	2
	
	
	

	8
	0
	12
	6
	1
	13
	6
	2
	2
	4
	3
	7
	5
	4
	0
	3

	
	5
	1
	2
	6
	2
	2
	7
	3
	2
	
	
	
	
	
	

	7
	0
	50
	6
	1
	24
	5
	2
	51
	6
	3
	13
	4
	4
	7
	3

	
	5
	2
	2
	6
	0
	1
	
	
	
	
	
	
	
	
	

	6
	0
	8
	5
	1
	9
	5
	2
	5
	4
	3
	3
	3
	4
	0
	2

	
	5
	1
	1
	
	
	
	
	
	
	
	
	
	
	
	

	5
	0
	0
	4
	1
	1
	4
	2
	1
	3
	3
	1
	2
	4
	1
	1

	4
	0
	0
	3
	1
	1
	3
	2
	1
	2
	3
	1
	1
	
	
	

	3
	0
	0
	2
	1
	1
	2
	2
	1
	1
	
	
	
	
	
	

	2
	0
	0
	1
	1
	1
	1
	
	
	
	
	
	
	
	
	

Table 82: VLC Table for the decoding of NUMZERO for Interlace-Mode Intra Blocks.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	33
	0
	0
	1
	1
	2
	2
	2
	25
	5
	3
	30
	5
	4
	14
	4

	
	5
	26
	5
	6
	109
	7
	7
	249
	8
	8
	250
	8
	9
	496
	9

	
	10
	433
	9
	11
	871
	10
	12
	253
	8
	13
	55
	6
	14
	48
	6

	
	15
	98
	7
	16
	127
	7
	17
	1991
	11
	18
	1730
	11
	19
	864
	10

	
	20
	994
	10
	21
	1008
	10
	22
	1011
	10
	23
	3483
	12
	24
	1990
	11

	
	25
	1731
	11
	26
	1009
	10
	27
	99
	7
	28
	434
	9
	29
	1010
	10

	
	30
	1740
	11
	31
	3482
	12
	32
	251
	8
	
	
	
	
	
	

	33
	0
	2
	2
	1
	12
	4
	2
	0
	3
	3
	1
	2
	4
	14
	4

	
	5
	6
	5
	6
	54
	6
	7
	9
	6
	8
	105
	7
	9
	247
	8

	
	10
	221
	8
	11
	53
	6
	12
	31
	5
	13
	7
	5
	14
	11
	6

	
	15
	60
	6
	16
	419
	9
	17
	446
	9
	18
	447
	9
	19
	441
	9

	
	20
	208
	8
	21
	493
	9
	22
	418
	9
	23
	3943
	12
	24
	440
	9

	
	25
	222
	8
	26
	8
	6
	27
	245
	8
	28
	244
	8
	29
	984
	10

	
	30
	1970
	11
	31
	3942
	12
	32
	10
	6
	
	
	
	
	
	

	33
	0
	12
	5
	1
	7
	3
	2
	5
	3
	3
	4
	3
	4
	13
	4

	
	5
	24
	5
	6
	15
	5
	7
	7
	6
	8
	20
	6
	9
	58
	7

	
	10
	13
	5
	11
	1
	3
	12
	4
	4
	13
	11
	5
	14
	25
	5

	
	15
	13
	7
	16
	43
	7
	17
	118
	8
	18
	12
	7
	19
	7
	7

	
	20
	119
	8
	21
	12
	8
	22
	27
	9
	23
	84
	8
	24
	56
	7

	
	25
	0
	5
	26
	2
	6
	27
	57
	7
	28
	170
	9
	29
	342
	10

	
	30
	26
	9
	31
	343
	10
	32
	2
	5
	
	
	
	
	
	

	33
	0
	26
	5
	1
	1
	3
	2
	14
	4
	3
	0
	3
	4
	4
	4

	
	5
	21
	5
	6
	45
	6
	7
	54
	6
	8
	55
	6
	9
	5
	4

	
	10
	4
	3
	11
	12
	4
	12
	31
	5
	13
	6
	4
	14
	89
	7

	
	15
	30
	6
	16
	120
	7
	17
	92
	7
	18
	121
	7
	19
	187
	8

	
	20
	494
	9
	21
	355
	9
	22
	246
	8
	23
	122
	7
	24
	20
	5

	
	25
	47
	6
	26
	31
	6
	27
	176
	8
	28
	372
	9
	29
	354
	9

	
	30
	495
	9
	31
	373
	9
	32
	14
	5
	
	
	
	
	
	

	33
	0
	56
	6
	1
	3
	4
	2
	15
	4
	3
	8
	4
	4
	20
	5

	
	5
	27
	6
	6
	5
	5
	7
	15
	5
	8
	13
	4
	9
	2
	3

	
	10
	0
	3
	11
	9
	4
	12
	11
	4
	13
	43
	6
	14
	12
	5

	
	15
	29
	6
	16
	9
	6
	17
	26
	6
	18
	114
	7
	19
	112
	8

	
	20
	35
	8
	21
	57
	7
	22
	42
	6
	23
	25
	5
	24
	59
	6

	
	25
	58
	6
	26
	16
	7
	27
	461
	9
	28
	34
	8
	29
	113
	8

	
	30
	460
	9
	31
	231
	8
	32
	24
	5
	
	
	
	
	
	

	33
	0
	31
	7
	1
	29
	5
	2
	31
	5
	3
	11
	5
	4
	14
	6

	
	5
	6
	5
	6
	21
	5
	7
	12
	4
	8
	4
	3
	9
	11
	4

	
	10
	13
	4
	11
	0
	3
	12
	10
	5
	13
	2
	4
	14
	57
	6

	
	15
	27
	6
	16
	26
	6
	17
	82
	7
	18
	161
	8
	19
	162
	8

	
	20
	113
	7
	21
	12
	5
	22
	4
	4
	23
	15
	5
	24
	14
	5

	
	25
	83
	7
	26
	451
	9
	27
	163
	8
	28
	30
	7
	29
	160
	8

	
	30
	224
	8
	31
	450
	9
	32
	30
	5
	
	
	
	
	
	

	33
	0
	2
	7
	1
	7
	5
	2
	30
	6
	3
	63
	7
	4
	61
	6

	
	5
	24
	5
	6
	11
	4
	7
	14
	4
	8
	6
	4
	9
	13
	4

	
	10
	2
	3
	11
	19
	5
	12
	10
	4
	13
	25
	5
	14
	60
	6

	
	15
	29
	6
	16
	2
	6
	17
	3
	7
	18
	27
	7
	19
	12
	6

	
	20
	18
	5
	21
	8
	4
	22
	1
	4
	23
	31
	5
	24
	3
	6

	
	25
	1
	7
	26
	56
	7
	27
	62
	7
	28
	0
	7
	29
	26
	7

	
	30
	114
	8
	31
	115
	8
	32
	2
	4
	
	
	
	
	
	

	56
	0
	21
	9
	1
	160
	8
	2
	44
	7
	3
	20
	6
	4
	60
	6

	
	5
	17
	5
	6
	29
	5
	7
	31
	5
	8
	7
	4
	9
	11
	4

	
	10
	4
	4
	11
	1
	4
	12
	4
	5
	13
	41
	6
	14
	21
	6

	
	15
	23
	6
	16
	5
	5
	17
	28
	5
	18
	6
	4
	19
	12
	4

	
	20
	9
	4
	21
	3
	4
	22
	21
	5
	23
	54
	6
	24
	32
	6

	
	25
	1
	6
	26
	81
	7
	27
	67
	7
	28
	1
	7
	29
	244
	8

	
	30
	45
	7
	31
	3
	6
	32
	55
	6
	33
	53
	6
	34
	52
	6

	
	35
	123
	7
	36
	0
	7
	37
	132
	8
	38
	9
	8
	39
	982
	10

	
	40
	20
	9
	41
	647
	10
	42
	266
	9
	43
	11
	8
	44
	8
	8

	
	45
	490
	9
	46
	267
	9
	47
	645
	10
	48
	1293
	11
	49
	644
	10

	
	50
	1967
	11
	51
	1292
	11
	52
	3933
	12
	53
	7864
	13
	54
	15730
	14

	
	55
	15731
	14
	
	
	
	
	
	
	
	
	
	
	
	

	52
	0
	5119
	15
	1
	638
	12
	2
	76
	9
	3
	266
	9
	4
	202
	8

	
	5
	45
	7
	6
	103
	7
	7
	21
	6
	8
	23
	6
	9
	32
	6

	
	10
	36
	6
	11
	59
	6
	12
	14
	5
	13
	19
	5
	14
	28
	5

	
	15
	3
	4
	16
	4
	4
	17
	6
	4
	18
	1
	4
	19
	0
	4

	
	20
	31
	5
	21
	30
	5
	22
	27
	5
	23
	22
	5
	24
	24
	5

	
	25
	26
	5
	26
	23
	5
	27
	21
	5
	28
	20
	5
	29
	17
	5

	
	30
	15
	5
	31
	5
	5
	32
	58
	6
	33
	37
	6
	34
	20
	6

	
	35
	8
	6
	36
	102
	7
	37
	100
	7
	38
	67
	7
	39
	44
	7

	
	40
	18
	7
	41
	203
	8
	42
	132
	8
	43
	267
	9
	44
	77
	9

	
	45
	158
	10
	46
	157
	10
	47
	156
	10
	48
	318
	11
	49
	1278
	13

	
	50
	5118
	15
	51
	2558
	14
	
	
	
	
	
	
	
	
	

Table 83: VLC Table for the decoding of NUMZERO for Progressive-Mode Inter 8x8 Blocks.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	64
	0
	0
	1
	1
	5
	3
	2
	15
	4
	3
	27
	5
	4
	28
	5

	
	5
	9
	4
	6
	26
	5
	7
	51
	6
	8
	35
	6
	9
	34
	6

	
	10
	119
	7
	11
	65
	7
	12
	98
	7
	13
	100
	7
	14
	58
	6

	
	15
	33
	6
	16
	96
	7
	17
	198
	8
	18
	475
	9
	19
	236
	8

	
	20
	195
	8
	21
	128
	8
	22
	129
	8
	23
	203
	8
	24
	399
	9

	
	25
	948
	10
	26
	389
	9
	27
	388
	9
	28
	404
	9
	29
	1899
	11

	
	30
	1621
	11
	31
	3247
	12
	32
	1593
	11
	33
	1620
	11
	34
	1595
	11

	
	35
	1594
	11
	36
	3797
	12
	37
	3244
	12
	38
	3246
	12
	39
	7592
	13

	
	40
	7593
	13
	41
	6491
	13
	42
	6371
	13
	43
	6370
	13
	44
	12739
	14

	
	45
	25963
	15
	46
	25475
	15
	47
	25477
	15
	48
	12736
	14
	49
	25961
	15

	
	50
	50948
	16
	51
	51924
	16
	52
	101904
	17
	53
	103841
	17
	54
	50953
	16

	
	55
	101905
	17
	56
	50949
	16
	57
	51925
	16
	58
	830726
	20
	59
	830727
	20

	
	60
	415360
	19
	61
	415361
	19
	62
	415362
	19
	63
	51921
	16
	
	
	

	63
	0
	3
	3
	1
	2
	3
	2
	11
	4
	3
	9
	4
	4
	1
	3

	
	5
	12
	4
	6
	30
	5
	7
	27
	5
	8
	20
	5
	9
	0
	5

	
	10
	56
	6
	11
	63
	6
	12
	1
	5
	13
	1
	4
	14
	21
	5

	
	15
	62
	6
	16
	35
	6
	17
	117
	7
	18
	53
	6
	19
	33
	6

	
	20
	118
	7
	21
	115
	7
	22
	116
	7
	23
	65
	7
	24
	238
	8

	
	25
	69
	7
	26
	64
	7
	27
	104
	7
	28
	228
	8
	29
	459
	9

	
	30
	272
	9
	31
	422
	9
	32
	137
	8
	33
	479
	9
	34
	458
	9

	
	35
	420
	9
	36
	846
	10
	37
	956
	10
	38
	1686
	11
	39
	1687
	11

	
	40
	1915
	11
	41
	847
	10
	42
	842
	10
	43
	1093
	11
	44
	3829
	12

	
	45
	2188
	12
	46
	2190
	12
	47
	1092
	11
	48
	2189
	12
	49
	4382
	13

	
	50
	15315
	14
	51
	30625
	15
	52
	30628
	15
	53
	15313
	14
	54
	30624
	15

	
	55
	17533
	15
	56
	8767
	14
	57
	245038
	18
	58
	61258
	16
	59
	122518
	17

	
	60
	490079
	19
	61
	490078
	19
	62
	17532
	15
	
	
	
	
	
	

	62
	0
	3
	4
	1
	0
	4
	2
	5
	4
	3
	15
	4
	4
	9
	4

	
	5
	6
	4
	6
	1
	4
	7
	27
	5
	8
	14
	5
	9
	9
	5

	
	10
	24
	5
	11
	26
	5
	12
	11
	4
	13
	28
	5
	14
	20
	5

	
	15
	8
	5
	16
	51
	6
	17
	17
	5
	18
	4
	5
	19
	50
	6

	
	20
	42
	6
	21
	31
	6
	22
	116
	7
	23
	86
	7
	24
	11
	6

	
	25
	119
	7
	26
	32
	6
	27
	87
	7
	28
	21
	7
	29
	121
	8

	
	30
	235
	8
	31
	67
	7
	32
	61
	7
	33
	20
	7
	34
	132
	8

	
	35
	472
	9
	36
	469
	9
	37
	937
	10
	38
	946
	10
	39
	266
	9

	
	40
	120
	8
	41
	474
	9
	42
	950
	10
	43
	534
	10
	44
	1873
	11

	
	45
	1895
	11
	46
	535
	10
	47
	1902
	11
	48
	3789
	12
	49
	3806
	12

	
	50
	7577
	13
	51
	15231
	14
	52
	3744
	12
	53
	7490
	13
	54
	7491
	13

	
	55
	7614
	13
	56
	60923
	16
	57
	15152
	14
	58
	30460
	15
	59
	121845
	17

	
	60
	121844
	17
	61
	15153
	14
	
	
	
	
	
	
	
	
	

	61
	0
	37
	6
	1
	27
	5
	2
	3
	4
	3
	2
	4
	4
	7
	4

	
	5
	5
	4
	6
	26
	5
	7
	9
	5
	8
	16
	5
	9
	28
	5

	
	10
	29
	5
	11
	11
	4
	12
	31
	5
	13
	20
	5
	14
	17
	5

	
	15
	3
	5
	16
	30
	5
	17
	21
	5
	18
	12
	5
	19
	0
	5

	
	20
	49
	6
	21
	2
	6
	22
	3
	6
	23
	39
	6
	24
	48
	6

	
	25
	8
	5
	26
	36
	6
	27
	102
	7
	28
	206
	8
	29
	76
	7

	
	30
	27
	6
	31
	5
	6
	32
	100
	7
	33
	52
	7
	34
	155
	8

	
	35
	107
	8
	36
	309
	9
	37
	405
	9
	38
	19
	8
	39
	207
	8

	
	40
	203
	8
	41
	17
	8
	42
	213
	9
	43
	32
	9
	44
	37
	9

	
	45
	404
	9
	46
	36
	9
	47
	424
	10
	48
	616
	10
	49
	1234
	11

	
	50
	850
	11
	51
	1235
	11
	52
	132
	11
	53
	135
	11
	54
	133
	11

	
	55
	537
	13
	56
	269
	12
	57
	1703
	12
	58
	1073
	14
	59
	1072
	14

	
	60
	1702
	12
	
	
	
	
	
	
	
	
	
	
	
	

	60
	0
	19
	6
	1
	7
	5
	2
	12
	5
	3
	27
	5
	4
	0
	4

	
	5
	24
	5
	6
	5
	5
	7
	16
	5
	8
	30
	5
	9
	1
	4

	
	10
	11
	4
	11
	29
	5
	12
	19
	5
	13
	14
	5
	14
	8
	5

	
	15
	5
	4
	16
	28
	5
	17
	18
	5
	18
	15
	5
	19
	62
	6

	
	20
	9
	6
	21
	34
	6
	22
	63
	6
	23
	6
	5
	24
	21
	5

	
	25
	52
	6
	26
	26
	6
	27
	70
	7
	28
	8
	6
	29
	51
	6

	
	30
	41
	6
	31
	27
	6
	32
	101
	7
	33
	36
	7
	34
	201
	8

	
	35
	431
	9
	36
	142
	8
	37
	213
	8
	38
	81
	7
	39
	80
	7

	
	40
	212
	8
	41
	75
	8
	42
	400
	9
	43
	430
	9
	44
	143
	8

	
	45
	428
	9
	46
	148
	9
	47
	858
	10
	48
	298
	10
	49
	1719
	11

	
	50
	802
	10
	51
	1718
	11
	52
	1606
	11
	53
	598
	11
	54
	12861
	14

	
	55
	3214
	12
	56
	1198
	12
	57
	6431
	13
	58
	12860
	14
	59
	1199
	12

	59
	0
	25
	7
	1
	1
	6
	2
	10
	5
	3
	23
	5
	4
	12
	5

	
	5
	50
	6
	6
	9
	5
	7
	28
	5
	8
	30
	5
	9
	8
	4

	
	10
	27
	5
	11
	18
	5
	12
	8
	5
	13
	11
	5
	14
	7
	4

	
	15
	2
	4
	16
	26
	5
	17
	22
	5
	18
	3
	5
	19
	4
	6

	
	20
	42
	6
	21
	13
	5
	22
	20
	5
	23
	29
	5
	24
	1
	5

	
	25
	48
	6
	26
	98
	7
	27
	39
	6
	28
	7
	5
	29
	63
	6

	
	30
	51
	6
	31
	5
	6
	32
	86
	7
	33
	249
	8
	34
	174
	8

	
	35
	248
	8
	36
	26
	7
	37
	0
	6
	38
	125
	7
	39
	76
	7

	
	40
	198
	8
	41
	54
	8
	42
	155
	8
	43
	24
	7
	44
	154
	8

	
	45
	350
	9
	46
	351
	9
	47
	796
	10
	48
	797
	10
	49
	110
	9

	
	50
	223
	10
	51
	222
	10
	52
	1598
	11
	53
	3194
	12
	54
	3199
	12

	
	55
	1596
	11
	56
	6391
	13
	57
	6390
	13
	58
	3198
	12
	
	
	

	58
	0
	488
	9
	1
	123
	7
	2
	58
	6
	3
	49
	6
	4
	21
	6

	
	5
	60
	6
	6
	28
	5
	7
	26
	5
	8
	1
	4
	9
	20
	5

	
	10
	6
	5
	11
	0
	5
	12
	4
	5
	13
	8
	4
	14
	6
	4

	
	15
	31
	5
	16
	23
	5
	17
	7
	5
	18
	20
	6
	19
	48
	6

	
	20
	21
	5
	21
	25
	5
	22
	4
	4
	23
	11
	5
	24
	55
	6

	
	25
	109
	7
	26
	44
	6
	27
	19
	5
	28
	14
	5
	29
	1
	5

	
	30
	37
	6
	31
	119
	7
	32
	60
	7
	33
	236
	8
	34
	21
	7

	
	35
	91
	7
	36
	31
	6
	37
	36
	6
	38
	108
	7
	39
	22
	7

	
	40
	122
	8
	41
	245
	8
	42
	90
	7
	43
	237
	8
	44
	46
	8

	
	45
	41
	8
	46
	81
	9
	47
	94
	9
	48
	489
	9
	49
	95
	9

	
	50
	495
	10
	51
	161
	10
	52
	988
	11
	53
	492
	10
	54
	493
	10

	
	55
	321
	11
	56
	320
	11
	57
	989
	11
	
	
	
	
	
	

	57
	0
	80
	9
	1
	152
	8
	2
	21
	7
	3
	87
	7
	4
	33
	6

	
	5
	58
	6
	6
	3
	5
	7
	2
	5
	8
	39
	6
	9
	49
	6

	
	10
	14
	5
	11
	27
	5
	12
	5
	4
	13
	0
	4
	14
	20
	5

	
	15
	13
	5
	16
	8
	5
	17
	15
	5
	18
	30
	5
	19
	3
	4

	
	20
	31
	5
	21
	22
	5
	22
	4
	5
	23
	9
	5
	24
	17
	5

	
	25
	23
	5
	26
	25
	5
	27
	18
	5
	28
	59
	6
	29
	24
	6

	
	30
	106
	7
	31
	86
	7
	32
	11
	6
	33
	42
	6
	34
	52
	6

	
	35
	56
	6
	36
	32
	6
	37
	115
	7
	38
	107
	7
	39
	97
	7

	
	40
	96
	7
	41
	77
	7
	42
	229
	8
	43
	153
	8
	44
	103
	8

	
	45
	100
	8
	46
	101
	8
	47
	41
	8
	48
	205
	9
	49
	204
	9

	
	50
	81
	9
	51
	915
	10
	52
	914
	10
	53
	912
	10
	54
	1826
	11

	
	55
	3655
	12
	56
	3654
	12
	
	
	
	
	
	
	
	
	

	53
	0
	5518
	13
	1
	2758
	12
	2
	1679
	11
	3
	688
	10
	4
	138
	9

	
	5
	239
	9
	6
	118
	8
	7
	35
	7
	8
	0
	6
	9
	32
	6

	
	10
	42
	6
	11
	50
	6
	12
	53
	6
	13
	9
	5
	14
	23
	5

	
	15
	27
	5
	16
	31
	5
	17
	1
	4
	18
	29
	5
	19
	30
	5

	
	20
	2
	4
	21
	5
	4
	22
	6
	4
	23
	3
	4
	24
	28
	5

	
	25
	24
	5
	26
	22
	5
	27
	18
	5
	28
	19
	5
	29
	20
	5

	
	30
	17
	5
	31
	15
	5
	32
	1
	5
	33
	51
	6
	34
	33
	6

	
	35
	28
	6
	36
	16
	6
	37
	1
	6
	38
	87
	7
	39
	58
	7

	
	40
	211
	8
	41
	210
	8
	42
	208
	8
	43
	173
	8
	44
	68
	8

	
	45
	418
	9
	46
	345
	9
	47
	238
	9
	48
	139
	9
	49
	838
	10

	
	50
	1678
	11
	51
	1378
	11
	52
	5519
	13
	
	
	
	
	
	

	64
	0
	5
	3
	1
	8
	4
	2
	1
	4
	3
	27
	5
	4
	2
	4

	
	5
	3
	4
	6
	29
	5
	7
	15
	5
	8
	12
	5
	9
	13
	5

	
	10
	11
	5
	11
	1
	5
	12
	8
	5
	13
	24
	5
	14
	26
	5

	
	15
	18
	5
	16
	62
	6
	17
	38
	6
	18
	56
	6
	19
	57
	6

	
	20
	50
	6
	21
	51
	6
	22
	60
	6
	23
	63
	6
	24
	29
	6

	
	25
	21
	6
	26
	18
	6
	27
	20
	6
	28
	0
	6
	29
	38
	7

	
	30
	158
	8
	31
	244
	8
	32
	57
	7
	33
	56
	7
	34
	3
	7

	
	35
	246
	8
	36
	159
	8
	37
	247
	8
	38
	78
	8
	39
	315
	9

	
	40
	491
	9
	41
	79
	8
	42
	4
	8
	43
	313
	9
	44
	981
	10

	
	45
	629
	10
	46
	625
	10
	47
	11
	9
	48
	628
	10
	49
	1960
	11

	
	50
	20
	10
	51
	86
	12
	52
	7846
	13
	53
	1249
	11
	54
	3922
	12

	
	55
	85
	12
	56
	2497
	12
	57
	84
	12
	58
	15694
	14
	59
	175
	13

	
	60
	15695
	14
	61
	348
	14
	62
	2496
	12
	63
	349
	14
	
	
	

	62
	0
	86
	7
	1
	118
	7
	2
	42
	6
	3
	2
	5
	4
	3
	5

	
	5
	60
	6
	6
	62
	6
	7
	61
	6
	8
	63
	6
	9
	4
	5

	
	10
	12
	5
	11
	26
	5
	12
	28
	5
	13
	24
	5
	14
	17
	5

	
	15
	9
	5
	16
	20
	5
	17
	23
	5
	18
	22
	5
	19
	18
	5

	
	20
	16
	5
	21
	11
	5
	22
	6
	5
	23
	8
	5
	24
	14
	5

	
	25
	19
	5
	26
	10
	5
	27
	54
	6
	28
	26
	6
	29
	30
	6

	
	30
	55
	6
	31
	1
	5
	32
	58
	6
	33
	50
	6
	34
	14
	6

	
	35
	1
	6
	36
	103
	7
	37
	31
	7
	38
	102
	7
	39
	10
	6

	
	40
	27
	6
	41
	119
	7
	42
	87
	7
	43
	30
	7
	44
	23
	7

	
	45
	63
	7
	46
	1
	7
	47
	45
	8
	48
	1
	8
	49
	248
	9

	
	50
	1
	9
	51
	250
	9
	52
	249
	9
	53
	89
	9
	54
	503
	10

	
	55
	1
	10
	56
	176
	10
	57
	0
	10
	58
	2011
	12
	59
	2010
	12

	
	60
	177
	10
	61
	1004
	11
	
	
	
	
	
	
	
	
	

	60
	0
	731
	10
	1
	12
	8
	2
	183
	8
	3
	57
	7
	4
	80
	7

	
	5
	81
	7
	6
	118
	7
	7
	18
	6
	8
	38
	6
	9
	54
	6

	
	10
	4
	5
	11
	60
	6
	12
	58
	6
	13
	56
	6
	14
	7
	5

	
	15
	18
	5
	16
	16
	5
	17
	17
	5
	18
	11
	5
	19
	2
	5

	
	20
	63
	6
	21
	12
	5
	22
	21
	5
	23
	26
	5
	24
	23
	5

	
	25
	8
	5
	26
	62
	6
	27
	0
	5
	28
	15
	5
	29
	25
	5

	
	30
	24
	5
	31
	13
	5
	32
	61
	6
	33
	29
	6
	34
	12
	6

	
	35
	2
	6
	36
	19
	6
	37
	3
	5
	38
	10
	5
	39
	5
	5

	
	40
	55
	6
	41
	39
	6
	42
	44
	6
	43
	57
	6
	44
	41
	6

	
	45
	90
	7
	46
	239
	8
	47
	113
	8
	48
	53
	8
	49
	7
	7

	
	50
	27
	7
	51
	238
	8
	52
	52
	8
	53
	364
	9
	54
	225
	9

	
	55
	27
	9
	56
	730
	10
	57
	449
	10
	58
	26
	9
	59
	448
	10

	58
	0
	282
	11
	1
	283
	11
	2
	32
	9
	3
	71
	9
	4
	425
	9

	
	5
	136
	8
	6
	213
	8
	7
	9
	7
	8
	32
	7
	9
	33
	7

	
	10
	69
	7
	11
	127
	7
	12
	17
	6
	13
	39
	6
	14
	38
	6

	
	15
	29
	6
	16
	28
	6
	17
	35
	6
	18
	52
	6
	19
	5
	5

	
	20
	11
	5
	21
	10
	5
	22
	7
	5
	23
	1
	5
	24
	6
	5

	
	25
	13
	5
	26
	24
	5
	27
	29
	5
	28
	22
	5
	29
	9
	5

	
	30
	43
	6
	31
	25
	6
	32
	36
	6
	33
	3
	5
	34
	15
	5

	
	35
	28
	5
	36
	30
	5
	37
	23
	5
	38
	20
	5
	39
	27
	5

	
	40
	25
	5
	41
	16
	5
	42
	0
	5
	43
	9
	6
	44
	107
	7

	
	45
	24
	6
	46
	42
	6
	47
	62
	6
	48
	37
	6
	49
	5
	6

	
	50
	126
	7
	51
	16
	7
	52
	137
	8
	53
	34
	8
	54
	17
	8

	
	55
	424
	9
	56
	33
	9
	57
	140
	10
	
	
	
	
	
	

	54
	0
	2656
	13
	1
	2657
	13
	2
	1329
	12
	3
	665
	11
	4
	1936
	11

	
	5
	1937
	11
	6
	333
	10
	7
	969
	10
	8
	485
	9
	9
	168
	8

	
	10
	171
	8
	11
	194
	8
	12
	170
	8
	13
	195
	8
	14
	40
	7

	
	15
	120
	7
	16
	23
	6
	17
	32
	6
	18
	22
	6
	19
	8
	6

	
	20
	34
	6
	21
	49
	6
	22
	7
	5
	23
	15
	5
	24
	14
	5

	
	25
	61
	6
	26
	35
	6
	27
	9
	6
	28
	21
	6
	29
	52
	6

	
	30
	18
	5
	31
	22
	5
	32
	29
	5
	33
	28
	5
	34
	27
	5

	
	35
	1
	4
	36
	6
	4
	37
	4
	4
	38
	25
	5
	39
	6
	5

	
	40
	43
	6
	41
	5
	5
	42
	20
	5
	43
	0
	4
	44
	31
	5

	
	45
	23
	5
	46
	19
	5
	47
	53
	6
	48
	33
	6
	49
	96
	7

	
	50
	243
	8
	51
	169
	8
	52
	82
	8
	53
	167
	9
	
	
	

	50
	0
	64096
	16
	1
	64097
	16
	2
	32049
	15
	3
	16025
	14
	4
	8013
	13

	
	5
	4007
	12
	6
	2002
	11
	7
	2004
	11
	8
	2005
	11
	9
	1000
	10

	
	10
	1003
	10
	11
	110
	8
	12
	237
	8
	13
	10
	7
	14
	11
	7

	
	15
	251
	8
	16
	90
	7
	17
	4
	6
	18
	43
	6
	19
	58
	6

	
	20
	57
	6
	21
	44
	6
	22
	26
	6
	23
	119
	7
	24
	124
	7

	
	25
	42
	6
	26
	12
	5
	27
	20
	5
	28
	27
	5
	29
	24
	5

	
	30
	26
	5
	31
	30
	5
	32
	3
	4
	33
	7
	4
	34
	0
	4

	
	35
	19
	5
	36
	63
	6
	37
	3
	5
	38
	25
	5
	39
	4
	4

	
	40
	8
	4
	41
	5
	4
	42
	2
	4
	43
	23
	5
	44
	18
	5

	
	45
	56
	6
	46
	91
	7
	47
	54
	7
	48
	236
	8
	49
	111
	8

	46
	0
	84786
	17
	1
	84787
	17
	2
	42392
	16
	3
	21197
	15
	4
	10599
	14

	
	5
	5298
	13
	6
	2648
	12
	7
	1325
	11
	8
	663
	10
	9
	330
	9

	
	10
	435
	9
	11
	434
	9
	12
	164
	8
	13
	52
	7
	14
	111
	7

	
	15
	27
	6
	16
	44
	6
	17
	40
	6
	18
	1
	6
	19
	110
	7

	
	20
	109
	7
	21
	45
	6
	22
	15
	5
	23
	26
	5
	24
	30
	5

	
	25
	29
	5
	26
	28
	5
	27
	3
	4
	28
	8
	4
	29
	9
	4

	
	30
	4
	4
	31
	23
	5
	32
	12
	5
	33
	14
	5
	34
	25
	5

	
	35
	2
	4
	36
	5
	4
	37
	1
	4
	38
	31
	5
	39
	24
	5

	
	40
	21
	5
	41
	1
	5
	42
	0
	6
	43
	83
	7
	44
	53
	7

	
	45
	216
	8
	
	
	
	
	
	
	
	
	
	
	
	

	42
	0
	60928
	16
	1
	60929
	16
	2
	60930
	16
	3
	60931
	16
	4
	15233
	14

	
	5
	7617
	13
	6
	3809
	12
	7
	1905
	11
	8
	953
	10
	9
	230
	9

	
	10
	114
	8
	11
	199
	8
	12
	239
	8
	13
	98
	7
	14
	118
	7

	
	15
	29
	6
	16
	53
	6
	17
	4
	5
	18
	15
	5
	19
	1
	4

	
	20
	5
	4
	21
	10
	4
	22
	8
	4
	23
	4
	4
	24
	6
	4

	
	25
	11
	4
	26
	9
	4
	27
	3
	4
	28
	30
	5
	29
	27
	5

	
	30
	28
	5
	31
	0
	4
	32
	31
	5
	33
	25
	5
	34
	5
	5

	
	35
	58
	6
	36
	52
	6
	37
	48
	6
	38
	56
	7
	39
	198
	8

	
	40
	477
	9
	41
	231
	9
	
	
	
	
	
	
	
	
	

	34
	0
	7650
	15
	1
	7651
	15
	2
	3824
	14
	3
	1913
	13
	4
	957
	12

	
	5
	479
	11
	6
	118
	9
	7
	5
	8
	8
	3
	7
	9
	0
	6

	
	10
	52
	6
	11
	6
	5
	12
	21
	5
	13
	1
	4
	14
	4
	4

	
	15
	8
	4
	16
	11
	4
	17
	14
	4
	18
	15
	4
	19
	12
	4

	
	20
	9
	4
	21
	6
	4
	22
	5
	4
	23
	7
	4
	24
	2
	4

	
	25
	27
	5
	26
	20
	5
	27
	1
	5
	28
	53
	6
	29
	15
	6

	
	30
	28
	7
	31
	58
	8
	32
	4
	8
	33
	238
	10
	
	
	

Table 84: VLC Table for the decoding of NUMZERO for Progressive-Mode Inter 8x4/4x8 Blocks.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	32
	0
	3
	2
	1
	3
	3
	2
	11
	4
	3
	2
	3
	4
	1
	4

	
	5
	2
	4
	6
	19
	5
	7
	8
	4
	8
	21
	5
	9
	41
	6

	
	10
	0
	5
	11
	6
	5
	12
	36
	6
	13
	14
	6
	14
	37
	6

	
	15
	80
	7
	16
	81
	7
	17
	6
	7
	18
	5
	7
	19
	30
	7

	
	20
	62
	8
	21
	15
	8
	22
	14
	8
	23
	8
	8
	24
	127
	9

	
	25
	252
	10
	26
	37
	10
	27
	19
	9
	28
	507
	11
	29
	1013
	12

	
	30
	1012
	12
	31
	36
	10
	
	
	
	
	
	
	
	
	

	31
	0
	3
	3
	1
	1
	3
	2
	5
	3
	3
	8
	4
	4
	13
	4

	
	5
	4
	4
	6
	15
	4
	7
	5
	4
	8
	25
	5
	9
	28
	5

	
	10
	1
	4
	11
	18
	5
	12
	0
	5
	13
	59
	6
	14
	48
	6

	
	15
	49
	6
	16
	2
	6
	17
	117
	7
	18
	39
	6
	19
	76
	7

	
	20
	6
	7
	21
	7
	7
	22
	233
	8
	23
	155
	8
	24
	309
	9

	
	25
	308
	9
	26
	464
	9
	27
	1863
	11
	28
	1861
	11
	29
	1860
	11

	
	30
	1862
	11
	
	
	
	
	
	
	
	
	
	
	
	

	30
	0
	0
	4
	1
	14
	4
	2
	5
	4
	3
	13
	4
	4
	11
	4

	
	5
	1
	3
	6
	7
	4
	7
	4
	4
	8
	9
	4
	9
	8
	4

	
	10
	1
	4
	11
	24
	5
	12
	25
	5
	13
	12
	5
	14
	21
	5

	
	15
	62
	6
	16
	61
	6
	17
	13
	5
	18
	40
	6
	19
	126
	7

	
	20
	127
	7
	21
	121
	7
	22
	83
	7
	23
	165
	8
	24
	240
	8

	
	25
	164
	8
	26
	482
	9
	27
	966
	10
	28
	1934
	11
	29
	1935
	11

	29
	0
	0
	5
	1
	3
	4
	2
	6
	4
	3
	9
	4
	4
	14
	4

	
	5
	5
	4
	6
	8
	4
	7
	12
	4
	8
	11
	4
	9
	10
	4

	
	10
	27
	5
	11
	2
	4
	12
	30
	5
	13
	31
	5
	14
	9
	5

	
	15
	14
	5
	16
	1
	4
	17
	1
	5
	18
	31
	6
	19
	53
	6

	
	20
	30
	6
	21
	17
	6
	22
	33
	7
	23
	104
	7
	24
	211
	8

	
	25
	210
	8
	26
	64
	8
	27
	130
	9
	28
	131
	9
	
	
	

	28
	0
	44
	6
	1
	15
	5
	2
	2
	4
	3
	10
	4
	4
	1
	4

	
	5
	9
	4
	6
	13
	4
	7
	8
	4
	8
	14
	4
	9
	31
	5

	
	10
	4
	4
	11
	5
	4
	12
	3
	4
	13
	23
	5
	14
	25
	5

	
	15
	6
	4
	16
	24
	5
	17
	61
	6
	18
	14
	5
	19
	0
	5

	
	20
	60
	6
	21
	91
	7
	22
	2
	6
	23
	7
	7
	24
	6
	7

	
	25
	180
	8
	26
	362
	9
	27
	363
	9
	
	
	
	
	
	

	27
	0
	114
	7
	1
	18
	5
	2
	25
	5
	3
	19
	5
	4
	7
	4

	
	5
	13
	4
	6
	4
	4
	7
	0
	3
	8
	31
	5
	9
	8
	4

	
	10
	11
	4
	11
	6
	4
	12
	29
	5
	13
	2
	4
	14
	10
	4

	
	15
	30
	5
	16
	7
	5
	17
	24
	5
	18
	11
	5
	19
	6
	5

	
	20
	20
	6
	21
	21
	6
	22
	113
	7
	23
	112
	7
	24
	230
	8

	
	25
	462
	9
	26
	463
	9
	
	
	
	
	
	
	
	
	

	26
	0
	114
	7
	1
	45
	6
	2
	2
	5
	3
	31
	5
	4
	10
	4

	
	5
	4
	4
	6
	1
	3
	7
	0
	4
	8
	9
	4
	9
	12
	4

	
	10
	8
	4
	11
	30
	5
	12
	6
	4
	13
	13
	4
	14
	5
	4

	
	15
	14
	5
	16
	29
	5
	17
	23
	5
	18
	15
	5
	19
	7
	6

	
	20
	56
	6
	21
	6
	6
	22
	115
	7
	23
	88
	7
	24
	178
	8

	
	25
	179
	8
	
	
	
	
	
	
	
	
	
	
	
	

	25
	0
	146
	8
	1
	117
	7
	2
	13
	5
	3
	3
	4
	4
	24
	5

	
	5
	13
	4
	6
	2
	4
	7
	8
	4
	8
	15
	4
	9
	10
	4

	
	10
	4
	4
	11
	11
	4
	12
	0
	3
	13
	7
	4
	14
	19
	5

	
	15
	5
	4
	16
	28
	5
	17
	25
	5
	18
	37
	6
	19
	59
	6

	
	20
	25
	6
	21
	24
	6
	22
	116
	7
	23
	147
	8
	24
	72
	7

	24
	0
	122
	8
	1
	0
	6
	2
	14
	5
	3
	1
	5
	4
	9
	4

	
	5
	29
	5
	6
	8
	4
	7
	15
	4
	8
	10
	4
	9
	5
	4

	
	10
	13
	4
	11
	1
	3
	12
	12
	4
	13
	28
	5
	14
	6
	4

	
	15
	4
	4
	16
	1
	4
	17
	47
	6
	18
	22
	5
	19
	31
	6

	
	20
	46
	6
	21
	1
	6
	22
	123
	8
	23
	60
	7
	
	
	

	23
	0
	182
	8
	1
	12
	6
	2
	13
	6
	3
	0
	4
	4
	23
	5

	
	5
	2
	4
	6
	14
	4
	7
	10
	4
	8
	6
	4
	9
	15
	4

	
	10
	2
	3
	11
	13
	4
	12
	1
	4
	13
	9
	4
	14
	8
	4

	
	15
	7
	4
	16
	7
	5
	17
	24
	5
	18
	50
	6
	19
	51
	6

	
	20
	44
	6
	21
	90
	7
	22
	183
	8
	
	
	
	
	
	

	22
	0
	38
	8
	1
	39
	8
	2
	57
	6
	3
	5
	5
	4
	15
	5

	
	5
	11
	4
	6
	5
	4
	7
	6
	4
	8
	15
	4
	9
	4
	3

	
	10
	0
	3
	11
	4
	4
	12
	12
	4
	13
	13
	4
	14
	10
	4

	
	15
	14
	5
	16
	29
	5
	17
	6
	5
	18
	7
	5
	19
	56
	6

	
	20
	8
	6
	21
	18
	7
	
	
	
	
	
	
	
	
	

	21
	0
	12
	9
	1
	2
	7
	2
	37
	6
	3
	19
	5
	4
	1
	4

	
	5
	12
	4
	6
	15
	4
	7
	2
	3
	8
	3
	3
	9
	1
	3

	
	10
	14
	4
	11
	13
	4
	12
	11
	4
	13
	8
	4
	14
	21
	5

	
	15
	20
	5
	16
	1
	5
	17
	36
	6
	18
	0
	6
	19
	7
	8

	
	20
	13
	9
	
	
	
	
	
	
	
	
	
	
	
	

	32
	0
	0
	2
	1
	12
	4
	2
	10
	4
	3
	14
	4
	4
	5
	4

	
	5
	6
	4
	6
	27
	5
	7
	8
	4
	8
	30
	5
	9
	22
	5

	
	10
	15
	5
	11
	19
	5
	12
	9
	5
	13
	8
	5
	14
	14
	5

	
	15
	62
	6
	16
	47
	6
	17
	37
	6
	18
	36
	6
	19
	46
	6

	
	20
	126
	7
	21
	106
	7
	22
	104
	7
	23
	105
	7
	24
	254
	8

	
	25
	511
	9
	26
	431
	9
	27
	214
	8
	28
	1021
	10
	29
	861
	10

	
	30
	860
	10
	31
	1020
	10
	
	
	
	
	
	
	
	
	

	31
	0
	25
	5
	1
	31
	5
	2
	10
	4
	3
	0
	4
	4
	6
	4

	
	5
	1
	4
	6
	11
	4
	7
	7
	4
	8
	3
	4
	9
	2
	4

	
	10
	4
	4
	11
	30
	5
	12
	28
	5
	13
	29
	5
	14
	26
	5

	
	15
	16
	5
	16
	17
	5
	17
	18
	5
	18
	19
	5
	19
	10
	5

	
	20
	49
	6
	21
	48
	6
	22
	55
	6
	23
	109
	7
	24
	108
	7

	
	25
	46
	7
	26
	47
	7
	27
	91
	8
	28
	90
	8
	29
	88
	8

	
	30
	89
	8
	
	
	
	
	
	
	
	
	
	
	
	

	30
	0
	2
	6
	1
	0
	5
	2
	12
	5
	3
	22
	5
	4
	25
	5

	
	5
	8
	4
	6
	1
	4
	7
	31
	5
	8
	5
	4
	9
	9
	4

	
	10
	7
	4
	11
	2
	4
	12
	4
	4
	13
	3
	4
	14
	29
	5

	
	15
	26
	5
	16
	30
	5
	17
	28
	5
	18
	27
	5
	19
	20
	5

	
	20
	13
	5
	21
	23
	5
	22
	43
	6
	23
	48
	6
	24
	42
	6

	
	25
	3
	6
	26
	199
	8
	27
	197
	8
	28
	196
	8
	29
	198
	8

	29
	0
	224
	8
	1
	113
	7
	2
	48
	6
	3
	57
	6
	4
	22
	5

	
	5
	23
	5
	6
	26
	5
	7
	29
	5
	8
	31
	5
	9
	4
	4

	
	10
	1
	4
	11
	6
	4
	12
	8
	4
	13
	3
	4
	14
	0
	4

	
	15
	10
	4
	16
	7
	4
	17
	9
	4
	18
	27
	5
	19
	25
	5

	
	20
	2
	4
	21
	61
	6
	22
	11
	5
	23
	60
	6
	24
	49
	6

	
	25
	20
	6
	26
	42
	7
	27
	225
	8
	28
	43
	7
	
	
	

	28
	0
	54
	8
	1
	55
	8
	2
	119
	7
	3
	46
	6
	4
	58
	6

	
	5
	14
	5
	6
	22
	5
	7
	27
	5
	8
	31
	5
	9
	30
	5

	
	10
	2
	4
	11
	6
	4
	12
	5
	4
	13
	4
	4
	14
	9
	4

	
	15
	8
	4
	16
	12
	4
	17
	1
	4
	18
	0
	4
	19
	10
	4

	
	20
	15
	5
	21
	28
	5
	22
	26
	5
	23
	7
	5
	24
	47
	6

	
	25
	118
	7
	26
	26
	7
	27
	12
	6
	
	
	
	
	
	

	27
	0
	56
	8
	1
	57
	8
	2
	29
	7
	3
	125
	7
	4
	35
	6

	
	5
	63
	6
	6
	6
	5
	7
	26
	5
	8
	23
	5
	9
	27
	5

	
	10
	4
	4
	11
	2
	4
	12
	5
	4
	13
	10
	4
	14
	9
	4

	
	15
	12
	4
	16
	6
	4
	17
	7
	4
	18
	14
	4
	19
	30
	5

	
	20
	0
	4
	21
	1
	4
	22
	22
	5
	23
	16
	5
	24
	15
	6

	
	25
	124
	7
	26
	34
	6
	
	
	
	
	
	
	
	
	

	26
	0
	336
	9
	1
	337
	9
	2
	169
	8
	3
	85
	7
	4
	9
	6

	
	5
	43
	6
	6
	5
	5
	7
	10
	5
	8
	28
	5
	9
	0
	4

	
	10
	1
	4
	11
	4
	4
	12
	9
	4
	13
	12
	4
	14
	11
	4

	
	15
	7
	4
	16
	15
	4
	17
	13
	4
	18
	6
	4
	19
	8
	4

	
	20
	3
	4
	21
	29
	5
	22
	11
	5
	23
	41
	6
	24
	40
	6

	
	25
	8
	6
	
	
	
	
	
	
	
	
	
	
	
	

	24
	0
	224
	9
	1
	225
	9
	2
	113
	8
	3
	57
	7
	4
	23
	6

	
	5
	29
	6
	6
	10
	5
	7
	15
	5
	8
	28
	5
	9
	1
	4

	
	10
	6
	4
	11
	13
	4
	12
	11
	4
	13
	8
	4
	14
	15
	4

	
	15
	1
	3
	16
	9
	4
	17
	12
	4
	18
	10
	4
	19
	4
	4

	
	20
	29
	5
	21
	1
	5
	22
	0
	5
	23
	22
	6
	
	
	

	22
	0
	192
	9
	1
	193
	9
	2
	97
	8
	3
	49
	7
	4
	44
	6

	
	5
	6
	5
	6
	7
	5
	7
	23
	5
	8
	8
	4
	9
	15
	4

	
	10
	13
	4
	11
	9
	4
	12
	0
	3
	13
	2
	3
	14
	10
	4

	
	15
	14
	4
	16
	12
	4
	17
	7
	4
	18
	2
	4
	19
	13
	5

	
	20
	45
	6
	21
	25
	6
	
	
	
	
	
	
	
	
	

	20
	0
	368
	9
	1
	369
	9
	2
	185
	8
	3
	93
	7
	4
	35
	6

	
	5
	16
	5
	6
	2
	4
	7
	10
	4
	8
	13
	4
	9
	12
	4

	
	10
	2
	3
	11
	3
	3
	12
	0
	3
	13
	14
	4
	14
	15
	4

	
	15
	9
	4
	16
	3
	4
	17
	22
	5
	18
	47
	6
	19
	34
	6

	18
	0
	424
	9
	1
	425
	9
	2
	213
	8
	3
	107
	7
	4
	13
	5

	
	5
	7
	4
	6
	11
	4
	7
	12
	4
	8
	2
	3
	9
	4
	3

	
	10
	0
	3
	11
	15
	4
	12
	1
	3
	13
	14
	4
	14
	10
	4

	
	15
	27
	5
	16
	12
	5
	17
	52
	6
	
	
	
	
	
	

	16
	0
	10
	8
	1
	11
	8
	2
	0
	5
	3
	27
	5
	4
	12
	4

	
	5
	15
	4
	6
	3
	3
	7
	5
	3
	8
	4
	3
	9
	2
	3

	
	10
	1
	3
	11
	14
	4
	12
	1
	4
	13
	26
	5
	14
	3
	6

	
	15
	4
	7
	
	
	
	
	
	
	
	
	
	
	
	

Table 85: VLC Table for the decoding of NUMZERO for Progressive-Mode Inter 4x4 Blocks.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	16
	0
	3
	2
	1
	5
	3
	2
	3
	3
	3
	0
	3
	4
	9
	4

	
	5
	5
	4
	6
	3
	4
	7
	4
	4
	8
	16
	5
	9
	4
	5

	
	10
	35
	6
	11
	34
	6
	12
	23
	7
	13
	10
	6
	14
	45
	8

	
	15
	44
	8
	
	
	
	
	
	
	
	
	
	
	
	

	15
	0
	7
	3
	1
	5
	3
	2
	3
	3
	3
	2
	3
	4
	0
	3

	
	5
	13
	4
	6
	12
	4
	7
	8
	4
	8
	19
	5
	9
	2
	4

	
	10
	18
	5
	11
	15
	6
	12
	6
	5
	13
	29
	7
	14
	28
	7

	14
	0
	0
	3
	1
	14
	4
	2
	4
	3
	3
	2
	3
	4
	3
	3

	
	5
	1
	3
	6
	15
	4
	7
	11
	4
	8
	12
	4
	9
	27
	5

	
	10
	21
	5
	11
	26
	5
	12
	41
	6
	13
	40
	6
	
	
	

	13
	0
	26
	5
	1
	3
	3
	2
	0
	3
	3
	5
	3
	4
	15
	4

	
	5
	4
	3
	6
	14
	4
	7
	2
	3
	8
	12
	4
	9
	2
	4

	
	10
	3
	4
	11
	55
	6
	12
	54
	6
	
	
	
	
	
	

	12
	0
	0
	4
	1
	1
	4
	2
	2
	3
	3
	1
	3
	4
	6
	3

	
	5
	3
	3
	6
	5
	3
	7
	15
	4
	8
	9
	4
	9
	14
	4

	
	10
	17
	5
	11
	16
	5
	
	
	
	
	
	
	
	
	

	11
	0
	12
	5
	1
	13
	4
	2
	12
	4
	3
	5
	3
	4
	4
	3

	
	5
	7
	3
	6
	1
	3
	7
	0
	3
	8
	2
	3
	9
	7
	4

	
	10
	13
	5
	
	
	
	
	
	
	
	
	
	
	
	

	10
	0
	7
	5
	1
	2
	4
	2
	2
	3
	3
	4
	3
	4
	7
	3

	
	5
	5
	3
	6
	3
	3
	7
	6
	3
	8
	0
	3
	9
	6
	5

	9
	0
	16
	5
	1
	9
	4
	2
	3
	3
	3
	0
	2
	4
	5
	3

	
	5
	6
	3
	6
	7
	3
	7
	2
	3
	8
	17
	5
	
	
	

	8
	0
	26
	5
	1
	12
	4
	2
	7
	3
	3
	4
	3
	4
	0
	2

	
	5
	1
	2
	6
	5
	3
	7
	27
	5
	
	
	
	
	
	

	7
	0
	4
	4
	1
	3
	3
	2
	6
	3
	3
	0
	2
	4
	2
	2

	
	5
	7
	3
	6
	5
	4
	
	
	
	
	
	
	
	
	

	6
	0
	6
	4
	1
	7
	4
	2
	0
	2
	3
	3
	2
	4
	2
	2

	
	5
	2
	3
	
	
	
	
	
	
	
	
	
	
	
	

	5
	0
	2
	3
	1
	3
	3
	2
	2
	2
	3
	3
	2
	4
	0
	2

	4
	0
	6
	3
	1
	2
	2
	2
	0
	1
	3
	7
	3
	
	
	

	3
	0
	2
	2
	1
	0
	1
	2
	3
	2
	
	
	
	
	
	

	2
	0
	0
	1
	1
	1
	1
	
	
	
	
	
	
	
	
	

	16
	0
	7
	3
	1
	4
	3
	2
	2
	3
	3
	0
	3
	4
	13
	4

	
	5
	10
	4
	6
	11
	4
	7
	7
	4
	8
	6
	4
	9
	2
	4

	
	10
	25
	5
	11
	6
	5
	12
	48
	6
	13
	7
	5
	14
	98
	7

	
	15
	99
	7
	
	
	
	
	
	
	
	
	
	
	
	

	15
	0
	8
	4
	1
	11
	4
	2
	13
	4
	3
	15
	4
	4
	0
	3

	
	5
	2
	3
	6
	1
	3
	7
	14
	4
	8
	10
	4
	9
	12
	4

	
	10
	6
	4
	11
	18
	5
	12
	7
	4
	13
	39
	6
	14
	38
	6

	14
	0
	15
	5
	1
	25
	5
	2
	11
	4
	3
	13
	4
	4
	14
	4

	
	5
	0
	3
	6
	2
	3
	7
	1
	3
	8
	4
	3
	9
	10
	4

	
	10
	6
	4
	11
	15
	4
	12
	24
	5
	13
	14
	5
	
	
	

	13
	0
	2
	5
	1
	3
	5
	2
	5
	4
	3
	13
	4
	4
	15
	4

	
	5
	1
	3
	6
	3
	3
	7
	5
	3
	8
	14
	4
	9
	12
	4

	
	10
	4
	3
	11
	4
	4
	12
	0
	4
	
	
	
	
	
	

	12
	0
	4
	5
	1
	5
	5
	2
	3
	4
	3
	9
	4
	4
	2
	3

	
	5
	3
	3
	6
	6
	3
	7
	0
	3
	8
	15
	4
	9
	5
	3

	
	10
	14
	4
	11
	8
	4
	
	
	
	
	
	
	
	
	

	11
	0
	0
	5
	1
	1
	5
	2
	1
	4
	3
	11
	4
	4
	2
	3

	
	5
	6
	3
	6
	4
	3
	7
	3
	3
	8
	7
	3
	9
	1
	3

	
	10
	10
	4
	
	
	
	
	
	
	
	
	
	
	
	

	10
	0
	8
	5
	1
	9
	5
	2
	5
	4
	3
	15
	4
	4
	6
	3

	
	5
	4
	3
	6
	5
	3
	7
	0
	2
	8
	3
	3
	9
	14
	4

	9
	0
	4
	5
	1
	5
	5
	2
	3
	4
	3
	5
	3
	4
	4
	3

	
	5
	7
	3
	6
	1
	2
	7
	6
	3
	8
	0
	3
	
	
	

	8
	0
	24
	5
	1
	25
	5
	2
	4
	3
	3
	5
	3
	4
	7
	3

	
	5
	1
	2
	6
	0
	2
	7
	13
	4
	
	
	
	
	
	

	7
	0
	0
	4
	1
	1
	4
	2
	1
	3
	3
	7
	3
	4
	2
	2

	
	5
	1
	2
	6
	6
	3
	
	
	
	
	
	
	
	
	

	6
	0
	4
	4
	1
	5
	4
	2
	0
	2
	3
	3
	2
	4
	2
	2

	
	5
	3
	3
	
	
	
	
	
	
	
	
	
	
	
	

	5
	0
	0
	3
	1
	1
	3
	2
	2
	2
	3
	3
	2
	4
	1
	2

	4
	0
	6
	3
	1
	7
	3
	2
	0
	1
	3
	2
	2
	
	
	

	3
	0
	2
	2
	1
	3
	2
	2
	0
	1
	
	
	
	
	
	

	2
	0
	0
	1
	1
	1
	1
	
	
	
	
	
	
	
	
	

Table 86: VLC Table for the decoding of NUMZERO for Progressive-Mode Intra Blocks.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	33
	0
	3
	2
	1
	0
	1
	2
	10
	4
	3
	8
	4
	4
	9
	4

	
	5
	44
	6
	6
	93
	7
	7
	91
	7
	8
	90
	7
	9
	378
	9

	
	10
	377
	9
	11
	370
	9
	12
	382
	9
	13
	190
	8
	14
	376
	9

	
	15
	758
	10
	16
	738
	10
	17
	736
	10
	18
	759
	10
	19
	742
	10

	
	20
	1533
	11
	21
	1486
	11
	22
	1479
	11
	23
	2956
	12
	24
	2957
	12

	
	25
	3065
	12
	26
	1474
	11
	27
	1475
	11
	28
	3064
	12
	29
	2974
	12

	
	30
	5950
	13
	31
	5951
	13
	32
	767
	10
	
	
	
	
	
	

	33
	0
	3
	2
	1
	5
	3
	2
	4
	3
	3
	3
	3
	4
	3
	4

	
	5
	1
	4
	6
	0
	4
	7
	10
	5
	8
	17
	6
	9
	11
	6

	
	10
	47
	7
	11
	18
	6
	12
	4
	5
	13
	45
	7
	14
	93
	8

	
	15
	76
	8
	16
	77
	8
	17
	33
	7
	18
	20
	7
	19
	79
	8

	
	20
	65
	8
	21
	64
	8
	22
	370
	10
	23
	85
	9
	24
	156
	9

	
	25
	184
	9
	26
	157
	9
	27
	87
	9
	28
	84
	9
	29
	172
	10

	
	30
	173
	10
	31
	371
	10
	32
	44
	7
	
	
	
	
	
	

	33
	0
	12
	4
	1
	0
	2
	2
	4
	3
	3
	11
	4
	4
	15
	4

	
	5
	13
	4
	6
	10
	4
	7
	12
	5
	8
	11
	5
	9
	9
	5

	
	10
	13
	5
	11
	29
	5
	12
	56
	6
	13
	16
	6
	14
	40
	7

	
	15
	61
	7
	16
	28
	6
	17
	21
	6
	18
	114
	7
	19
	60
	7

	
	20
	59
	7
	21
	83
	8
	22
	82
	8
	23
	117
	8
	24
	34
	7

	
	25
	231
	8
	26
	71
	8
	27
	460
	9
	28
	232
	9
	29
	233
	9

	
	30
	461
	9
	31
	70
	8
	32
	31
	6
	
	
	
	
	
	

	33
	0
	12
	4
	1
	2
	3
	2
	8
	4
	3
	0
	3
	4
	1
	3

	
	5
	13
	4
	6
	23
	5
	7
	29
	5
	8
	28
	5
	9
	31
	5

	
	10
	9
	4
	11
	13
	5
	12
	40
	6
	13
	82
	7
	14
	28
	6

	
	15
	12
	5
	16
	60
	6
	17
	45
	6
	18
	29
	6
	19
	30
	6

	
	20
	247
	8
	21
	246
	8
	22
	63
	7
	23
	83
	7
	24
	88
	7

	
	25
	178
	8
	26
	124
	8
	27
	490
	9
	28
	491
	9
	29
	179
	8

	
	30
	244
	8
	31
	125
	8
	32
	21
	5
	
	
	
	
	
	

	33
	0
	6
	5
	1
	23
	5
	2
	13
	4
	3
	0
	3
	4
	12
	4

	
	5
	30
	5
	6
	4
	4
	7
	5
	4
	8
	8
	4
	9
	10
	4

	
	10
	22
	5
	11
	4
	5
	12
	10
	6
	13
	57
	6
	14
	29
	5

	
	15
	19
	5
	16
	18
	5
	17
	7
	5
	18
	63
	6
	19
	124
	7

	
	20
	125
	7
	21
	11
	6
	22
	26
	6
	23
	24
	6
	24
	54
	7

	
	25
	226
	8
	26
	110
	8
	27
	227
	8
	28
	51
	7
	29
	112
	7

	
	30
	50
	7
	31
	111
	8
	32
	7
	4
	
	
	
	
	
	

	33
	0
	108
	7
	1
	25
	5
	2
	6
	4
	3
	4
	4
	4
	19
	5

	
	5
	2
	4
	6
	8
	4
	7
	11
	4
	8
	10
	4
	9
	26
	5

	
	10
	11
	5
	11
	30
	6
	12
	3
	5
	13
	3
	4
	14
	0
	4

	
	15
	28
	5
	16
	24
	5
	17
	18
	5
	18
	29
	6
	19
	31
	6

	
	20
	55
	6
	21
	58
	6
	22
	59
	6
	23
	109
	7
	24
	40
	7

	
	25
	113
	8
	26
	41
	7
	27
	5
	6
	28
	21
	6
	29
	4
	6

	
	30
	57
	7
	31
	112
	8
	32
	15
	4
	
	
	
	
	
	

	33
	0
	20
	7
	1
	6
	5
	2
	1
	5
	3
	0
	5
	4
	29
	5

	
	5
	1
	4
	6
	11
	4
	7
	8
	4
	8
	26
	5
	9
	7
	5

	
	10
	38
	6
	11
	18
	5
	12
	10
	4
	13
	4
	4
	14
	31
	5

	
	15
	28
	5
	16
	27
	5
	17
	51
	6
	18
	60
	6
	19
	4
	5

	
	20
	10
	5
	21
	11
	5
	22
	11
	6
	23
	98
	7
	24
	245
	8

	
	25
	99
	7
	26
	48
	6
	27
	50
	6
	28
	39
	6
	29
	123
	7

	
	30
	244
	8
	31
	21
	7
	32
	3
	3
	
	
	
	
	
	

	56
	0
	404
	9
	1
	203
	8
	2
	100
	7
	3
	51
	6
	4
	7
	5

	
	5
	15
	5
	6
	6
	5
	7
	56
	6
	8
	8
	5
	9
	19
	5

	
	10
	0
	4
	11
	5
	4
	12
	1
	4
	13
	27
	5
	14
	22
	5

	
	15
	24
	5
	16
	23
	5
	17
	29
	5
	18
	26
	5
	19
	18
	5

	
	20
	61
	6
	21
	33
	6
	22
	42
	6
	23
	63
	6
	24
	12
	5

	
	25
	14
	5
	26
	60
	6
	27
	43
	6
	28
	125
	7
	29
	71
	7

	
	30
	82
	7
	31
	114
	7
	32
	19
	6
	33
	34
	6
	34
	27
	6

	
	35
	11
	6
	36
	18
	6
	37
	26
	6
	38
	32
	6
	39
	10
	6

	
	40
	81
	7
	41
	161
	8
	42
	499
	9
	43
	248
	8
	44
	83
	7

	
	45
	9
	6
	46
	8
	6
	47
	115
	7
	48
	70
	7
	49
	160
	8

	
	50
	498
	9
	51
	811
	10
	52
	1620
	11
	53
	3243
	12
	54
	6485
	13

	
	55
	6484
	13
	
	
	
	
	
	
	
	
	
	
	
	

	52
	0
	13263
	14
	1
	1132
	11
	2
	1656
	11
	3
	567
	10
	4
	282
	9

	
	5
	140
	8
	6
	46
	7
	7
	102
	7
	8
	22
	6
	9
	29
	6

	
	10
	44
	6
	11
	1
	5
	12
	13
	5
	13
	19
	5
	14
	24
	5

	
	15
	26
	5
	16
	31
	5
	17
	28
	5
	18
	30
	5
	19
	1
	4

	
	20
	4
	4
	21
	3
	4
	22
	2
	4
	23
	27
	5
	24
	23
	5

	
	25
	20
	5
	26
	18
	5
	27
	16
	5
	28
	15
	5
	29
	12
	5

	
	30
	10
	5
	31
	59
	6
	32
	45
	6
	33
	43
	6
	34
	42
	6

	
	35
	34
	6
	36
	28
	6
	37
	1
	6
	38
	101
	7
	39
	100
	7

	
	40
	117
	7
	41
	0
	6
	42
	116
	7
	43
	71
	7
	44
	47
	7

	
	45
	206
	8
	46
	415
	9
	47
	829
	10
	48
	1133
	11
	49
	3314
	12

	
	50
	6630
	13
	51
	13262
	14
	
	
	
	
	
	
	
	
	

Table 87: VLC Table for Inter Block RUNISL1.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	6
	0
	6
	4
	1
	1
	3
	2
	2
	3
	3
	0
	3
	4
	7
	4

	
	5
	1
	1
	
	
	
	
	
	
	
	
	
	
	
	

	7
	0
	0
	4
	1
	2
	3
	2
	1
	3
	3
	7
	4
	4
	6
	4

	
	5
	1
	4
	6
	1
	1
	
	
	
	
	
	
	
	
	

	8
	0
	29
	5
	1
	4
	3
	2
	5
	3
	3
	15
	4
	4
	13
	4

	
	5
	12
	4
	6
	28
	5
	7
	0
	1
	
	
	
	
	
	

	9
	0
	10
	4
	1
	2
	3
	2
	3
	3
	3
	4
	3
	4
	0
	3

	
	5
	11
	4
	6
	3
	4
	7
	2
	4
	8
	3
	2
	
	
	

	10
	0
	6
	4
	1
	1
	3
	2
	4
	3
	3
	2
	3
	4
	0
	3

	
	5
	11
	4
	6
	7
	4
	7
	21
	5
	8
	20
	5
	9
	3
	2

	12
	0
	5
	4
	1
	3
	3
	2
	4
	3
	3
	1
	3
	4
	0
	3

	
	5
	15
	4
	6
	11
	4
	7
	4
	4
	8
	21
	5
	9
	20
	5

	
	10
	6
	3
	11
	14
	4
	
	
	
	
	
	
	
	
	

	16
	0
	13
	4
	1
	5
	3
	2
	4
	3
	3
	2
	3
	4
	1
	3

	
	5
	15
	4
	6
	7
	4
	7
	1
	4
	8
	28
	5
	9
	13
	5

	
	10
	59
	6
	11
	25
	6
	12
	12
	4
	13
	0
	4
	14
	58
	6

	
	15
	24
	6
	
	
	
	
	
	
	
	
	
	
	
	

	34
	0
	0
	3
	1
	5
	3
	2
	6
	3
	3
	3
	3
	4
	1
	3

	
	5
	14
	4
	6
	9
	4
	7
	5
	4
	8
	17
	5
	9
	16
	5

	
	10
	8
	5
	11
	60
	6
	12
	19
	6
	13
	127
	7
	14
	122
	7

	
	15
	36
	7
	16
	62
	6
	17
	126
	7
	18
	247
	8
	19
	246
	8

	
	20
	607
	11
	21
	296
	10
	22
	297
	10
	23
	596
	11
	24
	597
	11

	
	25
	598
	11
	26
	599
	11
	27
	600
	11
	28
	601
	11
	29
	602
	11

	
	30
	603
	11
	31
	604
	11
	32
	605
	11
	33
	606
	11
	
	
	

	6
	0
	5
	4
	1
	3
	3
	2
	1
	3
	3
	0
	3
	4
	4
	4

	
	5
	1
	1
	
	
	
	
	
	
	
	
	
	
	
	

	7
	0
	9
	4
	1
	6
	3
	2
	5
	3
	3
	15
	4
	4
	14
	4

	
	5
	8
	4
	6
	0
	1
	
	
	
	
	
	
	
	
	

	8
	0
	12
	4
	1
	5
	3
	2
	4
	3
	3
	15
	4
	4
	13
	4

	
	5
	29
	5
	6
	28
	5
	7
	0
	1
	
	
	
	
	
	

	9
	0
	10
	4
	1
	3
	3
	2
	4
	3
	3
	2
	3
	4
	1
	3

	
	5
	11
	4
	6
	1
	4
	7
	0
	4
	8
	3
	2
	
	
	

	10
	0
	4
	4
	1
	3
	3
	2
	4
	3
	3
	1
	3
	4
	0
	3

	
	5
	11
	4
	6
	5
	4
	7
	21
	5
	8
	20
	5
	9
	3
	2

	12
	0
	10
	4
	1
	2
	3
	2
	4
	3
	3
	3
	3
	4
	0
	3

	
	5
	15
	4
	6
	11
	4
	7
	2
	4
	8
	7
	5
	9
	6
	5

	
	10
	6
	3
	11
	14
	4
	
	
	
	
	
	
	
	
	

	16
	0
	9
	4
	1
	2
	3
	2
	5
	3
	3
	3
	3
	4
	1
	3

	
	5
	15
	4
	6
	13
	4
	7
	8
	4
	8
	29
	5
	9
	3
	5

	
	10
	1
	5
	11
	5
	6
	12
	12
	4
	13
	28
	5
	14
	0
	5

	
	15
	4
	6
	
	
	
	
	
	
	
	
	
	
	
	

	34
	0
	13
	4
	1
	2
	3
	2
	5
	3
	3
	3
	3
	4
	1
	3

	
	5
	0
	3
	6
	14
	4
	7
	9
	4
	8
	30
	5
	9
	24
	5

	
	10
	16
	5
	11
	63
	6
	12
	50
	6
	13
	124
	7
	14
	70
	7

	
	15
	69
	7
	16
	51
	6
	17
	125
	7
	18
	68
	7
	19
	142
	8

	
	20
	575
	10
	21
	573
	10
	22
	2299
	12
	23
	1148
	11
	24
	4576
	13

	
	25
	4577
	13
	26
	4578
	13
	27
	4579
	13
	28
	4580
	13
	29
	4581
	13

	
	30
	4582
	13
	31
	4583
	13
	32
	4596
	13
	33
	4597
	13
	
	
	

	6
	0
	13
	4
	1
	7
	3
	2
	5
	3
	3
	4
	3
	4
	12
	4

	
	5
	0
	1
	
	
	
	
	
	
	
	
	
	
	
	

	7
	0
	9
	4
	1
	6
	3
	2
	5
	3
	3
	15
	4
	4
	14
	4

	
	5
	8
	4
	6
	0
	1
	
	
	
	
	
	
	
	
	

	8
	0
	0
	3
	1
	5
	3
	2
	4
	3
	3
	3
	3
	4
	1
	3

	
	5
	5
	4
	6
	4
	4
	7
	3
	2
	
	
	
	
	
	

	9
	0
	14
	4
	1
	6
	3
	2
	3
	3
	3
	2
	3
	4
	1
	3

	
	5
	15
	4
	6
	1
	4
	7
	0
	4
	8
	2
	2
	
	
	

	10
	0
	14
	4
	1
	5
	3
	2
	6
	3
	3
	4
	3
	4
	2
	3

	
	5
	15
	4
	6
	7
	4
	7
	13
	5
	8
	12
	5
	9
	0
	2

	12
	0
	10
	4
	1
	4
	3
	2
	6
	3
	3
	3
	3
	4
	2
	3

	
	5
	15
	4
	6
	14
	4
	7
	0
	4
	8
	3
	5
	9
	2
	5

	
	10
	1
	3
	11
	11
	4
	
	
	
	
	
	
	
	
	

	16
	0
	6
	4
	1
	2
	3
	2
	5
	3
	3
	4
	3
	4
	1
	3

	
	5
	15
	4
	6
	13
	4
	7
	12
	4
	8
	0
	4
	9
	28
	5

	
	10
	59
	6
	11
	29
	6
	12
	1
	4
	13
	15
	5
	14
	58
	6

	
	15
	28
	6
	
	
	
	
	
	
	
	
	
	
	
	

	34
	0
	6
	4
	1
	1
	3
	2
	5
	3
	3
	4
	3
	4
	2
	3

	
	5
	15
	4
	6
	14
	4
	7
	12
	4
	8
	1
	4
	9
	27
	5

	
	10
	15
	5
	11
	0
	5
	12
	52
	6
	13
	28
	6
	14
	106
	7

	
	15
	215
	8
	16
	29
	6
	17
	2
	6
	18
	7
	7
	19
	214
	8

	
	20
	12
	8
	21
	26
	9
	22
	54
	10
	23
	110
	11
	24
	447
	13

	
	25
	446
	13
	26
	888
	14
	27
	3562
	16
	28
	889
	14
	29
	3563
	16

	
	30
	1782
	15
	31
	3566
	16
	32
	3567
	16
	33
	1780
	15
	
	
	

	6
	0
	5
	4
	1
	3
	3
	2
	1
	3
	3
	0
	3
	4
	4
	4

	
	5
	1
	1
	
	
	
	
	
	
	
	
	
	
	
	

	7
	0
	14
	4
	1
	6
	3
	2
	5
	3
	3
	15
	4
	4
	9
	4

	
	5
	8
	4
	6
	0
	1
	
	
	
	
	
	
	
	
	

	8
	0
	1
	3
	1
	5
	3
	2
	4
	3
	3
	3
	3
	4
	0
	3

	
	5
	5
	4
	6
	4
	4
	7
	3
	2
	
	
	
	
	
	

	9
	0
	0
	3
	1
	7
	3
	2
	6
	3
	3
	4
	3
	4
	1
	3

	
	5
	10
	4
	6
	23
	5
	7
	22
	5
	8
	1
	2
	
	
	

	10
	0
	13
	4
	1
	7
	3
	2
	5
	3
	3
	4
	3
	4
	2
	3

	
	5
	12
	4
	6
	6
	4
	7
	15
	5
	8
	14
	5
	9
	0
	2

	12
	0
	1
	3
	1
	6
	3
	2
	5
	3
	3
	4
	3
	4
	2
	3

	
	5
	14
	4
	6
	7
	4
	7
	0
	4
	8
	3
	5
	9
	2
	5

	
	10
	15
	4
	11
	6
	4
	
	
	
	
	
	
	
	
	

	16
	0
	13
	4
	1
	5
	3
	2
	7
	3
	3
	4
	3
	4
	2
	3

	
	5
	0
	3
	6
	7
	4
	7
	3
	4
	8
	25
	5
	9
	12
	5

	
	10
	27
	6
	11
	11
	6
	12
	24
	5
	13
	4
	5
	14
	26
	6

	
	15
	10
	6
	
	
	
	
	
	
	
	
	
	
	
	

	34
	0
	15
	4
	1
	5
	3
	2
	6
	3
	3
	4
	3
	4
	2
	3

	
	5
	0
	3
	6
	7
	4
	7
	3
	4
	8
	2
	4
	9
	28
	5

	
	10
	59
	6
	11
	58
	6
	12
	25
	6
	13
	55
	7
	14
	52
	7

	
	15
	109
	8
	16
	53
	7
	17
	48
	7
	18
	99
	8
	19
	217
	9

	
	20
	197
	9
	21
	433
	10
	22
	432
	10
	23
	392
	10
	24
	786
	11

	
	25
	3150
	13
	26
	3148
	13
	27
	3149
	13
	28
	6303
	14
	29
	50422
	17

	
	30
	50423
	17
	31
	25208
	16
	32
	25209
	16
	33
	25210
	16
	
	
	

Table 88: VLC Table for Intra Block RUNISL1.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	6
	0
	2
	3
	1
	6
	3
	2
	0
	2
	3
	7
	3
	4
	3
	3

	
	5
	2
	2
	
	
	
	
	
	
	
	
	
	
	
	

	7
	0
	2
	3
	1
	4
	3
	2
	0
	2
	3
	6
	3
	4
	5
	3

	
	5
	3
	3
	6
	7
	3
	
	
	
	
	
	
	
	
	

	9
	0
	7
	4
	1
	4
	3
	2
	6
	3
	3
	7
	3
	4
	5
	3

	
	5
	2
	3
	6
	0
	3
	7
	1
	3
	8
	6
	4
	
	
	

	13
	0
	7
	4
	1
	1
	3
	2
	5
	3
	3
	6
	3
	4
	4
	3

	
	5
	2
	3
	6
	0
	3
	7
	14
	4
	8
	6
	4
	9
	31
	5

	
	10
	61
	6
	11
	121
	7
	12
	120
	7
	
	
	
	
	
	

	25
	0
	4
	4
	1
	15
	4
	2
	3
	3
	3
	5
	3
	4
	4
	3

	
	5
	1
	3
	6
	14
	4
	7
	13
	4
	8
	5
	4
	9
	0
	4

	
	10
	24
	5
	11
	2
	5
	12
	51
	6
	13
	7
	6
	14
	101
	7

	
	15
	100
	7
	16
	12
	7
	17
	55
	9
	18
	53
	9
	19
	52
	9

	
	20
	108
	10
	21
	438
	12
	22
	437
	12
	23
	439
	12
	24
	436
	12

	34
	0
	12
	4
	1
	2
	3
	2
	4
	3
	3
	3
	3
	4
	1
	3

	
	5
	15
	4
	6
	14
	4
	7
	11
	4
	8
	10
	4
	9
	0
	4

	
	10
	26
	5
	11
	2
	5
	12
	54
	6
	13
	6
	6
	14
	110
	7

	
	15
	14
	7
	16
	222
	8
	17
	447
	9
	18
	446
	9
	19
	63
	9

	
	20
	60
	9
	21
	123
	10
	22
	122
	10
	23
	249
	11
	24
	497
	12

	
	25
	502
	12
	26
	500
	12
	27
	1007
	13
	28
	2004
	14
	29
	2005
	14

	
	30
	496
	12
	31
	2006
	14
	32
	2007
	14
	33
	1006
	13
	
	
	

Table 89: VLC Table for Inter Block NUMSL.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	2
	0
	1
	1
	1
	0
	1
	
	
	
	
	
	
	
	
	

	3
	0
	1
	1
	1
	0
	2
	2
	1
	2
	
	
	
	
	
	

	4
	0
	0
	1
	1
	4
	3
	2
	3
	2
	3
	5
	3
	
	
	

	5
	0
	0
	1
	1
	8
	4
	2
	3
	2
	3
	5
	3
	4
	9
	4

	6
	0
	2
	2
	1
	1
	4
	2
	3
	2
	3
	1
	2
	4
	1
	3

	
	5
	0
	4
	
	
	
	
	
	
	
	
	
	
	
	

	7
	0
	0
	2
	1
	19
	5
	2
	3
	2
	3
	1
	2
	4
	5
	3

	
	5
	8
	4
	6
	18
	5
	
	
	
	
	
	
	
	
	

	8
	0
	7
	3
	1
	1
	5
	2
	2
	2
	3
	1
	2
	4
	6
	3

	
	5
	1
	3
	6
	1
	4
	7
	0
	5
	
	
	
	
	
	

	34
	0
	4
	3
	1
	49
	6
	2
	0
	2
	3
	1
	2
	4
	7
	3

	
	5
	5
	3
	6
	13
	4
	7
	25
	5
	8
	97
	7
	9
	192
	8

	
	10
	6192
	13
	11
	6193
	13
	12
	6194
	13
	13
	6195
	13
	14
	6196
	13

	
	15
	6197
	13
	16
	6198
	13
	17
	6199
	13
	18
	6200
	13
	19
	6201
	13

	
	20
	6202
	13
	21
	6203
	13
	22
	6204
	13
	23
	6205
	13
	24
	6206
	13

	
	25
	6207
	13
	26
	3088
	12
	27
	3089
	12
	28
	3090
	12
	29
	3091
	12

	
	30
	3092
	12
	31
	3093
	12
	32
	3094
	12
	33
	3095
	12
	
	
	

	2
	0
	1
	1
	1
	0
	1
	
	
	
	
	
	
	
	
	

	3
	0
	1
	1
	1
	0
	2
	2
	1
	2
	
	
	
	
	
	

	4
	0
	0
	1
	1
	4
	3
	2
	3
	2
	3
	5
	3
	
	
	

	5
	0
	0
	1
	1
	9
	4
	2
	3
	2
	3
	5
	3
	4
	8
	4

	7
	0
	2
	2
	1
	4
	4
	2
	3
	2
	3
	0
	2
	4
	3
	3

	
	5
	11
	5
	6
	10
	5
	
	
	
	
	
	
	
	
	

	11
	0
	5
	3
	1
	51
	6
	2
	1
	2
	3
	0
	2
	4
	7
	3

	
	5
	4
	3
	6
	13
	4
	7
	24
	5
	8
	101
	7
	9
	201
	8

	
	10
	200
	8
	
	
	
	
	
	
	
	
	
	
	
	

	19
	0
	0
	4
	1
	174
	8
	2
	2
	3
	3
	4
	3
	4
	7
	3

	
	5
	6
	3
	6
	3
	3
	7
	1
	3
	8
	11
	4
	9
	1
	4

	
	10
	20
	5
	11
	42
	6
	12
	86
	7
	13
	351
	9
	14
	701
	10

	
	15
	1401
	11
	16
	2801
	12
	17
	5601
	13
	18
	5600
	13
	
	
	

	34
	0
	68
	7
	1
	1742
	11
	2
	16
	5
	3
	0
	4
	4
	10
	4

	
	5
	14
	4
	6
	1
	3
	7
	2
	3
	8
	3
	3
	9
	15
	4

	
	10
	12
	4
	11
	11
	4
	12
	9
	4
	13
	1
	4
	14
	26
	5

	
	15
	55
	6
	16
	35
	6
	17
	109
	7
	18
	69
	7
	19
	216
	8

	
	20
	434
	9
	21
	1743
	11
	22
	1740
	11
	23
	6966
	13
	24
	13935
	14

	
	25
	27858
	15
	26
	27859
	15
	27
	27860
	15
	28
	27861
	15
	29
	27862
	15

	
	30
	27863
	15
	31
	27868
	15
	32
	27869
	15
	33
	13928
	14
	
	
	

	5
	0
	0
	1
	1
	9
	4
	2
	3
	2
	3
	5
	3
	4
	8
	4

	9
	0
	13
	4
	1
	49
	6
	2
	7
	3
	3
	1
	2
	4
	0
	2

	
	5
	5
	3
	6
	4
	3
	7
	25
	5
	8
	48
	6
	
	
	

	11
	0
	43
	6
	1
	84
	7
	2
	2
	3
	3
	4
	3
	4
	7
	3

	
	5
	0
	2
	6
	6
	3
	7
	3
	3
	8
	11
	4
	9
	20
	5

	
	10
	85
	7
	
	
	
	
	
	
	
	
	
	
	
	

	13
	0
	3
	6
	1
	4
	7
	2
	1
	4
	3
	1
	3
	4
	2
	3

	
	5
	6
	3
	6
	7
	3
	7
	5
	3
	8
	3
	3
	9
	9
	4

	
	10
	8
	4
	11
	0
	5
	12
	5
	7
	
	
	
	
	
	

	17
	0
	74
	7
	1
	601
	10
	2
	19
	5
	3
	8
	4
	4
	0
	3

	
	5
	2
	3
	6
	6
	3
	7
	5
	3
	8
	3
	3
	9
	1
	3

	
	10
	14
	4
	11
	31
	5
	12
	30
	5
	13
	36
	6
	14
	151
	8

	
	15
	301
	9
	16
	600
	10
	
	
	
	
	
	
	
	
	

	21
	0
	235
	9
	1
	1872
	12
	2
	59
	7
	3
	57
	6
	4
	29
	5

	
	5
	13
	4
	6
	0
	3
	7
	1
	3
	8
	5
	3
	9
	4
	3

	
	10
	2
	3
	11
	15
	4
	12
	12
	4
	13
	6
	4
	14
	15
	5

	
	15
	56
	6
	16
	28
	6
	17
	116
	8
	18
	469
	10
	19
	937
	11

	
	20
	1873
	12
	
	
	
	
	
	
	
	
	
	
	
	

	29
	0
	1748
	12
	1
	3498
	13
	2
	108
	8
	3
	234
	8
	4
	116
	7

	
	5
	12
	5
	6
	19
	5
	7
	7
	4
	8
	10
	4
	9
	13
	4

	
	10
	0
	3
	11
	1
	3
	12
	2
	3
	13
	15
	4
	14
	12
	4

	
	15
	11
	4
	16
	8
	4
	17
	28
	5
	18
	18
	5
	19
	59
	6

	
	20
	26
	6
	21
	55
	7
	22
	235
	8
	23
	219
	9
	24
	436
	10

	
	25
	1751
	12
	26
	3499
	13
	27
	3500
	13
	28
	3501
	13
	
	
	

	34
	0
	1392
	12
	1
	1393
	12
	2
	697
	11
	3
	349
	10
	4
	19
	8

	
	5
	101
	7
	6
	38
	6
	7
	3
	5
	8
	24
	5
	9
	3
	4

	
	10
	6
	4
	11
	10
	4
	12
	13
	4
	13
	15
	4
	14
	14
	4

	
	15
	11
	4
	16
	8
	4
	17
	7
	4
	18
	4
	4
	19
	2
	4

	
	20
	0
	4
	21
	18
	5
	22
	11
	5
	23
	51
	6
	24
	39
	6

	
	25
	5
	6
	26
	100
	7
	27
	41
	7
	28
	40
	7
	29
	8
	7

	
	30
	86
	8
	31
	18
	8
	32
	175
	9
	33
	42
	7
	
	
	

Table 90: VLC Table for Intra Block NUMSL.

	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	2
	0
	1
	1
	1
	0
	1
	
	
	
	
	
	
	
	
	

	4
	0
	0
	2
	1
	2
	3
	2
	1
	1
	3
	3
	3
	
	
	

	8
	0
	4
	4
	1
	20
	6
	2
	0
	2
	3
	3
	2
	4
	2
	2

	
	5
	3
	3
	6
	11
	5
	7
	21
	6
	
	
	
	
	
	

	12
	0
	37
	6
	1
	145
	8
	2
	8
	4
	3
	15
	4
	4
	6
	3

	
	5
	0
	2
	6
	1
	2
	7
	5
	3
	8
	14
	4
	9
	19
	5

	
	10
	73
	7
	11
	144
	8
	
	
	
	
	
	
	
	
	

	16
	0
	25
	8
	1
	96
	10
	2
	7
	6
	3
	0
	4
	4
	7
	4

	
	5
	1
	3
	6
	4
	3
	7
	6
	3
	8
	7
	3
	9
	5
	3

	
	10
	2
	3
	11
	6
	4
	12
	2
	5
	13
	13
	7
	14
	49
	9

	
	15
	97
	10
	
	
	
	
	
	
	
	
	
	
	
	

	24
	0
	521
	10
	1
	2080
	12
	2
	64
	7
	3
	66
	7
	4
	38
	6

	
	5
	18
	5
	6
	0
	4
	7
	12
	4
	8
	15
	4
	9
	1
	3

	
	10
	2
	3
	11
	5
	3
	12
	3
	3
	13
	14
	4
	14
	13
	4

	
	15
	1
	4
	16
	17
	5
	17
	39
	6
	18
	67
	7
	19
	131
	8

	
	20
	261
	9
	21
	2081
	12
	22
	2082
	12
	23
	2083
	12
	
	
	

	32
	0
	2636
	12
	1
	2637
	12
	2
	2638
	12
	3
	2639
	12
	4
	1024
	11

	
	5
	165
	8
	6
	65
	7
	7
	33
	6
	8
	44
	6
	9
	17
	5

	
	10
	21
	5
	11
	1
	4
	12
	12
	4
	13
	13
	4
	14
	15
	4

	
	15
	3
	3
	16
	2
	3
	17
	1
	3
	18
	14
	4
	19
	9
	4

	
	20
	0
	4
	21
	23
	5
	22
	45
	6
	23
	40
	6
	24
	83
	7

	
	25
	129
	8
	26
	328
	9
	27
	658
	10
	28
	257
	9
	29
	1025
	11

	
	30
	1026
	11
	31
	1027
	11
	
	
	
	
	
	
	
	
	

	64
	0
	7910
	13
	1
	7911
	13
	2
	7912
	13
	3
	7913
	13
	4
	7914
	13

	
	5
	7915
	13
	6
	7916
	13
	7
	7917
	13
	8
	3959
	12
	9
	1980
	11

	
	10
	324
	9
	11
	242
	8
	12
	255
	8
	13
	80
	7
	14
	37
	6

	
	15
	55
	6
	16
	15
	5
	17
	19
	5
	18
	26
	5
	19
	29
	5

	
	20
	3
	4
	21
	2
	4
	22
	1
	4
	23
	5
	4
	24
	6
	4

	
	25
	0
	4
	26
	28
	5
	27
	25
	5
	28
	22
	5
	29
	23
	5

	
	30
	24
	5
	31
	21
	5
	32
	16
	5
	33
	8
	5
	34
	17
	5

	
	35
	14
	5
	36
	9
	5
	37
	62
	6
	38
	54
	6
	39
	41
	6

	
	40
	126
	7
	41
	36
	6
	42
	120
	7
	43
	122
	7
	44
	254
	8

	
	45
	246
	8
	46
	243
	8
	47
	327
	9
	48
	325
	9
	49
	652
	10

	
	50
	653
	10
	51
	3962
	12
	52
	1976
	11
	53
	7926
	13
	54
	7927
	13

	
	55
	7928
	13
	56
	7929
	13
	57
	7930
	13
	58
	7931
	13
	59
	7932
	13

	
	60
	7933
	13
	61
	7934
	13
	62
	7935
	13
	63
	3954
	12
	
	
	

Table 91: VLC Table for Inter Block VALSL.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	31
	0
	1
	1
	1
	1
	2
	2
	1
	3
	3
	0
	4
	4
	2
	5

	
	5
	6
	6
	6
	31
	8
	7
	29
	8
	8
	61
	9
	9
	57
	9

	
	10
	121
	10
	11
	113
	10
	12
	240
	11
	13
	224
	11
	14
	451
	12

	
	15
	967
	13
	16
	964
	13
	17
	900
	13
	18
	1930
	14
	19
	1802
	14

	
	20
	3867
	15
	21
	3865
	15
	22
	3606
	15
	23
	7729
	16
	24
	7733
	16

	
	25
	7728
	16
	26
	7214
	16
	27
	15465
	17
	28
	7215
	16
	29
	30929
	18

	
	30
	1931
	14
	
	
	
	
	
	
	
	
	
	
	
	

	31
	0
	0
	1
	1
	2
	2
	2
	6
	3
	3
	14
	4
	4
	63
	6

	
	5
	61
	6
	6
	125
	7
	7
	121
	7
	8
	249
	8
	9
	240
	8

	
	10
	497
	9
	11
	483
	9
	12
	993
	10
	13
	964
	10
	14
	1984
	11

	
	15
	3971
	12
	16
	3863
	12
	17
	3861
	12
	18
	7941
	13
	19
	7725
	13

	
	20
	7721
	13
	21
	15880
	14
	22
	15448
	14
	23
	15449
	14
	24
	31762
	15

	
	25
	30883
	15
	26
	30882
	15
	27
	127055
	17
	28
	63526
	16
	29
	254109
	18

	
	30
	15440
	14
	
	
	
	
	
	
	
	
	
	
	
	

	31
	0
	3
	2
	1
	1
	2
	2
	5
	3
	3
	0
	3
	4
	8
	4

	
	5
	2
	4
	6
	18
	5
	7
	6
	5
	8
	38
	6
	9
	79
	7

	
	10
	31
	7
	11
	30
	7
	12
	157
	8
	13
	59
	8
	14
	57
	8

	
	15
	312
	9
	16
	116
	9
	17
	113
	9
	18
	627
	10
	19
	225
	10

	
	20
	224
	10
	21
	471
	11
	22
	469
	11
	23
	468
	11
	24
	941
	12

	
	25
	5013
	13
	26
	940
	12
	27
	5015
	13
	28
	10025
	14
	29
	5014
	13

	
	30
	1252
	11
	
	
	
	
	
	
	
	
	
	
	
	

	31
	0
	1
	2
	1
	6
	3
	2
	1
	3
	3
	15
	4
	4
	11
	4

	
	5
	9
	4
	6
	1
	4
	7
	29
	5
	8
	21
	5
	9
	20
	5

	
	10
	16
	5
	11
	0
	5
	12
	56
	6
	13
	3
	6
	14
	115
	7

	
	15
	69
	7
	16
	70
	7
	17
	5
	7
	18
	229
	8
	19
	228
	8

	
	20
	142
	8
	21
	9
	8
	22
	287
	9
	23
	17
	9
	24
	272
	9

	
	25
	16
	9
	26
	572
	10
	27
	573
	10
	28
	547
	10
	29
	1093
	11

	
	30
	137
	8
	
	
	
	
	
	
	
	
	
	
	
	

Table 92: VLC Table for Intra Block VALSL.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	31
	0
	1
	1
	1
	1
	2
	2
	1
	3
	3
	0
	4
	4
	2
	5

	
	5
	6
	6
	6
	14
	7
	7
	63
	9
	8
	61
	9
	9
	125
	10

	
	10
	121
	10
	11
	249
	11
	12
	241
	11
	13
	496
	12
	14
	481
	12

	
	15
	995
	13
	16
	1923
	14
	17
	960
	13
	18
	1988
	14
	19
	3845
	15

	
	20
	15912
	17
	21
	7689
	16
	22
	31826
	18
	23
	7957
	16
	24
	31827
	18

	
	25
	31832
	18
	26
	15917
	17
	27
	31833
	18
	28
	15918
	17
	29
	31838
	18

	
	30
	31839
	18
	
	
	
	
	
	
	
	
	
	
	
	

	31
	0
	3
	2
	1
	1
	2
	2
	5
	3
	3
	1
	3
	4
	9
	4

	
	5
	1
	4
	6
	17
	5
	7
	0
	5
	8
	32
	6
	9
	2
	6

	
	10
	66
	7
	11
	135
	8
	12
	134
	8
	13
	13
	8
	14
	31
	9

	
	15
	29
	9
	16
	25
	9
	17
	61
	10
	18
	60
	10
	19
	49
	10

	
	20
	115
	11
	21
	113
	11
	22
	112
	11
	23
	228
	12
	24
	459
	13

	
	25
	193
	12
	26
	385
	13
	27
	917
	14
	28
	384
	13
	29
	1833
	15

	
	30
	97
	11
	
	
	
	
	
	
	
	
	
	
	
	

	31
	0
	1
	2
	1
	7
	3
	2
	5
	3
	3
	1
	3
	4
	13
	4

	
	5
	9
	4
	6
	1
	4
	7
	25
	5
	8
	16
	5
	9
	0
	5

	
	10
	48
	6
	11
	34
	6
	12
	2
	6
	13
	98
	7
	14
	70
	7

	
	15
	6
	7
	16
	143
	8
	17
	15
	8
	18
	399
	9
	19
	396
	9

	
	20
	284
	9
	21
	28
	9
	22
	797
	10
	23
	571
	10
	24
	59
	10

	
	25
	58
	10
	26
	1593
	11
	27
	1141
	11
	28
	1592
	11
	29
	2281
	12

	
	30
	397
	9
	
	
	
	
	
	
	
	
	
	
	
	

	31
	0
	5
	3
	1
	2
	3
	2
	1
	3
	3
	15
	4
	4
	12
	4

	
	5
	8
	4
	6
	6
	4
	7
	0
	4
	8
	28
	5
	9
	26
	5

	
	10
	18
	5
	11
	14
	5
	12
	2
	5
	13
	58
	6
	14
	55
	6

	
	15
	31
	6
	16
	30
	6
	17
	6
	6
	18
	118
	7
	19
	109
	7

	
	20
	79
	7
	21
	78
	7
	22
	14
	7
	23
	238
	8
	24
	217
	8

	
	25
	31
	8
	26
	216
	8
	27
	30
	8
	28
	957
	10
	29
	479
	9

	
	30
	38
	6
	
	
	
	
	
	
	
	
	
	
	
	

Table 93: VLC Table for Inter Block RUNISL.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	2
	0
	1
	1
	1
	0
	1
	
	
	
	
	
	
	
	
	

	3
	0
	0
	1
	1
	3
	2
	2
	2
	2
	
	
	
	
	
	

	4
	0
	0
	1
	1
	2
	2
	2
	7
	3
	3
	6
	3
	
	
	

	5
	0
	3
	2
	1
	2
	2
	2
	0
	2
	3
	3
	3
	4
	2
	3

	6
	0
	2
	2
	1
	1
	2
	2
	0
	2
	3
	6
	3
	4
	15
	4

	
	5
	14
	4
	
	
	
	
	
	
	
	
	
	
	
	

	7
	0
	1
	2
	1
	7
	3
	2
	0
	2
	3
	6
	3
	4
	4
	3

	
	5
	11
	4
	6
	10
	4
	
	
	
	
	
	
	
	
	

	9
	0
	7
	3
	1
	3
	3
	2
	0
	2
	3
	6
	3
	4
	5
	3

	
	5
	2
	3
	6
	8
	4
	7
	19
	5
	8
	18
	5
	
	
	

	13
	0
	6
	4
	1
	7
	4
	2
	8
	4
	3
	9
	4
	4
	10
	4

	
	5
	11
	4
	6
	12
	4
	7
	13
	4
	8
	14
	4
	9
	15
	4

	
	10
	0
	3
	11
	1
	3
	12
	2
	3
	
	
	
	
	
	

	33
	0
	62
	6
	1
	63
	6
	2
	0
	5
	3
	1
	5
	4
	2
	5

	
	5
	3
	5
	6
	4
	5
	7
	5
	5
	8
	6
	5
	9
	7
	5

	
	10
	8
	5
	11
	9
	5
	12
	10
	5
	13
	11
	5
	14
	12
	5

	
	15
	13
	5
	16
	14
	5
	17
	15
	5
	18
	16
	5
	19
	17
	5

	
	20
	18
	5
	21
	19
	5
	22
	20
	5
	23
	21
	5
	24
	22
	5

	
	25
	23
	5
	26
	24
	5
	27
	25
	5
	28
	26
	5
	29
	27
	5

	
	30
	28
	5
	31
	29
	5
	32
	30
	5
	
	
	
	
	
	

	2
	0
	1
	1
	1
	0
	1
	
	
	
	
	
	
	
	
	

	3
	0
	0
	1
	1
	3
	2
	2
	2
	2
	
	
	
	
	
	

	4
	0
	0
	1
	1
	2
	2
	2
	7
	3
	3
	6
	3
	
	
	

	5
	0
	0
	1
	1
	2
	2
	2
	6
	3
	3
	15
	4
	4
	14
	4

	6
	0
	0
	1
	1
	2
	2
	2
	6
	3
	3
	15
	4
	4
	29
	5

	
	5
	28
	5
	
	
	
	
	
	
	
	
	
	
	
	

	7
	0
	3
	2
	1
	1
	2
	2
	0
	2
	3
	4
	3
	4
	11
	4

	
	5
	21
	5
	6
	20
	5
	
	
	
	
	
	
	
	
	

	9
	0
	3
	2
	1
	0
	2
	2
	5
	3
	3
	4
	3
	4
	2
	3

	
	5
	6
	4
	6
	15
	5
	7
	29
	6
	8
	28
	6
	
	
	

	13
	0
	2
	2
	1
	7
	3
	2
	6
	3
	3
	2
	3
	4
	1
	3

	
	5
	0
	3
	6
	6
	4
	7
	14
	5
	8
	30
	6
	9
	63
	7

	
	10
	125
	8
	11
	249
	9
	12
	248
	9
	
	
	
	
	
	

	33
	0
	1
	2
	1
	6
	3
	2
	4
	3
	3
	1
	3
	4
	15
	4

	
	5
	14
	4
	6
	10
	4
	7
	0
	4
	8
	22
	5
	9
	2
	5

	
	10
	47
	6
	11
	7
	6
	12
	93
	7
	13
	92
	7
	14
	12
	7

	
	15
	55
	9
	16
	54
	9
	17
	52
	9
	18
	106
	10
	19
	214
	11

	
	20
	430
	12
	21
	6904
	16
	22
	6905
	16
	23
	6906
	16
	24
	6907
	16

	
	25
	6908
	16
	26
	6909
	16
	27
	6910
	16
	28
	6911
	16
	29
	3448
	15

	
	30
	3449
	15
	31
	3450
	15
	32
	3451
	15
	
	
	
	
	
	

	2
	0
	1
	1
	1
	0
	1
	
	
	
	
	
	
	
	
	

	3
	0
	1
	1
	1
	1
	2
	2
	0
	2
	
	
	
	
	
	

	4
	0
	1
	1
	1
	1
	2
	2
	1
	3
	3
	0
	3
	
	
	

	5
	0
	0
	1
	1
	3
	2
	2
	5
	3
	3
	9
	4
	4
	8
	4

	6
	0
	0
	1
	1
	2
	2
	2
	7
	3
	3
	13
	4
	4
	25
	5

	
	5
	24
	5
	
	
	
	
	
	
	
	
	
	
	
	

	7
	0
	0
	1
	1
	2
	2
	2
	6
	3
	3
	15
	4
	4
	29
	5

	
	5
	57
	6
	6
	56
	6
	
	
	
	
	
	
	
	
	

	9
	0
	0
	1
	1
	2
	2
	2
	6
	3
	3
	14
	4
	4
	30
	5

	
	5
	63
	6
	6
	125
	7
	7
	249
	8
	8
	248
	8
	
	
	

	13
	0
	0
	1
	1
	7
	3
	2
	5
	3
	3
	4
	3
	4
	12
	4

	
	5
	26
	5
	6
	54
	6
	7
	110
	7
	8
	222
	8
	9
	447
	9

	
	10
	893
	10
	11
	1785
	11
	12
	1784
	11
	
	
	
	
	
	

	33
	0
	3
	2
	1
	1
	2
	2
	5
	3
	3
	1
	3
	4
	9
	4

	
	5
	1
	4
	6
	17
	5
	7
	1
	5
	8
	33
	6
	9
	1
	6

	
	10
	65
	7
	11
	1
	7
	12
	129
	8
	13
	1
	8
	14
	257
	9

	
	15
	1
	9
	16
	513
	10
	17
	1
	10
	18
	1
	11
	19
	1024
	11

	
	20
	8207
	14
	21
	4100
	13
	22
	4101
	13
	23
	4102
	13
	24
	0
	14

	
	25
	1
	14
	26
	2
	14
	27
	3
	14
	28
	4
	14
	29
	5
	14

	
	30
	6
	14
	31
	7
	14
	32
	8206
	14
	
	
	
	
	
	

Table 94: VLC Table for Intra Block RUNISL.

	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	2
	0
	1
	1
	1
	0
	1
	
	
	
	
	
	
	
	
	

	3
	0
	1
	1
	1
	1
	2
	2
	0
	2
	
	
	
	
	
	

	4
	0
	1
	1
	1
	0
	2
	2
	3
	3
	3
	2
	3
	
	
	

	5
	0
	1
	1
	1
	0
	2
	2
	3
	3
	3
	5
	4
	4
	4
	4

	6
	0
	0
	1
	1
	2
	2
	2
	6
	3
	3
	15
	4
	4
	29
	5

	
	5
	28
	5
	
	
	
	
	
	
	
	
	
	
	
	

	7
	0
	0
	1
	1
	2
	2
	2
	6
	3
	3
	14
	4
	4
	31
	5

	
	5
	61
	6
	6
	60
	6
	
	
	
	
	
	
	
	
	

	9
	0
	0
	1
	1
	2
	2
	2
	15
	4
	3
	14
	4
	4
	12
	4

	
	5
	26
	5
	6
	55
	6
	7
	109
	7
	8
	108
	7
	
	
	

	13
	0
	0
	1
	1
	7
	3
	2
	5
	3
	3
	13
	4
	4
	12
	4

	
	5
	8
	4
	6
	18
	5
	7
	38
	6
	8
	78
	7
	9
	159
	8

	
	10
	317
	9
	11
	633
	10
	12
	632
	10
	
	
	
	
	
	

	33
	0
	3
	2
	1
	0
	2
	2
	4
	3
	3
	2
	3
	4
	11
	4

	
	5
	7
	4
	6
	21
	5
	7
	13
	5
	8
	41
	6
	9
	25
	6

	
	10
	81
	7
	11
	49
	7
	12
	161
	8
	13
	160
	8
	14
	195
	9

	
	15
	192
	9
	16
	386
	10
	17
	387
	10
	18
	3119
	13
	19
	1552
	12

	
	20
	3106
	13
	21
	3107
	13
	22
	3108
	13
	23
	3109
	13
	24
	3110
	13

	
	25
	3111
	13
	26
	3112
	13
	27
	3113
	13
	28
	3114
	13
	29
	3115
	13

	
	30
	3116
	13
	31
	3117
	13
	32
	3118
	13
	
	
	
	
	
	

Table 95: VLC Table for Inter Block NUMSR.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	2
	0
	0
	1
	1
	1
	1
	
	
	
	
	
	
	
	
	

	3
	0
	0
	2
	1
	1
	1
	2
	1
	2
	
	
	
	
	
	

	4
	0
	4
	3
	1
	3
	2
	2
	0
	1
	3
	5
	3
	
	
	

	5
	0
	12
	4
	1
	2
	2
	2
	0
	1
	3
	7
	3
	4
	13
	4

	6
	0
	25
	5
	1
	7
	3
	2
	0
	1
	3
	2
	2
	4
	13
	4

	
	5
	24
	5
	
	
	
	
	
	
	
	
	
	
	
	

	7
	0
	8
	5
	1
	3
	3
	2
	2
	2
	3
	3
	2
	4
	0
	2

	
	5
	5
	4
	6
	9
	5
	
	
	
	
	
	
	
	
	

	8
	0
	40
	6
	1
	11
	4
	2
	0
	2
	3
	3
	2
	4
	1
	2

	
	5
	4
	3
	6
	21
	5
	7
	41
	6
	
	
	
	
	
	

	12
	0
	449
	9
	1
	57
	6
	2
	15
	4
	3
	0
	2
	4
	2
	2

	
	5
	1
	2
	6
	6
	3
	7
	29
	5
	8
	113
	7
	9
	225
	8

	
	10
	897
	10
	11
	896
	10
	
	
	
	
	
	
	
	
	

	20
	0
	12998
	14
	1
	407
	9
	2
	21
	5
	3
	13
	4
	4
	0
	2

	
	5
	1
	2
	6
	7
	3
	7
	4
	3
	8
	11
	4
	9
	24
	5

	
	10
	51
	6
	11
	41
	6
	12
	40
	6
	13
	100
	7
	14
	202
	8

	
	15
	813
	10
	16
	1625
	11
	17
	3248
	12
	18
	12999
	14
	19
	6498
	13

	32
	0
	0
	5
	1
	1
	5
	2
	2
	5
	3
	3
	5
	4
	4
	5

	
	5
	5
	5
	6
	6
	5
	7
	7
	5
	8
	8
	5
	9
	9
	5

	
	10
	10
	5
	11
	11
	5
	12
	12
	5
	13
	13
	5
	14
	14
	5

	
	15
	15
	5
	16
	16
	5
	17
	17
	5
	18
	18
	5
	19
	19
	5

	
	20
	20
	5
	21
	21
	5
	22
	22
	5
	23
	23
	5
	24
	24
	5

	
	25
	25
	5
	26
	26
	5
	27
	27
	5
	28
	28
	5
	29
	29
	5

	
	30
	30
	5
	31
	31
	5
	
	
	
	
	
	
	
	
	

	2
	0
	0
	1
	1
	1
	1
	
	
	
	
	
	
	
	
	

	3
	0
	0
	2
	1
	1
	2
	2
	1
	1
	
	
	
	
	
	

	4
	0
	4
	3
	1
	5
	3
	2
	0
	1
	3
	3
	2
	
	
	

	5
	0
	8
	4
	1
	9
	4
	2
	3
	2
	3
	0
	1
	4
	5
	3

	6
	0
	24
	5
	1
	25
	5
	2
	7
	3
	3
	0
	1
	4
	2
	2

	
	5
	13
	4
	
	
	
	
	
	
	
	
	
	
	
	

	7
	0
	8
	5
	1
	9
	5
	2
	3
	3
	3
	2
	2
	4
	3
	2

	
	5
	0
	2
	6
	5
	4
	
	
	
	
	
	
	
	
	

	8
	0
	8
	6
	1
	5
	5
	2
	0
	3
	3
	2
	2
	4
	3
	2

	
	5
	1
	2
	6
	3
	4
	7
	9
	6
	
	
	
	
	
	

	12
	0
	929
	10
	1
	233
	8
	2
	28
	5
	3
	6
	3
	4
	1
	2

	
	5
	2
	2
	6
	0
	2
	7
	15
	4
	8
	59
	6
	9
	117
	7

	
	10
	465
	9
	11
	928
	10
	
	
	
	
	
	
	
	
	

	20
	0
	15662
	16
	1
	488
	11
	2
	123
	9
	3
	14
	6
	4
	2
	4

	
	5
	6
	3
	6
	2
	2
	7
	1
	2
	8
	7
	3
	9
	0
	3

	
	10
	6
	5
	11
	31
	7
	12
	60
	8
	13
	245
	10
	14
	979
	12

	
	15
	1956
	13
	16
	15663
	16
	17
	7828
	15
	18
	7829
	15
	19
	7830
	15

	32
	0
	29508
	15
	1
	29509
	15
	2
	3690
	12
	3
	460
	9
	4
	114
	7

	
	5
	12
	5
	6
	29
	5
	7
	12
	4
	8
	13
	4
	9
	0
	3

	
	10
	1
	3
	11
	4
	3
	12
	5
	3
	13
	2
	3
	14
	15
	4

	
	15
	7
	4
	16
	13
	5
	17
	56
	6
	18
	231
	8
	19
	923
	10

	
	20
	3691
	12
	21
	14755
	14
	22
	29512
	15
	23
	29513
	15
	24
	29514
	15

	
	25
	29515
	15
	26
	29516
	15
	27
	29517
	15
	28
	29518
	15
	29
	29519
	15

	
	30
	14752
	14
	31
	14753
	14
	
	
	
	
	
	
	
	
	

	2
	0
	0
	1
	1
	1
	1
	
	
	
	
	
	
	
	
	

	3
	0
	0
	2
	1
	1
	2
	2
	1
	1
	
	
	
	
	
	

	4
	0
	0
	3
	1
	1
	3
	2
	1
	2
	3
	1
	1
	
	
	

	5
	0
	8
	4
	1
	9
	4
	2
	5
	3
	3
	0
	1
	4
	3
	2

	6
	0
	24
	5
	1
	25
	5
	2
	13
	4
	3
	2
	2
	4
	0
	1

	
	5
	7
	3
	
	
	
	
	
	
	
	
	
	
	
	

	7
	0
	32
	6
	1
	33
	6
	2
	17
	5
	3
	5
	3
	4
	0
	1

	
	5
	3
	2
	6
	9
	4
	
	
	
	
	
	
	
	
	

	8
	0
	0
	6
	1
	1
	6
	2
	1
	5
	3
	1
	3
	4
	2
	2

	
	5
	3
	2
	6
	1
	2
	7
	1
	4
	
	
	
	
	
	

	12
	0
	936
	10
	1
	937
	10
	2
	235
	8
	3
	28
	5
	4
	6
	3

	
	5
	1
	2
	6
	2
	2
	7
	0
	2
	8
	15
	4
	9
	59
	6

	
	10
	116
	7
	11
	469
	9
	
	
	
	
	
	
	
	
	

	20
	0
	10768
	14
	1
	10769
	14
	2
	1347
	11
	3
	169
	8
	4
	43
	6

	
	5
	5
	4
	6
	3
	3
	7
	6
	3
	8
	0
	2
	9
	7
	3

	
	10
	4
	3
	11
	11
	4
	12
	4
	4
	13
	20
	5
	14
	85
	7

	
	15
	337
	9
	16
	672
	10
	17
	2693
	12
	18
	10770
	14
	19
	10771
	14

	32
	0
	36844
	16
	1
	36845
	16
	2
	36846
	16
	3
	36847
	16
	4
	1150
	11

	
	5
	286
	9
	6
	70
	7
	7
	16
	5
	8
	31
	5
	9
	14
	4

	
	10
	3
	3
	11
	6
	3
	12
	0
	2
	13
	5
	3
	14
	2
	3

	
	15
	9
	4
	16
	30
	5
	17
	34
	6
	18
	142
	8
	19
	574
	10

	
	20
	4607
	13
	21
	4604
	13
	22
	36848
	16
	23
	36849
	16
	24
	36850
	16

	
	25
	36851
	16
	26
	36852
	16
	27
	36853
	16
	28
	36854
	16
	29
	36855
	16

	
	30
	18420
	15
	31
	18421
	15
	
	
	
	
	
	
	
	
	

Table 96: VLC Table for Intra Block NUMSR.

	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	2
	0
	1
	1
	1
	0
	1
	
	
	
	
	
	
	
	
	

	3
	0
	1
	2
	1
	1
	1
	2
	0
	2
	
	
	
	
	
	

	4
	0
	1
	3
	1
	1
	1
	2
	1
	2
	3
	0
	3
	
	
	

	6
	0
	17
	5
	1
	3
	2
	2
	0
	1
	3
	5
	3
	4
	9
	4

	
	5
	16
	5
	
	
	
	
	
	
	
	
	
	
	
	

	10
	0
	113
	7
	1
	6
	3
	2
	1
	2
	3
	2
	2
	4
	0
	2

	
	5
	15
	4
	6
	29
	5
	7
	57
	6
	8
	225
	8
	9
	224
	8

	18
	0
	7106
	13
	1
	223
	8
	2
	9
	4
	3
	5
	3
	4
	0
	2

	
	5
	7
	3
	6
	3
	3
	7
	2
	3
	8
	12
	4
	9
	8
	4

	
	10
	26
	5
	11
	54
	6
	12
	110
	7
	13
	445
	9
	14
	889
	10

	
	15
	1777
	11
	16
	7107
	13
	17
	3552
	12
	
	
	
	
	
	

	31
	0
	4430
	13
	1
	4431
	13
	2
	279
	9
	3
	35
	6
	4
	29
	5

	
	5
	15
	4
	6
	2
	3
	7
	5
	3
	8
	6
	3
	9
	3
	3

	
	10
	1
	3
	11
	0
	3
	12
	9
	4
	13
	28
	5
	14
	16
	5

	
	15
	68
	7
	16
	277
	9
	17
	556
	10
	18
	2228
	12
	19
	2229
	12

	
	20
	4460
	13
	21
	4461
	13
	22
	4462
	13
	23
	4463
	13
	24
	2208
	12

	
	25
	2209
	12
	26
	2210
	12
	27
	2211
	12
	28
	2212
	12
	29
	2213
	12

	
	30
	2214
	12
	
	
	
	
	
	
	
	
	
	
	
	

	2
	0
	0
	1
	1
	1
	1
	
	
	
	
	
	
	
	
	

	3
	0
	2
	2
	1
	3
	2
	2
	0
	1
	
	
	
	
	
	

	4
	0
	4
	3
	1
	5
	3
	2
	0
	1
	3
	3
	2
	
	
	

	6
	0
	24
	5
	1
	13
	4
	2
	2
	2
	3
	0
	1
	4
	7
	3

	
	5
	25
	5
	
	
	
	
	
	
	
	
	
	
	
	

	10
	0
	240
	8
	1
	61
	6
	2
	14
	4
	3
	0
	2
	4
	2
	2

	
	5
	1
	2
	6
	6
	3
	7
	31
	5
	8
	121
	7
	9
	241
	8

	18
	0
	1244
	12
	1
	154
	9
	2
	18
	6
	3
	5
	4
	4
	3
	3

	
	5
	6
	3
	6
	0
	2
	7
	7
	3
	8
	5
	3
	9
	9
	4

	
	10
	8
	4
	11
	8
	5
	12
	39
	7
	13
	76
	8
	14
	310
	10

	
	15
	1245
	12
	16
	1246
	12
	17
	1247
	12
	
	
	
	
	
	

	31
	0
	7756
	13
	1
	7757
	13
	2
	480
	9
	3
	241
	8
	4
	123
	7

	
	5
	11
	5
	6
	4
	4
	7
	0
	3
	8
	3
	3
	9
	5
	3

	
	10
	6
	3
	11
	4
	3
	12
	1
	3
	13
	14
	4
	14
	31
	5

	
	15
	10
	5
	16
	122
	7
	17
	243
	8
	18
	485
	9
	19
	3879
	12

	
	20
	968
	10
	21
	3848
	12
	22
	3849
	12
	23
	3850
	12
	24
	3851
	12

	
	25
	3852
	12
	26
	3853
	12
	27
	3854
	12
	28
	3855
	12
	29
	3876
	12

	
	30
	3877
	12
	
	
	
	
	
	
	
	
	
	
	
	

Table 97: VLC Table for Inter Block VALSR.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	2
	0
	0
	1
	1
	1
	1
	
	
	
	
	
	
	
	
	

	3
	0
	2
	2
	1
	3
	2
	2
	0
	1
	
	
	
	
	
	

	4
	0
	1
	2
	1
	0
	2
	2
	3
	2
	3
	2
	2
	
	
	

	5
	0
	0
	2
	1
	6
	3
	2
	2
	2
	3
	1
	2
	4
	7
	3

	7
	0
	6
	3
	1
	7
	3
	2
	1
	2
	3
	5
	3
	4
	1
	3

	
	5
	4
	3
	6
	0
	3
	
	
	
	
	
	
	
	
	

	9
	0
	5
	3
	1
	4
	3
	2
	7
	3
	3
	3
	3
	4
	1
	3

	
	5
	0
	3
	6
	6
	3
	7
	5
	4
	8
	4
	4
	
	
	

	11
	0
	7
	3
	1
	1
	3
	2
	0
	3
	3
	2
	3
	4
	12
	4

	
	5
	9
	4
	6
	5
	3
	7
	3
	3
	8
	8
	4
	9
	27
	5

	
	10
	26
	5
	
	
	
	
	
	
	
	
	
	
	
	

	13
	0
	7
	3
	1
	4
	3
	2
	11
	4
	3
	0
	3
	4
	4
	4

	
	5
	2
	4
	6
	13
	4
	7
	3
	3
	8
	12
	4
	9
	3
	4

	
	10
	21
	5
	11
	5
	4
	12
	20
	5
	
	
	
	
	
	

	21
	0
	6
	3
	1
	3
	3
	2
	14
	4
	3
	15
	4
	4
	5
	4

	
	5
	9
	4
	6
	10
	4
	7
	4
	4
	8
	3
	4
	9
	1
	4

	
	10
	8
	4
	11
	0
	4
	12
	5
	5
	13
	22
	5
	14
	47
	6

	
	15
	46
	6
	16
	19
	7
	17
	18
	7
	18
	17
	7
	19
	33
	8

	
	20
	32
	8
	
	
	
	
	
	
	
	
	
	
	
	

	32
	0
	0
	3
	1
	8
	4
	2
	30
	5
	3
	25
	5
	4
	24
	5

	
	5
	18
	5
	6
	19
	5
	7
	20
	5
	8
	31
	5
	9
	11
	4

	
	10
	1
	3
	11
	2
	3
	12
	14
	4
	13
	7
	4
	14
	21
	5

	
	15
	54
	6
	16
	27
	6
	17
	25
	6
	18
	111
	7
	19
	107
	7

	
	20
	24
	6
	21
	26
	6
	22
	110
	7
	23
	105
	7
	24
	213
	8

	
	25
	209
	8
	26
	208
	8
	27
	425
	9
	28
	848
	10
	29
	1699
	11

	
	30
	3397
	12
	31
	3396
	12
	
	
	
	
	
	
	
	
	

	33
	0
	6
	4
	1
	0
	4
	2
	25
	5
	3
	17
	5
	4
	9
	5

	
	5
	8
	5
	6
	16
	5
	7
	24
	5
	8
	29
	5
	9
	1
	4

	
	10
	5
	4
	11
	10
	4
	12
	13
	4
	13
	9
	4
	14
	30
	5

	
	15
	7
	5
	16
	57
	6
	17
	44
	6
	18
	29
	6
	19
	13
	6

	
	20
	28
	6
	21
	45
	6
	22
	56
	6
	23
	63
	6
	24
	62
	6

	
	25
	4
	5
	26
	5
	5
	27
	46
	6
	28
	95
	7
	29
	94
	7

	
	30
	25
	7
	31
	24
	7
	32
	15
	5
	
	
	
	
	
	

	2
	0
	1
	1
	1
	0
	1
	
	
	
	
	
	
	
	
	

	3
	0
	0
	1
	1
	3
	2
	2
	2
	2
	
	
	
	
	
	

	4
	0
	3
	2
	1
	2
	2
	2
	1
	2
	3
	0
	2
	
	
	

	5
	0
	3
	2
	1
	1
	2
	2
	0
	2
	3
	5
	3
	4
	4
	3

	7
	0
	3
	2
	1
	1
	2
	2
	5
	3
	3
	4
	3
	4
	0
	3

	
	5
	3
	4
	6
	2
	4
	
	
	
	
	
	
	
	
	

	9
	0
	2
	2
	1
	0
	2
	2
	6
	3
	3
	2
	3
	4
	15
	4

	
	5
	14
	4
	6
	7
	4
	7
	13
	5
	8
	12
	5
	
	
	

	11
	0
	2
	2
	1
	0
	2
	2
	3
	3
	3
	15
	4
	4
	14
	4

	
	5
	12
	4
	6
	13
	4
	7
	4
	4
	8
	11
	5
	9
	21
	6

	
	10
	20
	6
	
	
	
	
	
	
	
	
	
	
	
	

	13
	0
	2
	2
	1
	7
	3
	2
	3
	3
	3
	1
	3
	4
	13
	4

	
	5
	12
	4
	6
	5
	4
	7
	4
	4
	8
	0
	4
	9
	2
	5

	
	10
	6
	6
	11
	15
	7
	12
	14
	7
	
	
	
	
	
	

	21
	0
	1
	2
	1
	6
	3
	2
	0
	3
	3
	14
	4
	4
	11
	4

	
	5
	9
	4
	6
	3
	4
	7
	8
	4
	8
	10
	4
	9
	31
	5

	
	10
	30
	5
	11
	4
	5
	12
	10
	6
	13
	22
	7
	14
	46
	8

	
	15
	94
	9
	16
	190
	10
	17
	382
	11
	18
	767
	12
	19
	1533
	13

	
	20
	1532
	13
	
	
	
	
	
	
	
	
	
	
	
	

	32
	0
	0
	2
	1
	5
	3
	2
	14
	4
	3
	12
	4
	4
	9
	4

	
	5
	4
	4
	6
	31
	5
	7
	5
	4
	8
	8
	4
	9
	7
	4

	
	10
	6
	4
	11
	27
	5
	12
	61
	6
	13
	53
	6
	14
	120
	7

	
	15
	243
	8
	16
	210
	8
	17
	208
	8
	18
	484
	9
	19
	423
	9

	
	20
	422
	9
	21
	419
	9
	22
	971
	10
	23
	970
	10
	24
	836
	10

	
	25
	1674
	11
	26
	3351
	12
	27
	6701
	13
	28
	13401
	14
	29
	26801
	15

	
	30
	53600
	16
	31
	53601
	16
	
	
	
	
	
	
	
	
	

	33
	0
	6
	3
	1
	2
	3
	2
	15
	4
	3
	11
	4
	4
	10
	4

	
	5
	8
	4
	6
	7
	4
	7
	6
	4
	8
	2
	4
	9
	1
	4

	
	10
	29
	5
	11
	28
	5
	12
	18
	5
	13
	1
	5
	14
	39
	6

	
	15
	13
	6
	16
	1
	6
	17
	77
	7
	18
	31
	7
	19
	29
	7

	
	20
	30
	7
	21
	76
	7
	22
	25
	7
	23
	24
	7
	24
	0
	7

	
	25
	56
	8
	26
	2
	8
	27
	115
	9
	28
	229
	10
	29
	228
	10

	
	30
	13
	10
	31
	12
	10
	32
	7
	9
	
	
	
	
	
	

	2
	0
	1
	1
	1
	0
	1
	
	
	
	
	
	
	
	
	

	3
	0
	1
	1
	1
	1
	2
	2
	0
	2
	
	
	
	
	
	

	4
	0
	0
	1
	1
	3
	2
	2
	5
	3
	3
	4
	3
	
	
	

	5
	0
	0
	1
	1
	2
	2
	2
	7
	3
	3
	13
	4
	4
	12
	4

	7
	0
	0
	1
	1
	2
	2
	2
	6
	3
	3
	14
	4
	4
	31
	5

	
	5
	61
	6
	6
	60
	6
	
	
	
	
	
	
	
	
	

	9
	0
	0
	1
	1
	2
	2
	2
	15
	4
	3
	14
	4
	4
	12
	4

	
	5
	26
	5
	6
	55
	6
	7
	109
	7
	8
	108
	7
	
	
	

	11
	0
	0
	1
	1
	7
	3
	2
	5
	3
	3
	13
	4
	4
	9
	4

	
	5
	8
	4
	6
	24
	5
	7
	51
	6
	8
	101
	7
	9
	201
	8

	
	10
	200
	8
	
	
	
	
	
	
	
	
	
	
	
	

	13
	0
	0
	1
	1
	7
	3
	2
	5
	3
	3
	13
	4
	4
	9
	4

	
	5
	25
	5
	6
	24
	5
	7
	16
	5
	8
	35
	6
	9
	69
	7

	
	10
	137
	8
	11
	273
	9
	12
	272
	9
	
	
	
	
	
	

	21
	0
	3
	2
	1
	1
	2
	2
	4
	3
	3
	0
	3
	4
	10
	4

	
	5
	2
	4
	6
	23
	5
	7
	22
	5
	8
	6
	5
	9
	14
	6

	
	10
	30
	7
	11
	62
	8
	12
	127
	9
	13
	253
	10
	14
	504
	11

	
	15
	1011
	12
	16
	2021
	13
	17
	8083
	15
	18
	4040
	14
	19
	16164
	16

	
	20
	16165
	16
	
	
	
	
	
	
	
	
	
	
	
	

	32
	0
	2
	2
	1
	0
	2
	2
	3
	3
	3
	2
	3
	4
	14
	4

	
	5
	12
	4
	6
	30
	5
	7
	27
	5
	8
	63
	6
	9
	53
	6

	
	10
	125
	7
	11
	105
	7
	12
	249
	8
	13
	209
	8
	14
	496
	9

	
	15
	416
	9
	16
	994
	10
	17
	834
	10
	18
	1991
	11
	19
	1990
	11

	
	20
	3343
	12
	21
	3341
	12
	22
	6685
	13
	23
	6684
	13
	24
	13362
	14

	
	25
	26723
	15
	26
	26726
	15
	27
	53454
	16
	28
	53455
	16
	29
	26720
	15

	
	30
	26721
	15
	31
	26722
	15
	
	
	
	
	
	
	
	
	

	33
	0
	4
	3
	1
	3
	3
	2
	6
	3
	3
	2
	3
	4
	1
	3

	
	5
	10
	4
	6
	29
	5
	7
	30
	5
	8
	47
	6
	9
	2
	5

	
	10
	63
	6
	11
	2
	6
	12
	62
	6
	13
	28
	5
	14
	0
	5

	
	15
	22
	5
	16
	6
	6
	17
	6
	7
	18
	56
	9
	19
	57
	9

	
	20
	7
	7
	21
	58
	9
	22
	59
	9
	23
	30
	8
	24
	62
	9

	
	25
	63
	9
	26
	368
	9
	27
	185
	8
	28
	369
	9
	29
	372
	9

	
	30
	373
	9
	31
	374
	9
	32
	375
	9
	
	
	
	
	
	

Table 98: VLC Table for Intra Block VALSR.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	2
	0
	0
	1
	1
	1
	1
	
	
	
	
	
	
	
	
	

	3
	0
	3
	2
	1
	2
	2
	2
	0
	1
	
	
	
	
	
	

	4
	0
	0
	2
	1
	1
	2
	2
	2
	2
	3
	3
	2
	
	
	

	5
	0
	15
	4
	1
	14
	4
	2
	6
	3
	3
	2
	2
	4
	0
	1

	7
	0
	4
	3
	1
	7
	4
	2
	6
	4
	3
	2
	3
	4
	0
	2

	
	5
	3
	2
	6
	5
	3
	
	
	
	
	
	
	
	
	

	11
	0
	3
	3
	1
	12
	4
	2
	29
	5
	3
	28
	5
	4
	5
	4

	
	5
	15
	4
	6
	2
	2
	7
	0
	2
	8
	13
	4
	9
	9
	5

	
	10
	8
	5
	
	
	
	
	
	
	
	
	
	
	
	

	15
	0
	2
	3
	1
	10
	4
	2
	7
	5
	3
	25
	5
	4
	22
	5

	
	5
	23
	5
	6
	2
	4
	7
	13
	4
	8
	3
	3
	9
	7
	3

	
	10
	4
	3
	11
	0
	3
	12
	24
	5
	13
	13
	6
	14
	12
	6

	23
	0
	12
	4
	1
	10
	5
	2
	41
	6
	3
	17
	6
	4
	52
	6

	
	5
	53
	6
	6
	5
	5
	7
	11
	5
	8
	11
	4
	9
	7
	3

	
	10
	3
	3
	11
	4
	3
	12
	0
	3
	13
	3
	4
	14
	9
	5

	
	15
	40
	6
	16
	4
	5
	17
	43
	6
	18
	54
	6
	19
	55
	6

	
	20
	42
	6
	21
	33
	7
	22
	32
	7
	
	
	
	
	
	

	33
	0
	29
	5
	1
	28
	6
	2
	37
	6
	3
	29
	6
	4
	11
	6

	
	5
	30
	6
	6
	24
	6
	7
	45
	6
	8
	3
	5
	9
	4
	4

	
	10
	5
	4
	11
	10
	4
	12
	15
	4
	13
	12
	4
	14
	17
	5

	
	15
	33
	6
	16
	32
	6
	17
	36
	6
	18
	0
	5
	19
	4
	5

	
	20
	13
	5
	21
	3
	4
	22
	19
	5
	23
	28
	5
	24
	23
	5

	
	25
	2
	5
	26
	1
	5
	27
	31
	6
	28
	25
	6
	29
	89
	7

	
	30
	10
	6
	31
	88
	7
	32
	13
	4
	
	
	
	
	
	

	2
	0
	1
	1
	1
	0
	1
	
	
	
	
	
	
	
	
	

	3
	0
	0
	1
	1
	3
	2
	2
	2
	2
	
	
	
	
	
	

	4
	0
	0
	1
	1
	2
	2
	2
	6
	3
	3
	7
	3
	
	
	

	5
	0
	0
	1
	1
	7
	3
	2
	6
	3
	3
	4
	3
	4
	5
	3

	7
	0
	3
	2
	1
	0
	2
	2
	5
	3
	3
	3
	3
	4
	2
	3

	
	5
	9
	4
	6
	8
	4
	
	
	
	
	
	
	
	
	

	11
	0
	2
	2
	1
	6
	3
	2
	3
	3
	3
	2
	3
	4
	0
	3

	
	5
	15
	4
	6
	14
	4
	7
	3
	4
	8
	5
	5
	9
	9
	6

	
	10
	8
	6
	
	
	
	
	
	
	
	
	
	
	
	

	15
	0
	0
	2
	1
	3
	3
	2
	15
	4
	3
	14
	4
	4
	11
	4

	
	5
	10
	4
	6
	12
	4
	7
	13
	4
	8
	2
	3
	9
	9
	4

	
	10
	17
	5
	11
	33
	6
	12
	65
	7
	13
	129
	8
	14
	128
	8

	23
	0
	4
	3
	1
	1
	3
	2
	13
	4
	3
	6
	4
	4
	7
	4

	
	5
	5
	4
	6
	4
	4
	7
	12
	4
	8
	14
	4
	9
	0
	3

	
	10
	11
	4
	11
	10
	4
	12
	30
	5
	13
	62
	6
	14
	126
	7

	
	15
	511
	9
	16
	509
	9
	17
	1021
	10
	18
	1020
	10
	19
	1017
	10

	
	20
	2033
	11
	21
	4065
	12
	22
	4064
	12
	
	
	
	
	
	

	33
	0
	11
	4
	1
	6
	4
	2
	21
	5
	3
	31
	5
	4
	30
	5

	
	5
	4
	4
	6
	2
	4
	7
	7
	4
	8
	9
	4
	9
	12
	4

	
	10
	14
	4
	11
	13
	4
	12
	8
	4
	13
	5
	4
	14
	7
	5

	
	15
	3
	5
	16
	40
	6
	17
	12
	6
	18
	0
	6
	19
	3
	6

	
	20
	1
	6
	21
	13
	6
	22
	4
	6
	23
	5
	6
	24
	83
	7

	
	25
	165
	8
	26
	9
	8
	27
	164
	8
	28
	20
	9
	29
	16
	9

	
	30
	17
	9
	31
	21
	9
	32
	11
	8
	
	
	
	
	
	

Table 99: VLC Table for Inter Block RUNISR.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	2
	0
	0
	1
	1
	1
	1
	
	
	
	
	
	
	
	
	

	3
	0
	2
	2
	1
	3
	2
	2
	0
	1
	
	
	
	
	
	

	4
	0
	0
	2
	1
	1
	2
	2
	2
	2
	3
	3
	2
	
	
	

	5
	0
	6
	3
	1
	7
	3
	2
	1
	2
	3
	2
	2
	4
	0
	2

	6
	0
	4
	3
	1
	5
	3
	2
	7
	3
	3
	1
	2
	4
	0
	2

	
	5
	6
	3
	
	
	
	
	
	
	
	
	
	
	
	

	8
	0
	4
	3
	1
	3
	3
	2
	6
	3
	3
	7
	3
	4
	5
	3

	
	5
	2
	3
	6
	1
	3
	7
	0
	3
	
	
	
	
	
	

	12
	0
	4
	3
	1
	3
	3
	2
	2
	3
	3
	5
	3
	4
	1
	3

	
	5
	13
	4
	6
	14
	4
	7
	15
	4
	8
	0
	3
	9
	25
	5

	
	10
	49
	6
	11
	48
	6
	
	
	
	
	
	
	
	
	

	20
	0
	0
	3
	1
	1
	3
	2
	15
	4
	3
	11
	4
	4
	13
	4

	
	5
	10
	4
	6
	6
	4
	7
	8
	4
	8
	14
	4
	9
	9
	4

	
	10
	5
	4
	11
	7
	4
	12
	25
	5
	13
	24
	5
	14
	9
	5

	
	15
	16
	6
	16
	34
	7
	17
	71
	8
	18
	141
	9
	19
	140
	9

	33
	0
	1
	3
	1
	3
	3
	2
	15
	4
	3
	9
	4
	4
	11
	4

	
	5
	5
	4
	6
	1
	4
	7
	26
	5
	8
	29
	5
	9
	25
	5

	
	10
	21
	5
	11
	24
	5
	12
	17
	5
	13
	8
	5
	14
	27
	5

	
	15
	1
	5
	16
	56
	6
	17
	16
	5
	18
	57
	6
	19
	18
	6

	
	20
	40
	6
	21
	0
	5
	22
	83
	7
	23
	39
	7
	24
	38
	7

	
	25
	331
	9
	26
	657
	10
	27
	329
	9
	28
	1320
	11
	29
	1321
	11

	
	30
	1322
	11
	31
	1323
	11
	32
	656
	10
	
	
	
	
	
	

	2
	0
	1
	1
	1
	0
	1
	
	
	
	
	
	
	
	
	

	3
	0
	0
	1
	1
	3
	2
	2
	2
	2
	
	
	
	
	
	

	4
	0
	0
	1
	1
	2
	2
	2
	7
	3
	3
	6
	3
	
	
	

	5
	0
	3
	2
	1
	2
	2
	2
	1
	2
	3
	1
	3
	4
	0
	3

	6
	0
	3
	2
	1
	1
	2
	2
	0
	2
	3
	4
	3
	4
	11
	4

	
	5
	10
	4
	
	
	
	
	
	
	
	
	
	
	
	

	8
	0
	2
	2
	1
	0
	2
	2
	7
	3
	3
	6
	3
	4
	2
	3

	
	5
	6
	4
	6
	15
	5
	7
	14
	5
	
	
	
	
	
	

	12
	0
	2
	2
	1
	0
	2
	2
	6
	3
	3
	3
	3
	4
	15
	4

	
	5
	5
	4
	6
	4
	4
	7
	28
	5
	8
	59
	6
	9
	117
	7

	
	10
	233
	8
	11
	232
	8
	
	
	
	
	
	
	
	
	

	20
	0
	1
	2
	1
	7
	3
	2
	5
	3
	3
	1
	3
	4
	13
	4

	
	5
	9
	4
	6
	1
	4
	7
	25
	5
	8
	0
	4
	9
	17
	5

	
	10
	16
	5
	11
	48
	6
	12
	98
	7
	13
	198
	8
	14
	399
	9

	
	15
	797
	10
	16
	1592
	11
	17
	3187
	12
	18
	6373
	13
	19
	6372
	13

	33
	0
	0
	2
	1
	6
	3
	2
	4
	3
	3
	2
	3
	4
	11
	4

	
	5
	7
	4
	6
	31
	5
	7
	30
	5
	8
	29
	5
	9
	21
	5

	
	10
	20
	5
	11
	57
	6
	12
	27
	6
	13
	24
	6
	14
	113
	7

	
	15
	53
	7
	16
	51
	7
	17
	50
	7
	18
	224
	8
	19
	104
	8

	
	20
	211
	9
	21
	450
	9
	22
	420
	10
	23
	902
	10
	24
	421
	10

	
	25
	3613
	12
	26
	14456
	14
	27
	3612
	12
	28
	14457
	14
	29
	7229
	13

	
	30
	14460
	14
	31
	14461
	14
	32
	7231
	13
	
	
	
	
	
	

	2
	0
	1
	1
	1
	0
	1
	
	
	
	
	
	
	
	
	

	3
	0
	1
	1
	1
	1
	2
	2
	0
	2
	
	
	
	
	
	

	4
	0
	1
	1
	1
	1
	2
	2
	1
	3
	3
	0
	3
	
	
	

	5
	0
	1
	1
	1
	0
	2
	2
	3
	3
	3
	5
	4
	4
	4
	4

	6
	0
	0
	1
	1
	2
	2
	2
	6
	3
	3
	15
	4
	4
	29
	5

	
	5
	28
	5
	
	
	
	
	
	
	
	
	
	
	
	

	8
	0
	0
	1
	1
	2
	2
	2
	6
	3
	3
	14
	4
	4
	31
	5

	
	5
	61
	6
	6
	121
	7
	7
	120
	7
	
	
	
	
	
	

	12
	0
	0
	1
	1
	2
	2
	2
	6
	3
	3
	14
	4
	4
	30
	5

	
	5
	62
	6
	6
	127
	7
	7
	253
	8
	8
	505
	9
	9
	1009
	10

	
	10
	2017
	11
	11
	2016
	11
	
	
	
	
	
	
	
	
	

	20
	0
	0
	1
	1
	7
	3
	2
	5
	3
	3
	13
	4
	4
	9
	4

	
	5
	25
	5
	6
	17
	5
	7
	16
	5
	8
	48
	6
	9
	98
	7

	
	10
	199
	8
	11
	396
	9
	12
	794
	10
	13
	1590
	11
	14
	3183
	12

	
	15
	6365
	13
	16
	12729
	14
	17
	25457
	15
	18
	50912
	16
	19
	50913
	16

	33
	0
	3
	2
	1
	1
	2
	2
	5
	3
	3
	1
	3
	4
	8
	4

	
	5
	0
	4
	6
	18
	5
	7
	2
	5
	8
	39
	6
	9
	7
	6

	
	10
	77
	7
	11
	13
	7
	12
	153
	8
	13
	305
	9
	14
	51
	9

	
	15
	50
	9
	16
	304
	9
	17
	97
	10
	18
	98
	10
	19
	192
	11

	
	20
	193
	11
	21
	398
	12
	22
	799
	13
	23
	1584
	14
	24
	1585
	14

	
	25
	1586
	14
	26
	1587
	14
	27
	1588
	14
	28
	1589
	14
	29
	1590
	14

	
	30
	1591
	14
	31
	1596
	14
	32
	1597
	14
	
	
	
	
	
	

Table 100: VLC Table for Intra Block RUNISR.
	Zone Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	2
	0
	0
	1
	1
	1
	1
	
	
	
	
	
	
	
	
	

	3
	0
	2
	2
	1
	0
	1
	2
	3
	2
	
	
	
	
	
	

	4
	0
	1
	2
	1
	2
	2
	2
	3
	2
	3
	0
	2
	
	
	

	5
	0
	1
	2
	1
	0
	2
	2
	3
	2
	3
	5
	3
	4
	4
	3

	9
	0
	0
	2
	1
	7
	3
	2
	1
	2
	3
	5
	3
	4
	4
	3

	
	5
	13
	4
	6
	25
	5
	7
	49
	6
	8
	48
	6
	
	
	

	17
	0
	7
	3
	1
	5
	3
	2
	6
	3
	3
	2
	3
	4
	1
	3

	
	5
	0
	3
	6
	9
	4
	7
	7
	4
	8
	6
	4
	9
	17
	5

	
	10
	32
	6
	11
	67
	7
	12
	132
	8
	13
	266
	9
	14
	535
	10

	
	15
	1069
	11
	16
	1068
	11
	
	
	
	
	
	
	
	
	

	33
	0
	2
	3
	1
	1
	3
	2
	0
	3
	3
	14
	4
	4
	12
	4

	
	5
	11
	4
	6
	8
	4
	7
	6
	4
	8
	10
	4
	9
	9
	4

	
	10
	30
	5
	11
	14
	5
	12
	62
	6
	13
	55
	6
	14
	53
	6

	
	15
	31
	6
	16
	127
	7
	17
	109
	7
	18
	108
	7
	19
	61
	7

	
	20
	104
	7
	21
	253
	8
	22
	210
	8
	23
	505
	9
	24
	422
	9

	
	25
	241
	9
	26
	1009
	10
	27
	240
	9
	28
	847
	10
	29
	2017
	11

	
	30
	846
	10
	31
	2016
	11
	32
	121
	8
	
	
	
	
	
	

	2
	0
	1
	1
	1
	0
	1
	
	
	
	
	
	
	
	
	

	3
	0
	0
	1
	1
	3
	2
	2
	2
	2
	
	
	
	
	
	

	4
	0
	0
	1
	1
	3
	2
	2
	5
	3
	3
	4
	3
	
	
	

	5
	0
	0
	1
	1
	2
	2
	2
	7
	3
	3
	13
	4
	4
	12
	4

	9
	0
	3
	2
	1
	1
	2
	2
	0
	2
	3
	4
	3
	4
	11
	4

	
	5
	21
	5
	6
	41
	6
	7
	81
	7
	8
	80
	7
	
	
	

	17
	0
	1
	2
	1
	0
	2
	2
	6
	3
	3
	4
	3
	4
	15
	4

	
	5
	11
	4
	6
	29
	5
	7
	28
	5
	8
	21
	5
	9
	41
	6

	
	10
	81
	7
	11
	161
	8
	12
	320
	9
	13
	643
	10
	14
	1285
	11

	
	15
	2569
	12
	16
	2568
	12
	
	
	
	
	
	
	
	
	

	33
	0
	3
	3
	1
	2
	3
	2
	5
	3
	3
	0
	3
	4
	14
	4

	
	5
	15
	4
	6
	12
	4
	7
	8
	4
	8
	13
	4
	9
	3
	4

	
	10
	18
	5
	11
	4
	5
	12
	10
	6
	13
	11
	6
	14
	77
	7

	
	15
	159
	8
	16
	157
	8
	17
	152
	8
	18
	158
	8
	19
	306
	9

	
	20
	307
	9
	21
	624
	10
	22
	2502
	12
	23
	2503
	12
	24
	2504
	12

	
	25
	2505
	12
	26
	2506
	12
	27
	2507
	12
	28
	2508
	12
	29
	2509
	12

	
	30
	2510
	12
	31
	2511
	12
	32
	1250
	11
	
	
	
	
	
	

10.2 Interlace Pictures MV Block Pattern VLC Tables
10.2.1 4MV Block Pattern Tables
Table 101: 4MV Block Pattern Table 0

	4MV Coded Pattern
	VLC Codeword
	VLC Codeword Size

	0
	14
	5

	1
	58
	6

	2
	59
	6

	3
	25
	5

	4
	12
	5

	5
	26
	5

	6
	15
	5

	7
	15
	4

	8
	13
	5

	9
	24
	5

	10
	27
	5

	11
	0
	3

	12
	28
	5

	13
	1
	3

	14
	2
	3

	15
	2
	2

Table 102: 4MV Block Pattern Table 1
	4MV Coded Pattern
	VLC Codeword
	VLC Codeword Size

	0
	8
	4

	1
	18
	5

	2
	19
	5

	3
	4
	4

	4
	20
	5

	5
	5
	4

	6
	30
	5

	7
	11
	4

	8
	21
	5

	9
	31
	5

	10
	6
	4

	11
	12
	4

	12
	7
	4

	13
	13
	4

	14
	14
	4

	15
	0
	2

Table 103: 4MV Block Pattern Table 2
	4MV Coded Pattern
	VLC Codeword
	VLC Codeword Size

	0
	15
	4

	1
	6
	4

	2
	7
	4

	3
	2
	4

	4
	8
	4

	5
	3
	4

	6
	28
	5

	7
	9
	4

	8
	10
	4

	9
	29
	5

	10
	4
	4

	11
	11
	4

	12
	5
	4

	13
	12
	4

	14
	13
	4

	15
	0
	3

Table 104: 4MV Block Pattern Table 3
	4MV Coded Pattern
	VLC Codeword
	VLC Codeword Size

	0
	0
	2

	1
	11
	4

	2
	12
	4

	3
	4
	4

	4
	13
	4

	5
	5
	4

	6
	30
	5

	7
	16
	5

	8
	14
	4

	9
	31
	5

	10
	6
	4

	11
	17
	5

	12
	7
	4

	13
	18
	5

	14
	19
	5

	15
	10
	4

10.2.2 2MV Block Pattern Tables
Table 105: Interlace Frame 2 MVP Block Pattern Table 0
	Top
	Bottom
	VLC Codeword
	VLC
Size

	0
	0
	2
	2

	0
	1
	1
	2

	1
	0
	0
	2

	1
	1
	3
	2

Table 106: Interlace Frame 2 MVP Block Pattern Table 1
	Top
	Bottom
	VLC Codeword
	VLC
Size

	0
	0
	1
	1

	0
	1
	0
	2

	1
	0
	2
	3

	1
	1
	3
	3

Table 107: Interlace Frame 2 MVP Block Pattern Table 2
	Top
	Bottom
	VLC Codeword
	VLC
Size

	0
	0
	2
	3

	0
	1
	0
	2

	1
	0
	3
	3

	1
	1
	1
	1

Table 108: Interlace Frame 2 MVP Block Pattern Table 3
	Top
	Bottom
	VLC Codeword
	VLC
Size

	0
	0
	1
	1

	0
	1
	3
	3

	1
	0
	2
	3

	1
	1
	0
	2

10.3 Interlace CBPCY VLC Tables
Table 109: Interlaced CBPCY Table 0
	Coded Block Pattern
	VLC Codeword
	VLC Codeword Size
	Coded Block Pattern
	VLC Codeword
	VLC Codeword Size

	1
	12058
	15
	33
	686
	11

	2
	12059
	15
	34
	687
	11

	3
	6028
	14
	35
	1506
	12

	4
	144
	9
	36
	310
	10

	5
	680
	11
	37
	622
	11

	6
	681
	11
	38
	623
	11

	7
	3015
	13
	39
	765
	11

	8
	145
	9
	40
	158
	9

	9
	682
	11
	41
	318
	10

	10
	683
	11
	42
	319
	10

	11
	1504
	12
	43
	383
	10

	12
	74
	8
	44
	80
	8

	13
	150
	9
	45
	66
	8

	14
	151
	9
	46
	67
	8

	15
	189
	9
	47
	44
	7

	16
	146
	9
	48
	81
	8

	17
	684
	11
	49
	164
	9

	18
	685
	11
	50
	165
	9

	19
	1505
	12
	51
	190
	9

	20
	152
	9
	52
	83
	8

	21
	306
	10
	53
	68
	8

	22
	307
	10
	54
	69
	8

	23
	377
	10
	55
	45
	7

	24
	308
	10
	56
	84
	8

	25
	618
	11
	57
	70
	8

	26
	619
	11
	58
	71
	8

	27
	764
	11
	59
	46
	7

	28
	78
	8
	60
	3
	3

	29
	64
	8
	61
	0
	3

	30
	65
	8
	62
	1
	3

	31
	43
	7
	63
	1
	1

	32
	147
	9
	
	
	

Table 110: Interlaced CBPCY Table 1
	Coded Block Pattern
	VLC Codeword
	VLC Codeword Size
	Coded Block Pattern
	VLC Codeword
	VLC Codeword Size

	1
	65
	7
	33
	20
	7

	2
	66
	7
	34
	21
	7

	3
	256
	9
	35
	44
	8

	4
	67
	7
	36
	92
	8

	5
	136
	8
	37
	93
	9

	6
	137
	8
	38
	94
	9

	7
	257
	9
	39
	95
	9

	8
	69
	7
	40
	38
	7

	9
	140
	8
	41
	93
	8

	10
	141
	8
	42
	94
	8

	11
	258
	9
	43
	95
	8

	12
	16
	6
	44
	13
	6

	13
	34
	7
	45
	52
	7

	14
	35
	7
	46
	53
	7

	15
	36
	7
	47
	27
	6

	16
	71
	7
	48
	20
	6

	17
	16
	7
	49
	39
	7

	18
	17
	7
	50
	42
	7

	19
	259
	9
	51
	43
	7

	20
	37
	7
	52
	14
	6

	21
	88
	8
	53
	56
	7

	22
	89
	8
	54
	57
	7

	23
	90
	8
	55
	29
	6

	24
	91
	8
	56
	15
	6

	25
	90
	9
	57
	60
	7

	26
	91
	9
	58
	61
	7

	27
	92
	9
	59
	31
	6

	28
	12
	6
	60
	5
	3

	29
	48
	7
	61
	9
	4

	30
	49
	7
	62
	0
	3

	31
	25
	6
	63
	3
	2

	32
	9
	6
	
	
	

Table 111: Interlaced CBPCY Table 2
	Coded Block Pattern
	VLC Codeword
	VLC Codeword Size
	Coded Block Pattern
	VLC Codeword
	VLC Codeword Size

	1
	50
	6
	33
	234
	8

	2
	51
	6
	34
	235
	8

	3
	26
	5
	35
	489
	9

	4
	38
	6
	36
	74
	7

	5
	228
	8
	37
	442
	9

	6
	229
	8
	38
	443
	9

	7
	486
	9
	39
	475
	9

	8
	39
	6
	40
	32
	6

	9
	230
	8
	41
	222
	8

	10
	231
	8
	42
	223
	8

	11
	487
	9
	43
	242
	8

	12
	14
	5
	44
	34
	6

	13
	99
	7
	45
	85
	7

	14
	108
	7
	46
	88
	7

	15
	119
	7
	47
	45
	6

	16
	40
	6
	48
	15
	5

	17
	232
	8
	49
	112
	7

	18
	233
	8
	50
	113
	7

	19
	488
	9
	51
	120
	7

	20
	123
	7
	52
	35
	6

	21
	218
	8
	53
	89
	7

	22
	219
	8
	54
	92
	7

	23
	236
	8
	55
	47
	6

	24
	245
	8
	56
	36
	6

	25
	440
	9
	57
	93
	7

	26
	441
	9
	58
	98
	7

	27
	474
	9
	59
	48
	6

	28
	33
	6
	60
	2
	3

	29
	75
	7
	61
	31
	5

	30
	84
	7
	62
	6
	4

	31
	43
	6
	63
	0
	2

	32
	41
	6
	
	
	

Table 112: Interlaced CBPCY Table 3

	Coded Block Pattern
	VLC Codeword
	VLC Codeword Size
	Coded Block Pattern
	VLC Codeword
	VLC Codeword Size

	1
	40
	6
	33
	499
	9

	2
	41
	6
	34
	500
	9

	3
	157
	8
	35
	501
	9

	4
	0
	4
	36
	17
	6

	5
	490
	9
	37
	978
	10

	6
	491
	9
	38
	979
	10

	7
	492
	9
	39
	305
	9

	8
	1
	4
	40
	9
	5

	9
	493
	9
	41
	350
	9

	10
	494
	9
	42
	351
	9

	11
	495
	9
	43
	156
	8

	12
	5
	4
	44
	16
	5

	13
	240
	8
	45
	168
	8

	14
	241
	8
	46
	169
	8

	15
	59
	7
	47
	56
	7

	16
	2
	4
	48
	6
	4

	17
	496
	9
	49
	242
	8

	18
	497
	9
	50
	243
	8

	19
	498
	9
	51
	77
	7

	20
	63
	6
	52
	17
	5

	21
	348
	9
	53
	170
	8

	22
	349
	9
	54
	171
	8

	23
	153
	8
	55
	57
	7

	24
	16
	6
	56
	18
	5

	25
	976
	10
	57
	172
	8

	26
	977
	10
	58
	173
	8

	27
	304
	9
	59
	58
	7

	28
	15
	5
	60
	6
	3

	29
	158
	8
	61
	22
	5

	30
	159
	8
	62
	23
	5

	31
	251
	8
	63
	14
	4

	32
	3
	4
	
	
	

Table 113: Interlaced CBPCY Table 4
	Coded Block Pattern
	VLC Codeword
	VLC Codeword Size
	Coded Block Pattern
	VLC Codeword
	VLC Codeword Size

	1
	60
	6
	33
	105
	7

	2
	61
	6
	34
	108
	7

	3
	31
	5
	35
	5
	7

	4
	10
	5
	36
	96
	7

	5
	97
	7
	37
	26
	8

	6
	98
	7
	38
	27
	8

	7
	2
	7
	39
	53
	8

	8
	11
	5
	40
	19
	6

	9
	99
	7
	41
	14
	7

	10
	100
	7
	42
	15
	7

	11
	3
	7
	43
	21
	7

	12
	7
	5
	44
	45
	6

	13
	3
	6
	45
	109
	7

	14
	4
	6
	46
	110
	7

	15
	11
	6
	47
	56
	6

	16
	12
	5
	48
	8
	5

	17
	101
	7
	49
	8
	6

	18
	102
	7
	50
	9
	6

	19
	4
	7
	51
	12
	6

	20
	18
	6
	52
	46
	6

	21
	10
	7
	53
	111
	7

	22
	11
	7
	54
	114
	7

	23
	20
	7
	55
	58
	6

	24
	27
	7
	56
	47
	6

	25
	24
	8
	57
	115
	7

	26
	25
	8
	58
	0
	6

	27
	52
	8
	59
	59
	6

	28
	44
	6
	60
	7
	4

	29
	103
	7
	61
	20
	5

	30
	104
	7
	62
	21
	5

	31
	53
	6
	63
	4
	3

	32
	13
	5
	
	
	

Table 114: Interlaced CBPCY Table 5
	Coded Block Pattern
	VLC Codeword
	VLC Codeword Size
	Coded Block Pattern
	VLC Codeword
	VLC Codeword Size

	1
	56
	6
	33
	154
	8

	2
	57
	6
	34
	155
	8

	3
	157
	8
	35
	156
	8

	4
	10
	4
	36
	25
	6

	5
	145
	8
	37
	974
	10

	6
	146
	8
	38
	975
	10

	7
	147
	8
	39
	215
	9

	8
	11
	4
	40
	9
	5

	9
	148
	8
	41
	488
	9

	10
	149
	8
	42
	489
	9

	11
	150
	8
	43
	144
	8

	12
	3
	4
	44
	15
	5

	13
	238
	8
	45
	232
	8

	14
	239
	8
	46
	233
	8

	15
	54
	7
	47
	246
	8

	16
	12
	4
	48
	5
	4

	17
	151
	8
	49
	240
	8

	18
	152
	8
	50
	241
	8

	19
	153
	8
	51
	55
	7

	20
	8
	5
	52
	16
	5

	21
	484
	9
	53
	234
	8

	22
	485
	9
	54
	235
	8

	23
	106
	8
	55
	247
	8

	24
	24
	6
	56
	17
	5

	25
	972
	10
	57
	236
	8

	26
	973
	10
	58
	237
	8

	27
	214
	9
	59
	52
	7

	28
	14
	5
	60
	0
	3

	29
	158
	8
	61
	62
	6

	30
	159
	8
	62
	63
	6

	31
	245
	8
	63
	2
	4

	32
	13
	4
	
	
	

Table 115: Interlaced CBPCY Table 6
	Coded Block Pattern
	VLC Codeword
	VLC Codeword Size
	Coded Block Pattern
	VLC Codeword
	VLC Codeword Size

	1
	60
	6
	33
	229
	8

	2
	61
	6
	34
	230
	8

	3
	463
	9
	35
	128
	8

	4
	0
	3
	36
	46
	6

	5
	191
	8
	37
	2021
	11

	6
	224
	8
	38
	2022
	11

	7
	508
	9
	39
	2023
	11

	8
	1
	3
	40
	22
	5

	9
	225
	8
	41
	1012
	10

	10
	226
	8
	42
	1013
	10

	11
	509
	9
	43
	1014
	10

	12
	9
	4
	44
	25
	5

	13
	497
	9
	45
	258
	9

	14
	498
	9
	46
	259
	9

	15
	499
	9
	47
	260
	9

	16
	2
	3
	48
	10
	4

	17
	227
	8
	49
	500
	9

	18
	228
	8
	50
	501
	9

	19
	510
	9
	51
	502
	9

	20
	17
	5
	52
	26
	5

	21
	1006
	10
	53
	261
	9

	22
	1007
	10
	54
	262
	9

	23
	1008
	10
	55
	263
	9

	24
	33
	6
	56
	27
	5

	25
	2018
	11
	57
	376
	9

	26
	2019
	11
	58
	377
	9

	27
	2020
	11
	59
	462
	9

	28
	24
	5
	60
	29
	5

	29
	1015
	10
	61
	189
	8

	30
	1022
	10
	62
	190
	8

	31
	1023
	10
	63
	496
	9

	32
	3
	3
	
	
	

Table 116: Interlaced CBPCY Table 7
	Coded Block Pattern
	VLC Codeword
	VLC Codeword Size
	Coded Block Pattern
	VLC Codeword
	VLC Codeword Size

	1
	3
	6
	33
	52
	7

	2
	4
	6
	34
	53
	7

	3
	438
	10
	35
	17
	7

	4
	4
	3
	36
	22
	6

	5
	46
	7
	37
	105
	10

	6
	47
	7
	38
	106
	10

	7
	14
	7
	39
	107
	10

	8
	5
	3
	40
	10
	5

	9
	48
	7
	41
	54
	9

	10
	49
	7
	42
	55
	9

	11
	15
	7
	43
	216
	9

	12
	3
	4
	44
	30
	6

	13
	10
	8
	45
	442
	10

	14
	11
	8
	46
	443
	10

	15
	20
	8
	47
	444
	10

	16
	6
	3
	48
	4
	4

	17
	50
	7
	49
	21
	8

	18
	51
	7
	50
	22
	8

	19
	16
	7
	51
	23
	8

	20
	5
	5
	52
	31
	6

	21
	48
	9
	53
	445
	10

	22
	49
	9
	54
	446
	10

	23
	50
	9
	55
	447
	10

	24
	9
	6
	56
	0
	5

	25
	102
	10
	57
	16
	9

	26
	103
	10
	58
	17
	9

	27
	104
	10
	59
	18
	9

	28
	29
	6
	60
	28
	6

	29
	439
	10
	61
	217
	9

	30
	440
	10
	62
	218
	9

	31
	441
	10
	63
	19
	9

	32
	7
	3
	
	
	

10.4 Interlace MV Tables
Table 117: 2-Field Reference Interlace MV Table 0
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	0
	2
	42
	99265
	17
	84
	24801
	15

	1
	28
	5
	43
	99266
	17
	85
	99280
	17

	2
	97
	7
	44
	59
	6
	86
	99281
	17

	3
	994
	10
	45
	249
	8
	87
	99282
	17

	4
	3307
	12
	46
	386
	9
	88
	99283
	17

	5
	12405
	14
	47
	1652
	11
	89
	501
	9

	6
	127090
	17
	48
	7940
	13
	90
	1984
	11

	7
	99236
	17
	49
	31774
	15
	91
	6207
	13

	8
	2
	2
	50
	49617
	16
	92
	24800
	15

	9
	13
	4
	51
	99267
	17
	93
	99284
	17

	10
	61
	6
	52
	99268
	17
	94
	99285
	17

	11
	251
	8
	53
	60
	6
	95
	99286
	17

	12
	411
	9
	54
	204
	8
	96
	99287
	17

	13
	1654
	11
	55
	770
	10
	97
	99288
	17

	14
	7942
	13
	56
	6621
	13
	98
	930
	10

	15
	12401
	14
	57
	26424
	15
	99
	3982
	12

	16
	52851
	16
	58
	99269
	17
	100
	6201
	13

	17
	3
	3
	59
	99270
	17
	101
	26428
	15

	18
	63
	6
	60
	99271
	17
	102
	105721
	17

	19
	233
	8
	61
	99272
	17
	103
	99289
	17

	20
	824
	10
	62
	100
	7
	104
	99290
	17

	21
	3086
	12
	63
	464
	9
	105
	99291
	17

	22
	26431
	15
	64
	1990
	11
	106
	99292
	17

	23
	105720
	17
	65
	3087
	12
	107
	931
	10

	24
	99237
	17
	66
	13213
	14
	108
	3302
	12

	25
	99238
	17
	67
	52861
	16
	109
	31775
	15

	26
	4
	4
	68
	99273
	17
	110
	127088
	17

	27
	49
	6
	69
	99274
	17
	111
	99293
	17

	28
	207
	8
	70
	99275
	17
	112
	99294
	17

	29
	993
	10
	71
	101
	7
	113
	99295
	17

	30
	1542
	11
	72
	384
	9
	114
	99296
	17

	31
	6203
	13
	73
	3311
	12
	115
	99297
	17

	32
	26429
	15
	74
	12413
	14
	116
	1650
	11

	33
	127089
	17
	75
	127091
	17
	117
	6620
	13

	34
	99239
	17
	76
	99276
	17
	118
	31773
	15

	35
	5
	4
	77
	99277
	17
	119
	49616
	16

	36
	117
	7
	78
	99278
	17
	120
	99298
	17

	37
	410
	9
	79
	99279
	17
	121
	99299
	17

	38
	3983
	12
	80
	500
	9
	122
	99300
	17

	39
	15882
	14
	81
	774
	10
	123
	99301
	17

	40
	52850
	16
	82
	3306
	12
	124
	99302
	17

	41
	99264
	17
	83
	15883
	14
	125
	99303
	17

Table 118: 2-Field Reference Interlace MV Table 1

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	1
	2
	42
	2295
	16
	84
	36693
	16

	1
	1
	4
	43
	2296
	16
	85
	32904
	16

	2
	0
	6
	44
	33
	6
	86
	32905
	16

	3
	287
	9
	45
	172
	8
	87
	32906
	16

	4
	1041
	11
	46
	18
	9
	88
	32907
	16

	5
	284
	13
	47
	1031
	11
	89
	347
	9

	6
	36619
	16
	48
	4576
	13
	90
	1137
	11

	7
	2288
	16
	49
	18345
	15
	91
	4117
	13

	8
	3
	2
	50
	2297
	16
	92
	36692
	16

	9
	1
	3
	51
	2298
	16
	93
	32908
	16

	10
	18
	5
	52
	2299
	16
	94
	32909
	16

	11
	87
	7
	53
	34
	6
	95
	32910
	16

	12
	15
	8
	54
	14
	8
	96
	32911
	16

	13
	521
	10
	55
	1147
	11
	97
	32912
	16

	14
	2289
	12
	56
	4545
	13
	98
	569
	10

	15
	282
	13
	57
	16640
	15
	99
	2292
	12

	16
	16641
	15
	58
	2300
	16
	100
	283
	13

	17
	11
	4
	59
	2301
	16
	101
	16644
	15

	18
	42
	6
	60
	2302
	16
	102
	32913
	16

	19
	131
	8
	61
	2303
	16
	103
	32914
	16

	20
	39
	10
	62
	5
	7
	104
	32915
	16

	21
	4587
	13
	63
	261
	9
	105
	32916
	16

	22
	18308
	15
	64
	1145
	11
	106
	32917
	16

	23
	2289
	16
	65
	140
	12
	107
	570
	10

	24
	2290
	16
	66
	8321
	14
	108
	2059
	12

	25
	2291
	16
	67
	36618
	16
	109
	18347
	15

	26
	19
	5
	68
	32896
	16
	110
	32918
	16

	27
	1
	6
	69
	32897
	16
	111
	32919
	16

	28
	129
	8
	70
	32898
	16
	112
	32920
	16

	29
	571
	10
	71
	6
	7
	113
	32921
	16

	30
	69
	11
	72
	16
	9
	114
	32922
	16

	31
	285
	13
	73
	2273
	12
	115
	32923
	16

	32
	16645
	15
	74
	8233
	14
	116
	1030
	11

	33
	2292
	16
	75
	32899
	16
	117
	4544
	13

	34
	2293
	16
	76
	32900
	16
	118
	18344
	15

	35
	20
	5
	77
	32901
	16
	119
	32924
	16

	36
	70
	7
	78
	32902
	16
	120
	32925
	16

	37
	256
	9
	79
	32903
	16
	121
	32926
	16

	38
	68
	11
	80
	346
	9
	122
	32927
	16

	39
	8323
	14
	81
	38
	10
	123
	32928
	16

	40
	32931
	16
	82
	2081
	12
	124
	32929
	16

	41
	2294
	16
	83
	9155
	14
	125
	32930
	16

Table 119: 2-Field Reference Interlace MV Table 2

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	0
	2
	42
	8620
	14
	84
	15238
	14

	1
	9
	4
	43
	29138
	15
	85
	30496
	15

	2
	10
	5
	44
	23
	6
	86
	29167
	15

	3
	118
	7
	45
	64
	7
	87
	29168
	15

	4
	226
	8
	46
	130
	8
	88
	29169
	15

	5
	268
	9
	47
	262
	9
	89
	539
	10

	6
	1907
	11
	48
	526
	10
	90
	615
	11

	7
	3644
	12
	49
	635
	11
	91
	7499
	13

	8
	5
	3
	50
	2152
	12
	92
	8621
	14

	9
	12
	4
	51
	4306
	13
	93
	29170
	15

	10
	26
	5
	52
	8614
	14
	94
	29171
	15

	11
	35
	6
	53
	116
	7
	95
	29172
	15

	12
	112
	7
	54
	136
	8
	96
	29173
	15

	13
	139
	8
	55
	159
	9
	97
	29174
	15

	14
	277
	9
	56
	1905
	11
	98
	632
	11

	15
	553
	10
	57
	2211
	12
	99
	1266
	12

	16
	1820
	11
	58
	2539
	13
	100
	2538
	13

	17
	3
	3
	59
	30497
	15
	101
	30499
	15

	18
	30
	5
	60
	29139
	15
	102
	29175
	15

	19
	57
	6
	61
	29160
	15
	103
	29176
	15

	20
	66
	7
	62
	137
	8
	104
	29177
	15

	21
	77
	8
	63
	271
	9
	105
	29178
	15

	22
	936
	10
	64
	541
	10
	106
	29179
	15

	23
	1080
	11
	65
	1104
	11
	107
	3643
	12

	24
	1267
	12
	66
	2210
	12
	108
	4308
	13

	25
	14997
	14
	67
	4311
	13
	109
	30498
	15

	26
	31
	5
	68
	14568
	14
	110
	29180
	15

	27
	8
	5
	69
	29161
	15
	111
	29181
	15

	28
	18
	6
	70
	29162
	15
	112
	29182
	15

	29
	239
	8
	71
	78
	8
	113
	29183
	15

	30
	477
	9
	72
	938
	10
	114
	29984
	15

	31
	152
	9
	73
	1081
	11
	115
	29985
	15

	32
	306
	10
	74
	1268
	12
	116
	4309
	13

	33
	614
	11
	75
	15239
	14
	117
	8615
	14

	34
	7625
	13
	76
	29163
	15
	118
	29986
	15

	35
	27
	5
	77
	29164
	15
	119
	29987
	15

	36
	22
	6
	78
	29165
	15
	120
	29988
	15

	37
	235
	8
	79
	29166
	15
	121
	29989
	15

	38
	454
	9
	80
	939
	10
	122
	29990
	15

	39
	527
	10
	81
	1875
	11
	123
	29991
	15

	40
	3813
	12
	82
	3808
	12
	124
	29992
	15

	41
	7285
	13
	83
	7618
	13
	125
	29993
	15

Table 120: 2-Field Reference Interlace MV Table 3
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	1
	2
	42
	8794
	14
	84
	9104
	14

	1
	13
	4
	43
	8795
	14
	85
	8807
	14

	2
	24
	5
	44
	100
	7
	86
	8808
	14

	3
	36
	6
	45
	173
	8
	87
	8809
	14

	4
	65
	7
	46
	345
	9
	88
	8810
	14

	5
	404
	9
	47
	689
	10
	89
	1622
	11

	6
	570
	10
	48
	1377
	11
	90
	2745
	12

	7
	1098
	11
	49
	2753
	12
	91
	4492
	13

	8
	7
	3
	50
	6484
	13
	92
	8811
	14

	9
	0
	3
	51
	12970
	14
	93
	8812
	14

	10
	2
	4
	52
	8796
	14
	94
	8813
	14

	11
	6
	5
	53
	69
	7
	95
	8814
	14

	12
	103
	7
	54
	408
	9
	96
	8815
	14

	13
	64
	7
	55
	687
	10
	97
	8816
	14

	14
	411
	9
	56
	1137
	11
	98
	2746
	12

	15
	272
	9
	57
	6574
	13
	99
	5494
	13

	16
	548
	10
	58
	11011
	14
	100
	11010
	14

	17
	11
	4
	59
	8797
	14
	101
	8817
	14

	18
	19
	5
	60
	8798
	14
	102
	8818
	14

	19
	33
	6
	61
	8799
	14
	103
	8819
	14

	20
	203
	8
	62
	409
	9
	104
	8820
	14

	21
	341
	9
	63
	820
	10
	105
	8821
	14

	22
	560
	10
	64
	1642
	11
	106
	8822
	14

	23
	3243
	12
	65
	3286
	12
	107
	6575
	13

	24
	5495
	13
	66
	6495
	13
	108
	12971
	14

	25
	8983
	14
	67
	12989
	14
	109
	8823
	14

	26
	20
	5
	68
	8800
	14
	110
	8824
	14

	27
	37
	6
	69
	8801
	14
	111
	8825
	14

	28
	84
	7
	70
	8802
	14
	112
	8826
	14

	29
	143
	8
	71
	342
	9
	113
	8827
	14

	30
	340
	9
	72
	562
	10
	114
	8828
	14

	31
	571
	10
	73
	3246
	12
	115
	8829
	14

	32
	1139
	11
	74
	5504
	13
	116
	12988
	14

	33
	2744
	12
	75
	9105
	14
	117
	8830
	14

	34
	4553
	13
	76
	8803
	14
	118
	8831
	14

	35
	7
	5
	77
	8804
	14
	119
	8976
	14

	36
	87
	7
	78
	8805
	14
	120
	8977
	14

	37
	141
	8
	79
	8806
	14
	121
	8978
	14

	38
	273
	9
	80
	563
	10
	122
	8979
	14

	39
	1620
	11
	81
	1136
	11
	123
	8980
	14

	40
	2277
	12
	82
	2247
	12
	124
	8981
	14

	41
	4396
	13
	83
	4493
	13
	125
	8982
	14

Table 121: 2-Field Reference Interlace MV Table 4
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	5
	3
	42
	1096
	11
	84
	1548
	11

	1
	3
	4
	43
	1097
	11
	85
	1113
	11

	2
	58
	6
	44
	0
	5
	86
	1114
	11

	3
	97
	7
	45
	2
	6
	87
	1115
	11

	4
	132
	8
	46
	231
	8
	88
	1116
	11

	5
	27
	9
	47
	12
	8
	89
	4
	6

	6
	1550
	11
	48
	919
	10
	90
	223
	8

	7
	1088
	11
	49
	52
	10
	91
	293
	9

	8
	2
	3
	50
	1098
	11
	92
	96
	10

	9
	6
	4
	51
	1099
	11
	93
	1117
	11

	10
	5
	5
	52
	1100
	11
	94
	1118
	11

	11
	32
	6
	53
	19
	5
	95
	1119
	11

	12
	19
	7
	54
	7
	6
	96
	1152
	11

	13
	37
	8
	55
	230
	8
	97
	1153
	11

	14
	73
	9
	56
	386
	9
	98
	228
	8

	15
	145
	10
	57
	144
	10
	99
	458
	9

	16
	1089
	11
	58
	1101
	11
	100
	891
	10

	17
	15
	4
	59
	1102
	11
	101
	1781
	11

	18
	25
	5
	60
	1103
	11
	102
	1154
	11

	19
	35
	6
	61
	1104
	11
	103
	1155
	11

	20
	10
	7
	62
	8
	6
	104
	1156
	11

	21
	444
	9
	63
	13
	7
	105
	1157
	11

	22
	588
	10
	64
	25
	8
	106
	1158
	11

	23
	1090
	11
	65
	49
	9
	107
	67
	7

	24
	1091
	11
	66
	97
	10
	108
	15
	8

	25
	1092
	11
	67
	1105
	11
	109
	792
	10

	26
	26
	5
	68
	1106
	11
	110
	1159
	11

	27
	54
	6
	69
	1107
	11
	111
	1160
	11

	28
	110
	7
	70
	1108
	11
	112
	1161
	11

	29
	199
	8
	71
	56
	6
	113
	1162
	11

	30
	397
	9
	72
	74
	7
	114
	1163
	11

	31
	793
	10
	73
	23
	8
	115
	1164
	11

	32
	1780
	11
	74
	918
	10
	116
	22
	8

	33
	1093
	11
	75
	1549
	11
	117
	29
	9

	34
	1094
	11
	76
	1109
	11
	118
	53
	10

	35
	7
	4
	77
	1110
	11
	119
	1165
	11

	36
	59
	6
	78
	1111
	11
	120
	1166
	11

	37
	98
	7
	79
	1112
	11
	121
	1167
	11

	38
	133
	8
	80
	75
	7
	122
	1168
	11

	39
	28
	9
	81
	192
	8
	123
	1169
	11

	40
	1551
	11
	82
	295
	9
	124
	1170
	11

	41
	1095
	11
	83
	589
	10
	125
	1171
	11

Table 122: 2-Field Reference Interlace MV Table 5
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	0
	2
	42
	1910
	11
	84
	1931
	11

	1
	10
	4
	43
	1911
	11
	85
	1932
	11

	2
	13
	5
	44
	33
	6
	86
	1933
	11

	3
	16
	6
	45
	51
	7
	87
	1934
	11

	4
	235
	8
	46
	101
	8
	88
	1935
	11

	5
	272
	9
	47
	201
	9
	89
	69
	7

	6
	2006
	11
	48
	401
	10
	90
	93
	8

	7
	1900
	11
	49
	1912
	11
	91
	989
	10

	8
	6
	3
	50
	1913
	11
	92
	1936
	11

	9
	11
	4
	51
	1914
	11
	93
	1937
	11

	10
	19
	5
	52
	1915
	11
	94
	1938
	11

	11
	37
	6
	53
	63
	6
	95
	1939
	11

	12
	116
	7
	54
	71
	7
	96
	1940
	11

	13
	234
	8
	55
	95
	8
	97
	1941
	11

	14
	295
	9
	56
	1002
	10
	98
	94
	8

	15
	589
	10
	57
	1916
	11
	99
	185
	9

	16
	1901
	11
	58
	1917
	11
	100
	367
	10

	17
	7
	4
	59
	1918
	11
	101
	1942
	11

	18
	9
	5
	60
	1919
	11
	102
	1943
	11

	19
	122
	7
	61
	1920
	11
	103
	1944
	11

	20
	140
	8
	62
	72
	7
	104
	1945
	11

	21
	184
	9
	63
	146
	8
	105
	1946
	11

	22
	1980
	11
	64
	283
	9
	106
	1947
	11

	23
	1902
	11
	65
	588
	10
	107
	236
	8

	24
	1903
	11
	66
	1921
	11
	108
	274
	9

	25
	1904
	11
	67
	1922
	11
	109
	2007
	11

	26
	10
	5
	68
	1923
	11
	110
	1948
	11

	27
	17
	6
	69
	1924
	11
	111
	1949
	11

	28
	44
	7
	70
	1925
	11
	112
	1950
	11

	29
	90
	8
	71
	24
	6
	113
	1951
	11

	30
	182
	9
	72
	248
	8
	114
	1968
	11

	31
	366
	10
	73
	282
	9
	115
	1969
	11

	32
	1905
	11
	74
	400
	10
	116
	275
	9

	33
	1906
	11
	75
	1926
	11
	117
	547
	10

	34
	1907
	11
	76
	1927
	11
	118
	1970
	11

	35
	28
	5
	77
	1928
	11
	119
	1971
	11

	36
	32
	6
	78
	1929
	11
	120
	1972
	11

	37
	251
	8
	79
	1930
	11
	121
	1973
	11

	38
	474
	9
	80
	249
	8
	122
	1974
	11

	39
	546
	10
	81
	500
	9
	123
	1975
	11

	40
	1908
	11
	82
	991
	10
	124
	1976
	11

	41
	1909
	11
	83
	1981
	11
	125
	1977
	11

Table 123: 2-Field Reference Interlace MV Table 6

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	11
	4
	42
	402
	9
	84
	419
	9

	1
	3
	4
	43
	403
	9
	85
	420
	9

	2
	17
	5
	44
	21
	6
	86
	421
	9

	3
	61
	6
	45
	113
	7
	87
	422
	9

	4
	22
	6
	46
	56
	7
	88
	423
	9

	5
	84
	7
	47
	5
	7
	89
	97
	7

	6
	7
	7
	48
	134
	8
	90
	19
	7

	7
	114
	8
	49
	29
	8
	91
	131
	8

	8
	29
	5
	50
	404
	9
	92
	484
	9

	9
	15
	5
	51
	405
	9
	93
	424
	9

	10
	2
	5
	52
	406
	9
	94
	425
	9

	11
	40
	6
	53
	0
	5
	95
	426
	9

	12
	11
	6
	54
	25
	6
	96
	427
	9

	13
	98
	7
	55
	87
	7
	97
	428
	9

	14
	54
	7
	56
	17
	7
	98
	111
	8

	15
	243
	8
	57
	129
	8
	99
	28
	8

	16
	133
	8
	58
	482
	9
	100
	429
	9

	17
	4
	4
	59
	407
	9
	101
	430
	9

	18
	18
	5
	60
	408
	9
	102
	431
	9

	19
	62
	6
	61
	409
	9
	103
	432
	9

	20
	23
	6
	62
	83
	7
	104
	433
	9

	21
	85
	7
	63
	40
	7
	105
	434
	9

	22
	15
	7
	64
	199
	8
	106
	435
	9

	23
	115
	8
	65
	110
	8
	107
	20
	7

	24
	480
	9
	66
	9
	8
	108
	132
	8

	25
	400
	9
	67
	410
	9
	109
	485
	9

	26
	57
	6
	68
	411
	9
	110
	436
	9

	27
	29
	6
	69
	412
	9
	111
	437
	9

	28
	6
	6
	70
	413
	9
	112
	438
	9

	29
	82
	7
	71
	26
	6
	113
	439
	9

	30
	21
	7
	72
	96
	7
	114
	440
	9

	31
	198
	8
	73
	18
	7
	115
	441
	9

	32
	83
	8
	74
	130
	8
	116
	442
	9

	33
	8
	8
	75
	483
	9
	117
	443
	9

	34
	401
	9
	76
	414
	9
	118
	444
	9

	35
	19
	5
	77
	415
	9
	119
	445
	9

	36
	63
	6
	78
	416
	9
	120
	446
	9

	37
	24
	6
	79
	417
	9
	121
	447
	9

	38
	86
	7
	80
	6
	7
	122
	448
	9

	39
	16
	7
	81
	135
	8
	123
	449
	9

	40
	128
	8
	82
	82
	8
	124
	450
	9

	41
	481
	9
	83
	418
	9
	125
	451
	9

Table 124: 2-Field Reference Interlace MV Table 7

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	0
	3
	42
	509
	9
	
	57
	8

	1
	10
	4
	43
	510
	9
	
	58
	8

	2
	27
	5
	44
	95
	7
	
	59
	8

	3
	15
	5
	45
	58
	7
	
	60
	8

	4
	48
	6
	46
	206
	8
	
	61
	8

	5
	121
	7
	47
	140
	8
	
	247
	8

	6
	76
	7
	48
	511
	9
	
	158
	8

	7
	207
	8
	49
	32
	8
	
	62
	8

	8
	6
	4
	50
	33
	8
	
	63
	8

	9
	26
	5
	51
	34
	8
	
	64
	8

	10
	18
	5
	52
	35
	8
	
	65
	8

	11
	59
	6
	53
	34
	6
	
	66
	8

	12
	46
	6
	54
	100
	7
	
	67
	8

	13
	124
	7
	55
	245
	8
	
	68
	8

	14
	102
	7
	56
	156
	8
	
	69
	8

	15
	59
	7
	57
	36
	8
	
	70
	8

	16
	226
	8
	58
	37
	8
	
	71
	8

	17
	22
	5
	59
	38
	8
	
	72
	8

	18
	57
	6
	60
	39
	8
	
	73
	8

	19
	32
	6
	61
	40
	8
	
	74
	8

	20
	98
	7
	62
	240
	8
	
	75
	8

	21
	241
	8
	63
	189
	8
	
	76
	8

	22
	154
	8
	64
	41
	8
	
	77
	8

	23
	500
	9
	65
	42
	8
	
	159
	8

	24
	501
	9
	66
	43
	8
	
	78
	8

	25
	502
	9
	67
	44
	8
	
	79
	8

	26
	28
	6
	68
	45
	8
	
	80
	8

	27
	112
	7
	69
	46
	8
	
	81
	8

	28
	71
	7
	70
	47
	8
	
	82
	8

	29
	227
	8
	71
	101
	7
	
	83
	8

	30
	188
	8
	72
	246
	8
	
	84
	8

	31
	503
	9
	73
	157
	8
	
	85
	8

	32
	504
	9
	74
	48
	8
	
	86
	8

	33
	505
	9
	75
	49
	8
	
	87
	8

	34
	506
	9
	76
	50
	8
	
	88
	8

	35
	58
	6
	77
	51
	8
	
	89
	8

	36
	33
	6
	78
	52
	8
	
	90
	8

	37
	99
	7
	79
	53
	8
	
	91
	8

	38
	244
	8
	80
	141
	8
	
	92
	8

	39
	155
	8
	81
	54
	8
	
	93
	8

	40
	507
	9
	82
	55
	8
	
	94
	8

	41
	508
	9
	83
	56
	8
	
	95
	8

Table 125: 1-Field Reference Interlace MV Table 0

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	0
	2
	24
	99237
	17
	48
	7940
	13

	1
	28
	5
	25
	99238
	17
	49
	31774
	15

	2
	97
	7
	26
	4
	4
	50
	49617
	16

	3
	994
	10
	27
	49
	6
	51
	99267
	17

	4
	3307
	12
	28
	207
	8
	52
	99268
	17

	5
	12405
	14
	29
	993
	10
	53
	60
	6

	6
	127090
	17
	30
	1542
	11
	54
	204
	8

	7
	99236
	17
	31
	6203
	13
	55
	770
	10

	8
	2
	2
	32
	26429
	15
	56
	6621
	13

	9
	13
	4
	33
	127089
	17
	57
	26424
	15

	10
	61
	6
	34
	99239
	17
	58
	99269
	17

	11
	251
	8
	35
	5
	4
	59
	99270
	17

	12
	411
	9
	36
	117
	7
	60
	99271
	17

	13
	1654
	11
	37
	410
	9
	61
	99272
	17

	14
	7942
	13
	38
	3983
	12
	62
	100
	7

	15
	12401
	14
	39
	15882
	14
	63
	464
	9

	16
	52851
	16
	40
	52850
	16
	64
	1990
	11

	17
	3
	3
	41
	99264
	17
	65
	3087
	12

	18
	63
	6
	42
	99265
	17
	66
	13213
	14

	19
	233
	8
	43
	99266
	17
	67
	52861
	16

	20
	824
	10
	44
	59
	6
	68
	99273
	17

	21
	3086
	12
	45
	249
	8
	69
	99274
	17

	22
	26431
	15
	46
	386
	9
	70
	99275
	17

	23
	105720
	17
	47
	1652
	11
	71
	101
	7

Table 126: 1-Field Reference Interlace MV Table 1

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	0
	2
	24
	99237
	17
	48
	7940
	13

	1
	28
	5
	25
	99238
	17
	49
	31774
	15

	2
	97
	7
	26
	4
	4
	50
	49617
	16

	3
	994
	10
	27
	49
	6
	51
	99267
	17

	4
	3307
	12
	28
	207
	8
	52
	99268
	17

	5
	12405
	14
	29
	993
	10
	53
	60
	6

	6
	127090
	17
	30
	1542
	11
	54
	204
	8

	7
	99236
	17
	31
	6203
	13
	55
	770
	10

	8
	2
	2
	32
	26429
	15
	56
	6621
	13

	9
	13
	4
	33
	127089
	17
	57
	26424
	15

	10
	61
	6
	34
	99239
	17
	58
	99269
	17

	11
	251
	8
	35
	5
	4
	59
	99270
	17

	12
	411
	9
	36
	117
	7
	60
	99271
	17

	13
	1654
	11
	37
	410
	9
	61
	99272
	17

	14
	7942
	13
	38
	3983
	12
	62
	100
	7

	15
	12401
	14
	39
	15882
	14
	63
	464
	9

	16
	52851
	16
	40
	52850
	16
	64
	1990
	11

	17
	3
	3
	41
	99264
	17
	65
	3087
	12

	18
	63
	6
	42
	99265
	17
	66
	13213
	14

	19
	233
	8
	43
	99266
	17
	67
	52861
	16

	20
	824
	10
	44
	59
	6
	68
	99273
	17

	21
	3086
	12
	45
	249
	8
	69
	99274
	17

	22
	26431
	15
	46
	386
	9
	70
	99275
	17

	23
	105720
	17
	47
	1652
	11
	71
	101
	7

Table 127: 1-Field Reference Interlace MV Table 2

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	0
	2
	24
	99237
	17
	48
	7940
	13

	1
	28
	5
	25
	99238
	17
	49
	31774
	15

	2
	97
	7
	26
	4
	4
	50
	49617
	16

	3
	994
	10
	27
	49
	6
	51
	99267
	17

	4
	3307
	12
	28
	207
	8
	52
	99268
	17

	5
	12405
	14
	29
	993
	10
	53
	60
	6

	6
	127090
	17
	30
	1542
	11
	54
	204
	8

	7
	99236
	17
	31
	6203
	13
	55
	770
	10

	8
	2
	2
	32
	26429
	15
	56
	6621
	13

	9
	13
	4
	33
	127089
	17
	57
	26424
	15

	10
	61
	6
	34
	99239
	17
	58
	99269
	17

	11
	251
	8
	35
	5
	4
	59
	99270
	17

	12
	411
	9
	36
	117
	7
	60
	99271
	17

	13
	1654
	11
	37
	410
	9
	61
	99272
	17

	14
	7942
	13
	38
	3983
	12
	62
	100
	7

	15
	12401
	14
	39
	15882
	14
	63
	464
	9

	16
	52851
	16
	40
	52850
	16
	64
	1990
	11

	17
	3
	3
	41
	99264
	17
	65
	3087
	12

	18
	63
	6
	42
	99265
	17
	66
	13213
	14

	19
	233
	8
	43
	99266
	17
	67
	52861
	16

	20
	824
	10
	44
	59
	6
	68
	99273
	17

	21
	3086
	12
	45
	249
	8
	69
	99274
	17

	22
	26431
	15
	46
	386
	9
	70
	99275
	17

	23
	105720
	17
	47
	1652
	11
	71
	101
	7

Table 128: 1-Field Reference Interlace MV Table 3

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	0
	2
	24
	99237
	17
	48
	7940
	13

	1
	28
	5
	25
	99238
	17
	49
	31774
	15

	2
	97
	7
	26
	4
	4
	50
	49617
	16

	3
	994
	10
	27
	49
	6
	51
	99267
	17

	4
	3307
	12
	28
	207
	8
	52
	99268
	17

	5
	12405
	14
	29
	993
	10
	53
	60
	6

	6
	127090
	17
	30
	1542
	11
	54
	204
	8

	7
	99236
	17
	31
	6203
	13
	55
	770
	10

	8
	2
	2
	32
	26429
	15
	56
	6621
	13

	9
	13
	4
	33
	127089
	17
	57
	26424
	15

	10
	61
	6
	34
	99239
	17
	58
	99269
	17

	11
	251
	8
	35
	5
	4
	59
	99270
	17

	12
	411
	9
	36
	117
	7
	60
	99271
	17

	13
	1654
	11
	37
	410
	9
	61
	99272
	17

	14
	7942
	13
	38
	3983
	12
	62
	100
	7

	15
	12401
	14
	39
	15882
	14
	63
	464
	9

	16
	52851
	16
	40
	52850
	16
	64
	1990
	11

	17
	3
	3
	41
	99264
	17
	65
	3087
	12

	18
	63
	6
	42
	99265
	17
	66
	13213
	14

	19
	233
	8
	43
	99266
	17
	67
	52861
	16

	20
	824
	10
	44
	59
	6
	68
	99273
	17

	21
	3086
	12
	45
	249
	8
	69
	99274
	17

	22
	26431
	15
	46
	386
	9
	70
	99275
	17

	23
	105720
	17
	47
	1652
	11
	71
	101
	7

10.5 Interlace Pictures MB Mode Tables

10.5.1 Interlace Field P / B Pictures Mixed MV MB Mode Tables
Table 129: Mixed MV MB Mode Table 0
	MB Mode
	VLC Codeword
	VLC Size

	0
	16
	6

	1
	17
	6

	2
	3
	2

	3
	3
	3

	4
	0
	2

	5
	5
	4

	6
	9
	5

	7
	2
	2

Table 130: Mixed MV MB Mode Table 1
	MB Mode
	VLC Codeword
	VLC Size

	0
	8
	5

	1
	9
	5

	2
	3
	3

	3
	6
	3

	4
	7
	3

	5
	0
	2

	6
	5
	4

	7
	2
	2

Table 131: Mixed MV MB Mode Table 2
	MB Mode
	VLC Codeword
	VLC Size

	0
	16
	6

	1
	17
	6

	2
	5
	4

	3
	3
	3

	4
	0
	2

	5
	3
	2

	6
	9
	5

	7
	2
	2

Table 132: Mixed MV MB Mode Table 3
	MB Mode
	VLC Codeword
	VLC Size

	0
	56
	6

	1
	57
	6

	2
	15
	4

	3
	4
	3

	4
	5
	3

	5
	6
	3

	6
	29
	5

	7
	0
	1

Table 133: Mixed MV MB Mode Table 4
	MB Mode
	VLC Codeword
	VLC Size

	0
	52
	6

	1
	53
	6

	2
	27
	5

	3
	14
	4

	4
	15
	4

	5
	2
	2

	6
	12
	4

	7
	0
	1

Table 134: Mixed MV MB Mode Table 5
	MB Mode
	VLC Codeword
	VLC Size

	0
	56
	6

	1
	57
	6

	2
	29
	5

	3
	5
	3

	4
	6
	3

	5
	0
	1

	6
	15
	4

	7
	4
	3

Table 135: Mixed MV MB Mode Table 6
	MB Mode
	VLC Codeword
	VLC Size

	0
	16
	5

	1
	17
	5

	2
	6
	3

	3
	7
	3

	4
	0
	2

	5
	1
	2

	6
	9
	4

	7
	5
	3

Table 136: Mixed MV MB Mode Table 7

	MB Mode
	VLC Codeword
	VLC Size

	0
	56
	6

	1
	57
	6

	2
	0
	1

	3
	5
	3

	4
	6
	3

	5
	29
	5

	6
	4
	3

	7
	15
	4

10.5.2 Interlace Field P / B Pictures 1-MV MB Mode Tables

Table 137: 1-MV MB Mode Table 0

	MB Mode
	VLC Codeword
	VLC Size

	0
	0
	5

	1
	1
	5

	2
	1
	1

	3
	1
	3

	4
	1
	2

	5
	1
	4

Table 138: 1-MV MB Mode Table 1

	MB Mode
	VLC Codeword
	VLC Size

	0
	0
	5

	1
	1
	5

	2
	1
	1

	3
	1
	2

	4
	1
	3

	5
	1
	4

Table 139: 1-MV MB Mode Table 2

	MB Mode
	VLC Codeword
	VLC Size

	0
	16
	5

	1
	17
	5

	2
	3
	2

	3
	0
	1

	4
	9
	4

	5
	5
	3

Table 140: 1-MV MB Mode Table 3

	MB Mode
	VLC Codeword
	VLC Size

	0
	20
	5

	1
	21
	5

	2
	3
	2

	3
	11
	4

	4
	0
	1

	5
	4
	3

Table 141: 1-MV MB Mode Table 4

	MB Mode
	VLC Codeword
	VLC Size

	0
	4
	4

	1
	5
	4

	2
	2
	2

	3
	3
	3

	4
	3
	2

	5
	0
	2

Table 142: 1-MV MB Mode Table 5

	MB Mode
	VLC Codeword
	VLC Size

	0
	4
	4

	1
	5
	4

	2
	3
	3

	3
	2
	2

	4
	0
	2

	5
	3
	2

Table 143: 1-MV MB Mode Table 6

	MB Mode
	VLC Codeword
	VLC Size

	0
	0
	5

	1
	1
	5

	2
	1
	3

	3
	1
	4

	4
	1
	1

	5
	1
	2

Table 144: 1-MV MB Mode Table 7

	MB Mode
	VLC Codeword
	VLC Size

	0
	16
	5

	1
	17
	5

	2
	9
	4

	3
	5
	3

	4
	3
	2

	5
	0
	1

10.5.3 Interlace Frame P / B Pictures 4MV MBMODE Tables
Table 145: Interlace Frame 4MV MB Mode Table 0
	MB
Type
	MV
Present
	Field/Frame Transform
	VLC Codeword
	VLC
Size

	1 MV
	1
	Frame
	22
	5

	1 MV
	1
	Field
	17
	5

	1 MV
	1
	No CBP
	0
	2

	1 MV
	0
	Frame
	47
	6

	1 MV
	0
	Field
	32
	6

	2 MV (F)
	N/A
	Frame
	10
	4

	2 MV (F)
	N/A
	Field
	1
	2

	2 MV (F)
	N/A
	No CBP
	3
	2

	4 MV
	N/A
	Frame
	67
	7

	4 MV
	N/A
	Field
	133
	8

	4 MV
	N/A
	No CBP
	132
	8

	4 MV (F)
	N/A
	Frame
	92
	7

	4 MV (F)
	N/A
	Field
	19
	5

	4 MV (F)
	N/A
	No CBP
	93
	7

	INTRA
	N/A
	N/A
	18
	5

Table 146: Interlace Frame 4MV MB Mode Table 1
	MB
Type
	MV
Present
	Field/Frame Transform
	VLC Codeword
	VLC
Size

	1 MV
	1
	Frame
	3
	3

	1 MV
	1
	Field
	45
	6

	1 MV
	1
	No CBP
	0
	3

	1 MV
	0
	Frame
	7
	3

	1 MV
	0
	Field
	23
	5

	2 MV (F)
	N/A
	Frame
	6
	3

	2 MV (F)
	N/A
	Field
	1
	3

	2 MV (F)
	N/A
	No CBP
	2
	3

	4 MV
	N/A
	Frame
	10
	4

	4 MV
	N/A
	Field
	39
	6

	4 MV
	N/A
	No CBP
	44
	6

	4 MV (F)
	N/A
	Frame
	8
	4

	4 MV (F)
	N/A
	Field
	18
	5

	4 MV (F)
	N/A
	No CBP
	77
	7

	INTRA
	N/A
	N/A
	76
	7

Table 147: Interlace Frame 4MV MB Mode Table 2
	MB
Type
	MV
Present
	Field/Frame Transform
	VLC Codeword
	VLC
Size

	1 MV
	1
	Frame
	15
	4

	1 MV
	1
	Field
	6
	3

	1 MV
	1
	No CBP
	28
	5

	1 MV
	0
	Frame
	9
	5

	1 MV
	0
	Field
	41
	7

	2 MV (F)
	N/A
	Frame
	6
	4

	2 MV (F)
	N/A
	Field
	2
	2

	2 MV (F)
	N/A
	No CBP
	15
	5

	4 MV
	N/A
	Frame
	14
	5

	4 MV
	N/A
	Field
	8
	5

	4 MV
	N/A
	No CBP
	40
	7

	4 MV (F)
	N/A
	Frame
	29
	5

	4 MV (F)
	N/A
	Field
	0
	2

	4 MV (F)
	N/A
	No CBP
	21
	6

	INTRA
	N/A
	N/A
	11
	5

Table 148: Interlace Frame 4MV MB Mode Table 3
	MB
Type
	MV
Present
	Field/Frame Transform
	VLC Codeword
	VLC
Size

	1 MV
	1
	Frame
	7
	4

	1 MV
	1
	Field
	198
	9

	1 MV
	1
	No CBP
	1
	1

	1 MV
	0
	Frame
	2
	3

	1 MV
	0
	Field
	193
	9

	2 MV (F)
	N/A
	Frame
	13
	5

	2 MV (F)
	N/A
	Field
	25
	6

	2 MV (F)
	N/A
	No CBP
	0
	2

	4 MV
	N/A
	Frame
	97
	8

	4 MV
	N/A
	Field
	1599
	12

	4 MV
	N/A
	No CBP
	98
	8

	4 MV (F)
	N/A
	Frame
	398
	10

	4 MV (F)
	N/A
	Field
	798
	11

	4 MV (F)
	N/A
	No CBP
	192
	9

	INTRA
	N/A
	N/A
	1598
	12

10.5.4 Interlace Frame P / B Pictures Non 4MV MBMODE Tables
Table 149: Interlace Frame Non 4MV MB Mode Table 0
	MB
Type
	MV
Present
	Field/Frame Transform
	VLC Codeword
	VLC
Size

	1 MV
	1
	Frame
	9
	4

	1 MV
	1
	Field
	22
	5

	1 MV
	1
	No CBP
	0
	2

	1 MV
	0
	Frame
	17
	5

	1 MV
	0
	Field
	16
	5

	2 MV (F)
	N/A
	Frame
	10
	4

	2 MV (F)
	N/A
	Field
	1
	2

	2 MV (F)
	N/A
	No CBP
	3
	2

	INTRA
	N/A
	N/A
	23
	5

Table 150: Interlace Frame Non 4MV MB Mode Table 1
	MB
Type
	MV
Present
	Field/Frame Transform
	VLC Codeword
	VLC
Size

	1 MV
	1
	Frame
	7
	3

	1 MV
	1
	Field
	0
	4

	1 MV
	1
	No CBP
	5
	6

	1 MV
	0
	Frame
	2
	2

	1 MV
	0
	Field
	1
	3

	2 MV (F)
	N/A
	Frame
	1
	2

	2 MV (F)
	N/A
	Field
	6
	3

	2 MV (F)
	N/A
	No CBP
	3
	5

	INTRA
	N/A
	N/A
	4
	6

Table 151: Interlace Frame Non 4MV MB Mode Table 2
	MB
Type
	MV
Present
	Field/Frame Transform
	VLC Codeword
	VLC
Size

	1 MV
	1
	Frame
	1
	2

	1 MV
	1
	Field
	0
	2

	1 MV
	1
	No CBP
	10
	4

	1 MV
	0
	Frame
	23
	5

	1 MV
	0
	Field
	44
	6

	2 MV (F)
	N/A
	Frame
	8
	4

	2 MV (F)
	N/A
	Field
	3
	2

	2 MV (F)
	N/A
	No CBP
	9
	4

	INTRA
	N/A
	N/A
	45
	6

Table 152: Interlace Frame Non 4MV MB Mode Table 3
	MB
Type
	MV
Present
	Field/Frame Transform
	VLC Codeword
	VLC
Size

	1 MV
	1
	Frame
	7
	4

	1 MV
	1
	Field
	97
	8

	1 MV
	1
	No CBP
	1
	1

	1 MV
	0
	Frame
	2
	3

	1 MV
	0
	Field
	49
	7

	2 MV (F)
	N/A
	Frame
	13
	5

	2 MV (F)
	N/A
	Field
	25
	6

	2 MV (F)
	N/A
	No CBP
	0
	2

	INTRA
	N/A
	N/A
	96
	8

10.6 I-Picture CBPCY Tables
Table 153: I-Picture CBPCY VLC Table

	CBPCY
	VLC Codeword
	VLC Size
	CBPCY
	VLC Codeword
	VLC Size

	0
	1
	1
	32
	6
	4

	1
	23
	6
	33
	3
	9

	2
	9
	5
	34
	30
	7

	3
	5
	5
	35
	28
	6

	4
	6
	5
	36
	18
	7

	5
	71
	9
	37
	904
	12

	6
	32
	7
	38
	68
	9

	7
	16
	7
	39
	112
	9

	8
	2
	5
	40
	31
	6

	9
	124
	9
	41
	574
	11

	10
	58
	7
	42
	57
	8

	11
	29
	7
	43
	142
	9

	12
	2
	6
	44
	1
	7

	13
	236
	9
	45
	454
	11

	14
	119
	8
	46
	182
	9

	15
	0
	8
	47
	69
	9

	16
	3
	5
	48
	20
	6

	17
	183
	9
	49
	575
	11

	18
	44
	7
	50
	125
	9

	19
	19
	7
	51
	24
	9

	20
	1
	6
	52
	7
	7

	21
	360
	10
	53
	455
	11

	22
	70
	8
	54
	134
	9

	23
	63
	8
	55
	25
	9

	24
	30
	6
	56
	21
	6

	25
	1810
	13
	57
	475
	10

	26
	181
	9
	58
	2
	9

	27
	66
	8
	59
	70
	9

	28
	34
	7
	60
	13
	8

	29
	453
	11
	61
	1811
	13

	30
	286
	10
	62
	474
	10

	31
	135
	9
	63
	361
	10

10.7 P-Picture CBPCY Tables
Table 154: P-Picture CBPCY VLC Table 0

	CBPCY
	VLC Codeword
	VLC Size
	CBPCY
	VLC Codeword
	VLC Size

	0
	0
	13
	32
	6
	13

	1
	1
	6
	33
	7
	13

	2
	1
	5
	34
	54
	7

	3
	4
	6
	35
	103
	8

	4
	5
	6
	36
	8
	13

	5
	1
	7
	37
	9
	13

	6
	12
	7
	38
	10
	13

	7
	4
	5
	39
	110
	8

	8
	13
	7
	40
	11
	13

	9
	14
	7
	41
	12
	13

	10
	10
	6
	42
	111
	8

	11
	11
	6
	43
	56
	7

	12
	12
	6
	44
	114
	8

	13
	7
	5
	45
	58
	7

	14
	13
	6
	46
	115
	8

	15
	2
	3
	47
	5
	3

	16
	15
	7
	48
	13
	13

	17
	1
	8
	49
	7
	12

	18
	96
	8
	50
	8
	12

	19
	1
	13
	51
	9
	12

	20
	49
	7
	52
	10
	12

	21
	97
	8
	53
	11
	12

	22
	2
	13
	54
	12
	12

	23
	100
	8
	55
	30
	6

	24
	3
	13
	56
	13
	12

	25
	4
	13
	57
	14
	12

	26
	5
	13
	58
	15
	12

	27
	101
	8
	59
	118
	8

	28
	102
	8
	60
	119
	8

	29
	52
	7
	61
	62
	7

	30
	53
	7
	62
	63
	7

	31
	4
	3
	63
	3
	2

Table 155: P-Picture CBPCY VLC Table 1

	CBPCY
	VLC Codeword
	VLC Size
	CBPCY
	VLC Codeword
	VLC Size

	0
	0
	14
	32
	9
	13

	1
	1
	3
	33
	240
	8

	2
	2
	3
	34
	10
	13

	3
	1
	5
	35
	11
	13

	4
	3
	3
	36
	121
	7

	5
	1
	4
	37
	122
	7

	6
	16
	5
	38
	12
	13

	7
	17
	5
	39
	13
	13

	8
	5
	3
	40
	14
	13

	9
	18
	5
	41
	15
	13

	10
	12
	4
	42
	241
	8

	11
	19
	5
	43
	246
	8

	12
	13
	4
	44
	16
	13

	13
	1
	6
	45
	17
	13

	14
	28
	5
	46
	124
	7

	15
	58
	6
	47
	63
	6

	16
	1
	8
	48
	18
	13

	17
	1
	14
	49
	19
	13

	18
	1
	13
	50
	20
	13

	19
	2
	8
	51
	21
	13

	20
	3
	8
	52
	22
	13

	21
	2
	13
	53
	23
	13

	22
	3
	13
	54
	24
	13

	23
	236
	8
	55
	25
	13

	24
	237
	8
	56
	26
	13

	25
	4
	13
	57
	27
	13

	26
	5
	13
	58
	28
	13

	27
	238
	8
	59
	29
	13

	28
	6
	13
	60
	30
	13

	29
	7
	13
	61
	31
	13

	30
	239
	8
	62
	247
	8

	31
	8
	13
	63
	125
	7

Table 156: P-Picture CBPCY VLC Table 2

	CBPCY
	VLC Codeword
	VLC Size
	CBPCY
	VLC Codeword
	VLC Size

	0
	0
	13
	32
	201
	8

	1
	1
	5
	33
	102
	7

	2
	2
	5
	34
	412
	9

	3
	3
	5
	35
	413
	9

	4
	2
	4
	36
	414
	9

	5
	3
	4
	37
	54
	6

	6
	1
	6
	38
	220
	8

	7
	4
	4
	39
	111
	7

	8
	5
	4
	40
	221
	8

	9
	24
	6
	41
	3
	13

	10
	7
	4
	42
	224
	8

	11
	13
	5
	43
	113
	7

	12
	16
	5
	44
	225
	8

	13
	17
	5
	45
	114
	7

	14
	9
	4
	46
	230
	8

	15
	5
	3
	47
	29
	5

	16
	25
	6
	48
	231
	8

	17
	1
	8
	49
	415
	9

	18
	1
	10
	50
	240
	8

	19
	1
	9
	51
	4
	13

	20
	2
	8
	52
	241
	8

	21
	3
	8
	53
	484
	9

	22
	96
	7
	54
	5
	13

	23
	194
	8
	55
	243
	8

	24
	1
	13
	56
	3
	12

	25
	2
	13
	57
	244
	8

	26
	98
	7
	58
	245
	8

	27
	99
	7
	59
	485
	9

	28
	195
	8
	60
	492
	9

	29
	200
	8
	61
	493
	9

	30
	101
	7
	62
	247
	8

	31
	26
	5
	63
	31
	5

Table 157: P-Picture CBPCY VLC Table 3

	CBPCY
	VLC Codeword
	VLC Size
	CBPCY
	VLC Codeword
	VLC Size

	0
	0
	9
	32
	28
	9

	1
	1
	2
	33
	29
	9

	2
	1
	3
	34
	30
	9

	3
	1
	9
	35
	31
	9

	4
	2
	2
	36
	32
	9

	5
	2
	9
	37
	33
	9

	6
	3
	9
	38
	34
	9

	7
	4
	9
	39
	35
	9

	8
	3
	2
	40
	36
	9

	9
	5
	9
	41
	37
	9

	10
	6
	9
	42
	38
	9

	11
	7
	9
	43
	39
	9

	12
	8
	9
	44
	40
	9

	13
	9
	9
	45
	41
	9

	14
	10
	9
	46
	42
	9

	15
	11
	9
	47
	43
	9

	16
	12
	9
	48
	44
	9

	17
	13
	9
	49
	45
	9

	18
	14
	9
	50
	46
	9

	19
	15
	9
	51
	47
	9

	20
	16
	9
	52
	48
	9

	21
	17
	9
	53
	49
	9

	22
	18
	9
	54
	50
	9

	23
	19
	9
	55
	51
	9

	24
	20
	9
	56
	52
	9

	25
	21
	9
	57
	53
	9

	26
	22
	9
	58
	54
	9

	27
	23
	9
	59
	55
	9

	28
	24
	9
	60
	28
	8

	29
	25
	9
	61
	29
	8

	30
	26
	9
	62
	30
	8

	31
	27
	9
	63
	31
	8

10.8 DC Differential Tables

10.8.1 Low-motion Tables

Table 158: Low-motion Luminance DC Differential VLC Table

	DC Differential
	VLC Codeword
	VLC Size
	DC Differential
	VLC Codeword
	VLC Size
	DC Differential
	VLC Codeword
	VLC Size

	0
	1
	1
	40
	151
	14
	80
	197608
	23

	1
	1
	2
	41
	384
	14
	81
	197609
	23

	2
	1
	4
	42
	788
	15
	82
	197610
	23

	3
	1
	5
	43
	789
	15
	83
	197611
	23

	4
	5
	5
	44
	1541
	16
	84
	197612
	23

	5
	7
	5
	45
	1540
	16
	85
	197613
	23

	6
	8
	6
	46
	1542
	16
	86
	197614
	23

	7
	12
	6
	47
	3086
	17
	87
	197615
	23

	8
	0
	7
	48
	197581
	23
	88
	197616
	23

	9
	2
	7
	49
	197577
	23
	89
	197617
	23

	10
	18
	7
	50
	197576
	23
	90
	197618
	23

	11
	26
	7
	51
	197578
	23
	91
	197619
	23

	12
	3
	8
	52
	197579
	23
	92
	197620
	23

	13
	7
	8
	53
	197580
	23
	93
	197621
	23

	14
	39
	8
	54
	197582
	23
	94
	197622
	23

	15
	55
	8
	55
	197583
	23
	95
	197623
	23

	16
	5
	9
	56
	197584
	23
	96
	197624
	23

	17
	76
	9
	57
	197585
	23
	97
	197625
	23

	18
	108
	9
	58
	197586
	23
	98
	197626
	23

	19
	109
	9
	59
	197587
	23
	99
	197627
	23

	20
	8
	10
	60
	197588
	23
	100
	197628
	23

	21
	25
	10
	61
	197589
	23
	101
	197629
	23

	22
	155
	10
	62
	197590
	23
	102
	197630
	23

	23
	27
	10
	63
	197591
	23
	103
	197631
	23

	24
	154
	10
	64
	197592
	23
	104
	395136
	24

	25
	19
	11
	65
	197593
	23
	105
	395137
	24

	26
	52
	11
	66
	197594
	23
	106
	395138
	24

	27
	53
	11
	67
	197595
	23
	107
	395139
	24

	28
	97
	12
	68
	197596
	23
	108
	395140
	24

	29
	72
	13
	69
	197597
	23
	109
	395141
	24

	30
	196
	13
	70
	197598
	23
	110
	395142
	24

	31
	74
	13
	71
	197599
	23
	111
	395143
	24

	32
	198
	13
	72
	197600
	23
	112
	395144
	24

	33
	199
	13
	73
	197601
	23
	113
	395145
	24

	34
	146
	14
	74
	197602
	23
	114
	395146
	24

	35
	395
	14
	75
	197603
	23
	115
	395147
	24

	36
	147
	14
	76
	197604
	23
	116
	395148
	24

	37
	387
	14
	77
	197605
	23
	117
	395149
	24

	38
	386
	14
	78
	197606
	23
	118
	395150
	24

	39
	150
	14
	79
	197607
	23
	ESCAPE
	395151
	24

Table 159: Low-motion Chroma DC Differential VLC Table

	DC Differential
	VLC Codeword
	VLC Size
	DC Differential
	VLC Codeword
	VLC Size
	DC Differential
	VLC Codeword
	VLC Size

	0
	0
	2
	40
	1630
	11
	80
	3163240
	22

	1
	1
	2
	41
	3256
	12
	81
	3163241
	22

	2
	5
	3
	42
	3088
	12
	82
	3163242
	22

	3
	9
	4
	43
	3257
	12
	83
	3163243
	22

	4
	13
	4
	44
	6179
	13
	84
	3163244
	22

	5
	17
	5
	45
	12357
	14
	85
	3163245
	22

	6
	29
	5
	46
	24713
	15
	86
	3163246
	22

	7
	31
	5
	47
	49424
	16
	87
	3163247
	22

	8
	33
	6
	48
	3163208
	22
	88
	3163248
	22

	9
	49
	6
	49
	3163209
	22
	89
	3163249
	22

	10
	56
	6
	50
	3163210
	22
	90
	3163250
	22

	11
	51
	6
	51
	3163211
	22
	91
	3163251
	22

	12
	57
	6
	52
	3163212
	22
	92
	3163252
	22

	13
	61
	6
	53
	3163213
	22
	93
	3163253
	22

	14
	97
	7
	54
	3163214
	22
	94
	3163254
	22

	15
	121
	7
	55
	3163215
	22
	95
	3163255
	22

	16
	128
	8
	56
	3163216
	22
	96
	3163256
	22

	17
	200
	8
	57
	3163217
	22
	97
	3163257
	22

	18
	202
	8
	58
	3163218
	22
	98
	3163258
	22

	19
	240
	8
	59
	3163219
	22
	99
	3163259
	22

	20
	129
	8
	60
	3163220
	22
	100
	3163260
	22

	21
	192
	8
	61
	3163221
	22
	101
	3163261
	22

	22
	201
	8
	62
	3163222
	22
	102
	3163262
	22

	23
	263
	9
	63
	3163223
	22
	103
	3163263
	22

	24
	262
	9
	64
	3163224
	22
	104
	6326400
	23

	25
	406
	9
	65
	3163225
	22
	105
	6326401
	23

	26
	387
	9
	66
	3163226
	22
	106
	6326402
	23

	27
	483
	9
	67
	3163227
	22
	107
	6326403
	23

	28
	482
	9
	68
	3163228
	22
	108
	6326404
	23

	29
	522
	10
	69
	3163229
	22
	109
	6326405
	23

	30
	523
	10
	70
	3163230
	22
	110
	6326406
	23

	31
	1545
	11
	71
	3163231
	22
	111
	6326407
	23

	32
	1042
	11
	72
	3163232
	22
	112
	6326408
	23

	33
	1043
	11
	73
	3163233
	22
	113
	6326409
	23

	34
	1547
	11
	74
	3163234
	22
	114
	6326410
	23

	35
	1041
	11
	75
	3163235
	22
	115
	6326411
	23

	36
	1546
	11
	76
	3163236
	22
	116
	6326412
	23

	37
	1631
	11
	77
	3163237
	22
	117
	6326413
	23

	38
	1040
	11
	78
	3163238
	22
	118
	6326414
	23

	39
	1629
	11
	79
	3163239
	22
	ESCAPE
	6326415
	23

10.8.2 High-motion Tables

Table 160: High-motion Luminance DC Differential VLC Table

	DC Differential
	VLC Codeword
	VLC Size
	DC Differential
	VLC Codeword
	VLC Size
	DC Differential
	VLC Codeword
	VLC Size

	0
	2
	2
	40
	824
	12
	80
	1993024
	26

	1
	3
	2
	41
	829
	12
	81
	1993025
	26

	2
	3
	3
	42
	171
	13
	82
	1993026
	26

	3
	2
	4
	43
	241
	13
	83
	1993027
	26

	4
	5
	4
	44
	1656
	13
	84
	1993028
	26

	5
	1
	5
	45
	242
	13
	85
	1993029
	26

	6
	3
	5
	46
	480
	14
	86
	1993030
	26

	7
	8
	5
	47
	481
	14
	87
	1993031
	26

	8
	0
	6
	48
	340
	14
	88
	1993032
	26

	9
	5
	6
	49
	3314
	14
	89
	1993033
	26

	10
	13
	6
	50
	972
	15
	90
	1993034
	26

	11
	15
	6
	51
	683
	15
	91
	1993035
	26

	12
	19
	6
	52
	6631
	15
	92
	1993036
	26

	13
	8
	7
	53
	974
	15
	93
	1993037
	26

	14
	24
	7
	54
	6630
	15
	94
	1993038
	26

	15
	28
	7
	55
	1364
	16
	95
	1993039
	26

	16
	36
	7
	56
	1951
	16
	96
	1993040
	26

	17
	4
	8
	57
	1365
	16
	97
	1993041
	26

	18
	6
	8
	58
	3901
	17
	98
	1993042
	26

	19
	18
	8
	59
	3895
	17
	99
	1993043
	26

	20
	50
	8
	60
	3900
	17
	100
	1993044
	26

	21
	59
	8
	61
	3893
	17
	101
	1993045
	26

	22
	74
	8
	62
	7789
	18
	102
	1993046
	26

	23
	75
	8
	63
	7784
	18
	103
	1993047
	26

	24
	11
	9
	64
	15576
	19
	104
	1993048
	26

	25
	38
	9
	65
	15571
	19
	105
	1993049
	26

	26
	39
	9
	66
	15577
	19
	106
	1993050
	26

	27
	102
	9
	67
	31140
	20
	107
	1993051
	26

	28
	116
	9
	68
	996538
	25
	108
	1993052
	26

	29
	117
	9
	69
	996532
	25
	109
	1993053
	26

	30
	20
	10
	70
	996533
	25
	110
	1993054
	26

	31
	28
	10
	71
	996534
	25
	111
	1993055
	26

	32
	31
	10
	72
	996535
	25
	112
	1993056
	26

	33
	29
	10
	73
	996536
	25
	113
	1993057
	26

	34
	43
	11
	74
	996537
	25
	114
	1993058
	26

	35
	61
	11
	75
	996539
	25
	115
	1993059
	26

	36
	413
	11
	76
	996540
	25
	116
	1993060
	26

	37
	415
	11
	77
	996541
	25
	117
	1993061
	26

	38
	84
	12
	78
	996542
	25
	118
	1993062
	26

	39
	825
	12
	79
	996543
	25
	ESCAPE
	1993063
	26

Table 161: High-motion Chroma DC Differential VLC Table

	DC Differential
	VLC Codeword
	VLC Size
	DC Differential
	VLC Codeword
	VLC Size
	DC Differential
	VLC Codeword
	VLC Size

	0
	0
	2
	40
	51124
	16
	80
	13087336
	24

	1
	1
	2
	41
	51125
	16
	81
	13087337
	24

	2
	4
	3
	42
	25566
	15
	82
	13087338
	24

	3
	7
	3
	43
	51127
	16
	83
	13087339
	24

	4
	11
	4
	44
	51128
	16
	84
	13087340
	24

	5
	13
	4
	45
	51129
	16
	85
	13087341
	24

	6
	21
	5
	46
	102245
	17
	86
	13087342
	24

	7
	40
	6
	47
	204488
	18
	87
	13087343
	24

	8
	48
	6
	48
	13087304
	24
	88
	13087344
	24

	9
	50
	6
	49
	13087305
	24
	89
	13087345
	24

	10
	82
	7
	50
	13087306
	24
	90
	13087346
	24

	11
	98
	7
	51
	13087307
	24
	91
	13087347
	24

	12
	102
	7
	52
	13087308
	24
	92
	13087348
	24

	13
	166
	8
	53
	13087309
	24
	93
	13087349
	24

	14
	198
	8
	54
	13087310
	24
	94
	13087350
	24

	15
	207
	8
	55
	13087311
	24
	95
	13087351
	24

	16
	335
	9
	56
	13087312
	24
	96
	13087352
	24

	17
	398
	9
	57
	13087313
	24
	97
	13087353
	24

	18
	412
	9
	58
	13087314
	24
	98
	13087354
	24

	19
	669
	10
	59
	13087315
	24
	99
	13087355
	24

	20
	826
	10
	60
	13087316
	24
	100
	13087356
	24

	21
	1336
	11
	61
	13087317
	24
	101
	13087357
	24

	22
	1596
	11
	62
	13087318
	24
	102
	13087358
	24

	23
	1598
	11
	63
	13087319
	24
	103
	13087359
	24

	24
	1599
	11
	64
	13087320
	24
	104
	26174592
	25

	25
	1654
	11
	65
	13087321
	24
	105
	26174593
	25

	26
	2675
	12
	66
	13087322
	24
	106
	26174594
	25

	27
	3194
	12
	67
	13087323
	24
	107
	26174595
	25

	28
	3311
	12
	68
	13087324
	24
	108
	26174596
	25

	29
	5349
	13
	69
	13087325
	24
	109
	26174597
	25

	30
	6621
	13
	70
	13087326
	24
	110
	26174598
	25

	31
	10696
	14
	71
	13087327
	24
	111
	26174599
	25

	32
	10697
	14
	72
	13087328
	24
	112
	26174600
	25

	33
	25565
	15
	73
	13087329
	24
	113
	26174601
	25

	34
	13240
	14
	74
	13087330
	24
	114
	26174602
	25

	35
	13241
	14
	75
	13087331
	24
	115
	26174603
	25

	36
	51126
	16
	76
	13087332
	24
	116
	26174604
	25

	37
	25560
	15
	77
	13087333
	24
	117
	26174605
	25

	38
	25567
	15
	78
	13087334
	24
	118
	26174606
	25

	39
	51123
	16
	79
	13087335
	24
	ESCAPE
	26174607
	25

10.9 Transform AC Coefficient Tables

10.9.1 High Motion Intra Tables

Table 162: High Motion Intra VLC Table

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	1
	2
	62
	7920
	15
	124
	9183
	14

	1
	5
	3
	63
	61
	6
	125
	25
	5

	2
	13
	4
	64
	83
	9
	126
	40
	9

	3
	18
	5
	65
	416
	11
	127
	374
	11

	4
	14
	6
	66
	726
	13
	128
	1181
	13

	5
	21
	7
	67
	3848
	14
	129
	9181
	14

	6
	19
	8
	68
	19
	7
	130
	48
	6

	7
	63
	8
	69
	124
	9
	131
	162
	10

	8
	75
	9
	70
	1985
	11
	132
	751
	12

	9
	287
	9
	71
	1196
	14
	133
	1464
	14

	10
	184
	10
	72
	27
	7
	134
	63
	6

	11
	995
	10
	73
	160
	10
	135
	165
	10

	12
	370
	11
	74
	836
	12
	136
	987
	12

	13
	589
	12
	75
	3961
	14
	137
	2367
	14

	14
	986
	12
	76
	121
	7
	138
	68
	7

	15
	733
	13
	77
	993
	10
	139
	1995
	11

	16
	8021
	13
	78
	724
	13
	140
	2399
	15

	17
	1465
	14
	79
	8966
	14
	141
	99
	7

	18
	16046
	14
	80
	33
	8
	142
	963
	12

	19
	0
	4
	81
	572
	10
	143
	21
	8

	20
	16
	5
	82
	4014
	12
	144
	2294
	12

	21
	8
	7
	83
	9182
	14
	145
	23
	8

	22
	32
	8
	84
	53
	8
	146
	1176
	13

	23
	41
	9
	85
	373
	11
	147
	44
	8

	24
	500
	9
	86
	1971
	13
	148
	1970
	13

	25
	563
	10
	87
	197
	8
	149
	47
	8

	26
	480
	11
	88
	372
	11
	150
	8020
	13

	27
	298
	12
	89
	1925
	13
	151
	141
	8

	28
	989
	12
	90
	72
	9
	152
	1981
	13

	29
	1290
	13
	91
	419
	11
	153
	142
	8

	30
	7977
	13
	92
	1182
	13
	154
	4482
	13

	31
	2626
	14
	93
	44
	9
	155
	251
	8

	32
	4722
	15
	94
	250
	10
	156
	1291
	13

	33
	5943
	15
	95
	2006
	11
	157
	45
	8

	34
	3
	5
	96
	146
	10
	158
	1984
	11

	35
	17
	7
	97
	1484
	13
	159
	121
	9

	36
	196
	8
	98
	7921
	15
	160
	8031
	13

	37
	75
	10
	99
	163
	10
	161
	122
	9

	38
	180
	11
	100
	1005
	12
	162
	8022
	13

	39
	2004
	11
	101
	2366
	14
	163
	561
	10

	40
	837
	12
	102
	482
	11
	164
	996
	10

	41
	727
	13
	103
	4723
	15
	165
	417
	11

	42
	1983
	13
	104
	1988
	11
	166
	323
	11

	43
	2360
	14
	105
	5255
	15
	167
	503
	11

	44
	3003
	14
	106
	657
	12
	168
	367
	12

	45
	2398
	15
	107
	659
	12
	169
	658
	12

	46
	19
	5
	108
	3978
	12
	170
	743
	12

	47
	120
	7
	109
	1289
	13
	171
	364
	12

	48
	105
	9
	110
	1288
	13
	172
	365
	12

	49
	562
	10
	111
	1933
	13
	173
	988
	12

	50
	1121
	11
	112
	1982
	13
	174
	3979
	12

	51
	1004
	12
	113
	1932
	13
	175
	1177
	13

	52
	1312
	13
	114
	1198
	14
	176
	984
	12

	53
	7978
	13
	115
	3002
	14
	177
	1934
	13

	54
	15952
	14
	116
	8967
	14
	178
	725
	13

	55
	15953
	14
	117
	2970
	14
	179
	8030
	13

	56
	5254
	15
	118
	5942
	15
	180
	7979
	13

	57
	12
	6
	119
	14
	4
	181
	1935
	13

	58
	36
	9
	120
	69
	7
	182
	1197
	14

	59
	148
	11
	121
	499
	9
	183
	16047
	14

	60
	2240
	12
	122
	1146
	11
	184
	9180
	14

	61
	3849
	14
	123
	1500
	13
	ESCAPE
	74
	9

Table 163: High Motion Intra Indexed Run and Level Table (Last = 0)

	Index
	Run
	Level
	Index
	Run
	Level
	Index
	Run
	Level

	0
	0
	1
	40
	2
	7
	80
	9
	1

	1
	0
	2
	41
	2
	8
	81
	9
	2

	2
	0
	3
	42
	2
	9
	82
	9
	3

	3
	0
	4
	43
	2
	10
	83
	9
	4

	4
	0
	5
	44
	2
	11
	84
	10
	1

	5
	0
	6
	45
	2
	12
	85
	10
	2

	6
	0
	7
	46
	3
	1
	86
	10
	3

	7
	0
	8
	47
	3
	2
	87
	11
	1

	8
	0
	9
	48
	3
	3
	88
	11
	2

	9
	0
	10
	49
	3
	4
	89
	11
	3

	10
	0
	11
	50
	3
	5
	90
	12
	1

	11
	0
	12
	51
	3
	6
	91
	12
	2

	12
	0
	13
	52
	3
	7
	92
	12
	3

	13
	0
	14
	53
	3
	8
	93
	13
	1

	14
	0
	15
	54
	3
	9
	94
	13
	2

	15
	0
	16
	55
	3
	10
	95
	13
	3

	16
	0
	17
	56
	3
	11
	96
	14
	1

	17
	0
	18
	57
	4
	1
	97
	14
	2

	18
	0
	19
	58
	4
	2
	98
	14
	3

	19
	1
	1
	59
	4
	3
	99
	15
	1

	20
	1
	2
	60
	4
	4
	100
	15
	2

	21
	1
	3
	61
	4
	5
	101
	15
	3

	22
	1
	4
	62
	4
	6
	102
	16
	1

	23
	1
	5
	63
	5
	1
	103
	16
	2

	24
	1
	6
	64
	5
	2
	104
	17
	1

	25
	1
	7
	65
	5
	3
	105
	17
	2

	26
	1
	8
	66
	5
	4
	106
	18
	1

	27
	1
	9
	67
	5
	5
	107
	19
	1

	28
	1
	10
	68
	6
	1
	108
	20
	1

	29
	1
	11
	69
	6
	2
	109
	21
	1

	30
	1
	12
	70
	6
	3
	110
	22
	1

	31
	1
	13
	71
	6
	4
	111
	23
	1

	32
	1
	14
	72
	7
	1
	112
	24
	1

	33
	1
	15
	73
	7
	2
	113
	25
	1

	34
	2
	1
	74
	7
	3
	114
	26
	1

	35
	2
	2
	75
	7
	4
	115
	27
	1

	36
	2
	3
	76
	8
	1
	116
	28
	1

	37
	2
	4
	77
	8
	2
	117
	29
	1

	38
	2
	5
	78
	8
	3
	118
	30
	1

	39
	2
	6
	79
	8
	4
	
	
	

Table 164: High Motion Intra Indexed Run and Level Table (Last = 1)

	Index
	Run
	Level
	Index
	Run
	Level
	Index
	Run
	Level

	119
	0
	1
	141
	5
	1
	163
	16
	1

	120
	0
	2
	142
	5
	2
	164
	17
	1

	121
	0
	3
	143
	6
	1
	165
	18
	1

	122
	0
	4
	144
	6
	2
	166
	19
	1

	123
	0
	5
	145
	7
	1
	167
	20
	1

	124
	0
	6
	146
	7
	2
	168
	21
	1

	125
	1
	1
	147
	8
	1
	169
	22
	1

	126
	1
	2
	148
	8
	2
	170
	23
	1

	127
	1
	3
	149
	9
	1
	171
	24
	1

	128
	1
	4
	150
	9
	2
	172
	25
	1

	129
	1
	5
	151
	10
	1
	173
	26
	1

	130
	2
	1
	152
	10
	2
	174
	27
	1

	131
	2
	2
	153
	11
	1
	175
	28
	1

	132
	2
	3
	154
	11
	2
	176
	29
	1

	133
	2
	4
	155
	12
	1
	177
	30
	1

	134
	3
	1
	156
	12
	2
	178
	31
	1

	135
	3
	2
	157
	13
	1
	179
	32
	1

	136
	3
	3
	158
	13
	2
	180
	33
	1

	137
	3
	4
	159
	14
	1
	181
	34
	1

	138
	4
	1
	160
	14
	2
	182
	35
	1

	139
	4
	2
	161
	15
	1
	183
	36
	1

	140
	4
	3
	162
	15
	2
	184
	37
	1

Table 165: High Motion Intra Delta Level Indexed by Run Table (Last = 0)

	Run
	Delta Level
	Run
	Delta Level

	0
	19
	16
	2

	1
	15
	17
	2

	2
	12
	18
	1

	3
	11
	19
	1

	4
	6
	20
	1

	5
	5
	21
	1

	6
	4
	22
	1

	7
	4
	23
	1

	8
	4
	24
	1

	9
	4
	25
	1

	10
	3
	26
	1

	11
	3
	27
	1

	12
	3
	28
	1

	13
	3
	29
	1

	14
	3
	30
	1

	15
	3
	
	

Table 166: High Motion Intra Delta Level Indexed by Run Table (Last = 1)

	Run
	Delta Level
	Run
	Delta Level

	0
	6
	19
	1

	1
	5
	20
	1

	2
	4
	21
	1

	3
	4
	22
	1

	4
	3
	23
	1

	5
	2
	24
	1

	6
	2
	25
	1

	7
	2
	26
	1

	8
	2
	27
	1

	9
	2
	28
	1

	10
	2
	29
	1

	11
	2
	30
	1

	12
	2
	31
	1

	13
	2
	32
	1

	14
	2
	33
	1

	15
	2
	34
	1

	16
	1
	35
	1

	17
	1
	36
	1

	18
	1
	37
	1

Table 167: High Motion Intra Delta Run Indexed by Level Table (Last = 0)

	Level
	Delta Run
	Level
	Delta Run

	1
	30
	11
	3

	2
	17
	12
	2

	3
	15
	13
	1

	4
	9
	14
	1

	5
	5
	15
	1

	6
	4
	16
	0

	7
	3
	17
	0

	8
	3
	18
	0

	9
	3
	19
	0

	10
	3
	
	

Table 168: High Motion Intra Delta Run Indexed by Level Table (Last = 1)

	Level
	Delta Run

	1
	37

	2
	15

	3
	4

	4
	3

	5
	1

	6
	0

Table 169: High Motion Inter VLC Table

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	0
	3
	57
	4188
	13
	113
	13
	4

	1
	3
	4
	58
	14834
	14
	114
	173
	9

	2
	11
	5
	59
	88
	7
	115
	2086
	12

	3
	20
	6
	60
	543
	10
	116
	11596
	14

	4
	63
	6
	61
	3710
	12
	117
	17
	5

	5
	93
	7
	62
	14847
	14
	118
	363
	9

	6
	162
	8
	63
	35
	8
	119
	2943
	12

	7
	172
	9
	64
	739
	10
	120
	20900
	15

	8
	366
	9
	65
	1253
	13
	121
	25
	5

	9
	522
	10
	66
	11840
	14
	122
	539
	10

	10
	738
	10
	67
	161
	8
	123
	5885
	13

	11
	1074
	11
	68
	1470
	11
	124
	29
	5

	12
	1481
	11
	69
	2504
	14
	125
	916
	10

	13
	2087
	12
	70
	131
	8
	126
	10451
	14

	14
	2900
	12
	71
	314
	11
	127
	43
	6

	15
	1254
	13
	72
	5921
	13
	128
	1468
	11

	16
	4191
	13
	73
	68
	9
	129
	23194
	15

	17
	5930
	13
	74
	630
	12
	130
	47
	6

	18
	8370
	14
	75
	14838
	14
	131
	583
	12

	19
	11598
	14
	76
	139
	10
	132
	16
	7

	20
	14832
	14
	77
	1263
	13
	133
	2613
	12

	21
	16757
	15
	78
	23195
	15
	134
	62
	6

	22
	23198
	15
	79
	520
	10
	135
	2938
	12

	23
	4
	4
	80
	7422
	13
	136
	89
	7

	24
	30
	5
	81
	921
	10
	137
	4190
	13

	25
	66
	7
	82
	7348
	13
	138
	38
	8

	26
	182
	8
	83
	926
	10
	139
	2511
	14

	27
	371
	9
	84
	14835
	14
	140
	85
	8

	28
	917
	10
	85
	1451
	11
	141
	7349
	13

	29
	1838
	11
	86
	29667
	15
	142
	87
	8

	30
	2964
	12
	87
	1847
	11
	143
	3675
	12

	31
	5796
	13
	88
	23199
	15
	144
	160
	8

	32
	8371
	14
	89
	2093
	12
	145
	5224
	13

	33
	11845
	14
	90
	3689
	12
	146
	368
	9

	34
	5
	5
	91
	3688
	12
	147
	144
	10

	35
	64
	7
	92
	1075
	11
	148
	462
	9

	36
	73
	9
	93
	2939
	12
	149
	538
	10

	37
	655
	10
	94
	11768
	14
	150
	536
	10

	38
	1483
	11
	95
	11862
	14
	151
	360
	9

	39
	1162
	13
	96
	11863
	14
	152
	542
	10

	40
	2525
	14
	97
	14839
	14
	153
	580
	12

	41
	29666
	15
	98
	20901
	15
	154
	1846
	11

	42
	24
	5
	99
	3
	3
	155
	312
	11

	43
	37
	8
	100
	42
	6
	156
	1305
	11

	44
	138
	10
	101
	228
	8
	157
	3678
	12

	45
	1307
	11
	102
	654
	10
	158
	1836
	11

	46
	3679
	12
	103
	1845
	11
	159
	2901
	12

	47
	2505
	14
	104
	4184
	13
	160
	2524
	14

	48
	5020
	15
	105
	7418
	13
	161
	8379
	14

	49
	41
	6
	106
	11769
	14
	162
	1164
	13

	50
	79
	9
	107
	16756
	15
	163
	5923
	13

	51
	1042
	11
	108
	9
	4
	164
	11844
	14

	52
	1165
	13
	109
	84
	8
	165
	5797
	13

	53
	11841
	14
	110
	920
	10
	166
	1304
	11

	54
	56
	6
	111
	1163
	13
	167
	14846
	14

	55
	270
	9
	112
	5021
	15
	ESCAPE
	361
	9

	56
	1448
	11
	
	
	
	
	
	

Table 170: High Motion Inter Indexed Run and Level Table (Last = 0)

	Index
	Run
	Level
	Index
	Run
	Level
	Index
	Run
	Level

	0
	0
	1
	33
	1
	11
	66
	7
	4

	1
	0
	2
	34
	2
	1
	67
	8
	1

	2
	0
	3
	35
	2
	2
	68
	8
	2

	3
	0
	4
	36
	2
	3
	69
	8
	3

	4
	0
	5
	37
	2
	4
	70
	9
	1

	5
	0
	6
	38
	2
	5
	71
	9
	2

	6
	0
	7
	39
	2
	6
	72
	9
	3

	7
	0
	8
	40
	2
	7
	73
	10
	1

	8
	0
	9
	41
	2
	8
	74
	10
	2

	9
	0
	10
	42
	3
	1
	75
	10
	3

	10
	0
	11
	43
	3
	2
	76
	11
	1

	11
	0
	12
	44
	3
	3
	77
	11
	2

	12
	0
	13
	45
	3
	4
	78
	11
	3

	13
	0
	14
	46
	3
	5
	79
	12
	1

	14
	0
	15
	47
	3
	6
	80
	12
	2

	15
	0
	16
	48
	3
	7
	81
	13
	1

	16
	0
	17
	49
	4
	1
	82
	13
	2

	17
	0
	18
	50
	4
	2
	83
	14
	1

	18
	0
	19
	51
	4
	3
	84
	14
	2

	19
	0
	20
	52
	4
	4
	85
	15
	1

	20
	0
	21
	53
	4
	5
	86
	15
	2

	21
	0
	22
	54
	5
	1
	87
	16
	1

	22
	0
	23
	55
	5
	2
	88
	16
	2

	23
	1
	1
	56
	5
	3
	89
	17
	1

	24
	1
	2
	57
	5
	4
	90
	18
	1

	25
	1
	3
	58
	5
	5
	91
	19
	1

	26
	1
	4
	59
	6
	1
	92
	20
	1

	27
	1
	5
	60
	6
	2
	93
	21
	1

	28
	1
	6
	61
	6
	3
	94
	22
	1

	29
	1
	7
	62
	6
	4
	95
	23
	1

	30
	1
	8
	63
	7
	1
	96
	24
	1

	31
	1
	9
	64
	7
	2
	97
	25
	1

	32
	1
	10
	65
	7
	3
	98
	26
	1

Table 171: High Motion Inter Indexed Run and Level Table (Last = 1)

	Index
	Run
	Level
	Index
	Run
	Level
	Index
	Run
	Level

	99
	0
	1
	122
	4
	2
	145
	14
	2

	100
	0
	2
	123
	4
	3
	146
	15
	1

	101
	0
	3
	124
	5
	1
	147
	16
	1

	102
	0
	4
	125
	5
	2
	148
	17
	1

	103
	0
	5
	126
	5
	3
	149
	18
	1

	104
	0
	6
	127
	6
	1
	150
	19
	1

	105
	0
	7
	128
	6
	2
	151
	20
	1

	106
	0
	8
	129
	6
	3
	152
	21
	1

	107
	0
	9
	130
	7
	1
	153
	22
	1

	108
	1
	1
	131
	7
	2
	154
	23
	1

	109
	1
	2
	132
	8
	1
	155
	24
	1

	110
	1
	3
	133
	8
	2
	156
	25
	1

	111
	1
	4
	134
	9
	1
	157
	26
	1

	112
	1
	5
	135
	9
	2
	158
	27
	1

	113
	2
	1
	136
	10
	1
	159
	28
	1

	114
	2
	2
	137
	10
	2
	160
	29
	1

	115
	2
	3
	138
	11
	1
	161
	30
	1

	116
	2
	4
	139
	11
	2
	162
	31
	1

	117
	3
	1
	140
	12
	1
	163
	32
	1

	118
	3
	2
	141
	12
	2
	164
	33
	1

	119
	3
	3
	142
	13
	1
	165
	34
	1

	120
	3
	4
	143
	13
	2
	166
	35
	1

	121
	4
	1
	144
	14
	1
	167
	36
	1

Table 172: High Motion Inter Delta Level Indexed by Run Table (Last = 0)

	Run
	Delta Level
	Run
	Delta Level

	0
	23
	14
	2

	1
	11
	15
	2

	2
	8
	16
	2

	3
	7
	17
	1

	4
	5
	18
	1

	5
	5
	19
	1

	6
	4
	20
	1

	7
	4
	21
	1

	8
	3
	22
	1

	9
	3
	23
	1

	10
	3
	24
	1

	11
	3
	25
	1

	12
	2
	26
	1

	13
	2
	
	

Table 173: High Motion Inter Delta Level Indexed by Run Table (Last = 1)

	Run
	Delta Level
	Run
	Delta Level

	0
	9
	19
	1

	1
	5
	20
	1

	2
	4
	21
	1

	3
	4
	22
	1

	4
	3
	23
	1

	5
	3
	24
	1

	6
	3
	25
	1

	7
	2
	26
	1

	8
	2
	27
	1

	9
	2
	28
	1

	10
	2
	29
	1

	11
	2
	30
	1

	12
	2
	31
	1

	13
	2
	32
	1

	14
	2
	33
	1

	15
	1
	34
	1

	16
	1
	35
	1

	17
	1
	36
	1

	18
	1
	
	

Table 174: High Motion Inter Delta Run Indexed by Level Table (Last = 0)

	Level
	Delta Run
	Level
	Delta Run

	1
	26
	13
	0

	2
	16
	14
	0

	3
	11
	15
	0

	4
	7
	16
	0

	5
	5
	17
	0

	6
	3
	18
	0

	7
	3
	19
	0

	8
	2
	20
	0

	9
	1
	21
	0

	10
	1
	22
	0

	11
	1
	23
	0

	12
	0
	
	

Table 175: High Motion Inter Delta Run Indexed by Level Table (Last = 1)

	Level
	Delta Run

	1
	36

	2
	14

	3
	6

	4
	3

	5
	1

	6
	0

	7
	0

	8
	0

	9
	0

10.9.2 Low Motion Intra Tables

Table 176: Low Motion Intra VLC Table

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	1
	2
	45
	156
	12
	89
	18
	5

	1
	6
	3
	46
	317
	13
	90
	232
	8

	2
	15
	4
	47
	59
	6
	91
	76
	11

	3
	22
	5
	48
	28
	9
	92
	310
	13

	4
	32
	6
	49
	20
	11
	93
	57
	6

	5
	24
	7
	50
	2494
	12
	94
	612
	10

	6
	8
	8
	51
	6
	7
	95
	3770
	12

	7
	154
	8
	52
	122
	9
	96
	0
	7

	8
	86
	9
	53
	400
	11
	97
	174
	10

	9
	318
	9
	54
	311
	13
	98
	2460
	12

	10
	240
	10
	55
	27
	7
	99
	31
	7

	11
	933
	10
	56
	8
	10
	100
	1246
	11

	12
	119
	11
	57
	1884
	11
	101
	67
	7

	13
	495
	11
	58
	113
	7
	102
	1244
	11

	14
	154
	12
	59
	215
	10
	103
	3
	8

	15
	93
	13
	60
	2495
	12
	104
	971
	12

	16
	1
	4
	61
	7
	8
	105
	6
	8

	17
	17
	5
	62
	175
	10
	106
	2462
	12

	18
	2
	7
	63
	1228
	11
	107
	42
	8

	19
	11
	8
	64
	52
	8
	108
	1521
	13

	20
	18
	9
	65
	613
	10
	109
	15
	8

	21
	470
	9
	66
	159
	12
	110
	2558
	12

	22
	638
	10
	67
	224
	8
	111
	51
	8

	23
	401
	11
	68
	22
	11
	112
	2559
	12

	24
	234
	12
	69
	807
	12
	113
	152
	8

	25
	988
	12
	70
	21
	9
	114
	2463
	12

	26
	315
	13
	71
	381
	11
	115
	234
	8

	27
	4
	5
	72
	3771
	12
	116
	316
	13

	28
	20
	7
	73
	20
	9
	117
	46
	8

	29
	158
	8
	74
	246
	10
	118
	402
	11

	30
	9
	10
	75
	484
	11
	119
	310
	9

	31
	428
	11
	76
	203
	10
	120
	106
	9

	32
	482
	11
	77
	2461
	12
	121
	21
	11

	33
	970
	12
	78
	202
	10
	122
	943
	10

	34
	95
	13
	79
	764
	12
	123
	483
	11

	35
	23
	5
	80
	383
	11
	124
	116
	11

	36
	78
	7
	81
	1229
	11
	125
	235
	12

	37
	94
	9
	82
	765
	12
	126
	761
	12

	38
	243
	10
	83
	1278
	11
	127
	92
	13

	39
	429
	11
	84
	314
	13
	128
	237
	12

	40
	236
	12
	85
	10
	4
	129
	989
	12

	41
	1520
	13
	86
	66
	7
	130
	806
	12

	42
	14
	6
	87
	467
	9
	131
	94
	13

	43
	225
	8
	88
	1245
	11
	ESCAPE
	22
	7

	44
	932
	10
	
	
	
	
	
	

Table 177: Low Motion Intra Indexed Run and Level Table (Last = 0)

	Index
	Run
	Level
	Index
	Run
	Level
	Index
	Run
	Level

	0
	0
	1
	29
	2
	3
	57
	7
	3

	1
	0
	2
	30
	2
	4
	58
	8
	1

	2
	0
	3
	31
	2
	5
	59
	8
	2

	3
	0
	4
	32
	2
	6
	60
	8
	3

	4
	0
	5
	33
	2
	7
	61
	9
	1

	5
	0
	6
	34
	2
	8
	62
	9
	2

	6
	0
	7
	35
	3
	1
	63
	9
	3

	7
	0
	8
	36
	3
	2
	64
	10
	1

	8
	0
	9
	37
	3
	3
	65
	10
	2

	9
	0
	10
	38
	3
	4
	66
	10
	3

	10
	0
	11
	39
	3
	5
	67
	11
	1

	11
	0
	12
	40
	3
	6
	68
	11
	2

	12
	0
	13
	41
	3
	7
	69
	11
	3

	13
	0
	14
	42
	4
	1
	70
	12
	1

	14
	0
	15
	43
	4
	2
	71
	12
	2

	15
	0
	16
	44
	4
	3
	72
	12
	3

	16
	1
	1
	45
	4
	4
	73
	13
	1

	17
	1
	2
	46
	4
	5
	74
	13
	2

	18
	1
	3
	47
	5
	1
	75
	13
	3

	19
	1
	4
	48
	5
	2
	76
	14
	1

	20
	1
	5
	49
	5
	3
	77
	14
	2

	21
	1
	6
	50
	5
	4
	78
	15
	1

	22
	1
	7
	51
	6
	1
	79
	15
	2

	23
	1
	8
	52
	6
	2
	80
	16
	1

	24
	1
	9
	53
	6
	3
	81
	17
	1

	25
	1
	10
	54
	6
	4
	82
	18
	1

	26
	1
	11
	55
	7
	1
	83
	19
	1

	27
	2
	1
	56
	7
	2
	84
	20
	1

	28
	2
	2
	
	
	
	
	
	

Table 178: Low Motion Intra Indexed Run and Level Table (Last = 1)

	Index
	Run
	Level
	Index
	Run
	Level
	Index
	Run
	Level

	85
	0
	1
	101
	5
	1
	117
	13
	1

	86
	0
	2
	102
	5
	2
	118
	13
	2

	87
	0
	3
	103
	6
	1
	119
	14
	1

	88
	0
	4
	104
	6
	2
	120
	15
	1

	89
	1
	1
	105
	7
	1
	121
	16
	1

	90
	1
	2
	106
	7
	2
	122
	17
	1

	91
	1
	3
	107
	8
	1
	123
	18
	1

	92
	1
	4
	108
	8
	2
	124
	19
	1

	93
	2
	1
	109
	9
	1
	125
	20
	1

	94
	2
	2
	110
	9
	2
	126
	21
	1

	95
	2
	3
	111
	10
	1
	127
	22
	1

	96
	3
	1
	112
	10
	2
	128
	23
	1

	97
	3
	2
	113
	11
	1
	129
	24
	1

	98
	3
	3
	114
	11
	2
	130
	25
	1

	99
	4
	1
	115
	12
	1
	131
	26
	1

	100
	4
	2
	116
	12
	2
	
	
	

Table 179: Low Motion Intra Delta Level Indexed by Run Table (Last = 0)

	Run
	Delta Level
	Run
	Delta Level

	0
	16
	11
	3

	1
	11
	12
	3

	2
	8
	13
	3

	3
	7
	14
	2

	4
	5
	15
	2

	5
	4
	16
	1

	6
	4
	17
	1

	7
	3
	18
	1

	8
	3
	19
	1

	9
	3
	20
	1

	10
	3
	
	

Table 180: Low Motion Intra Delta Level Indexed by Run Table (Last = 1)

	Run
	Delta Level
	Run
	Delta Level

	0
	4
	14
	1

	1
	4
	15
	1

	2
	3
	16
	1

	3
	3
	17
	1

	4
	2
	18
	1

	5
	2
	19
	1

	6
	2
	20
	1

	7
	2
	21
	1

	8
	2
	22
	1

	9
	2
	23
	1

	10
	2
	24
	1

	11
	2
	25
	1

	12
	2
	26
	1

	13
	2
	
	

Table 181: Low Motion Intra Delta Run Indexed by Level Table (Last = 0)

	Level
	Delta Run
	Level
	Delta Run

	1
	20
	9
	1

	2
	15
	10
	1

	3
	13
	11
	1

	4
	6
	12
	0

	5
	4
	13
	0

	6
	3
	14
	0

	7
	3
	15
	0

	8
	2
	16
	0

Table 182: Low Motion Intra Delta Run Indexed by Level Table (Last = 1)

	Level
	Delta Run

	1
	26

	2
	13

	3
	3

	4
	1

10.9.3 Low Motion Inter Tables

Table 183: Low Motion Inter VLC Table

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	4
	3
	50
	384
	11
	100
	4
	6

	1
	20
	5
	51
	1436
	14
	101
	796
	12

	2
	23
	7
	52
	125
	8
	102
	6
	6

	3
	127
	8
	53
	356
	12
	103
	200
	13

	4
	340
	9
	54
	1901
	15
	104
	13
	6

	5
	498
	10
	55
	2
	9
	105
	474
	13

	6
	191
	11
	56
	397
	11
	106
	7
	6

	7
	101
	12
	57
	5505
	13
	107
	201
	13

	8
	2730
	12
	58
	173
	8
	108
	1
	7

	9
	1584
	13
	59
	96
	12
	109
	46
	14

	10
	5527
	13
	60
	3175
	14
	110
	20
	7

	11
	951
	14
	61
	28
	9
	111
	5526
	13

	12
	11042
	14
	62
	238
	13
	112
	10
	7

	13
	3046
	15
	63
	3
	9
	113
	2754
	12

	14
	11
	4
	64
	719
	13
	114
	22
	7

	15
	55
	7
	65
	217
	9
	115
	347
	14

	16
	98
	9
	66
	5504
	13
	116
	21
	7

	17
	7
	11
	67
	2
	11
	117
	346
	14

	18
	358
	12
	68
	387
	11
	118
	15
	8

	19
	206
	13
	69
	87
	12
	119
	94
	15

	20
	5520
	13
	70
	97
	12
	120
	126
	8

	21
	1526
	14
	71
	49
	11
	121
	171
	8

	22
	3047
	15
	72
	102
	12
	122
	45
	9

	23
	7
	5
	73
	1585
	13
	123
	216
	9

	24
	109
	8
	74
	1586
	13
	124
	11
	9

	25
	3
	11
	75
	172
	13
	125
	20
	10

	26
	799
	12
	76
	797
	12
	126
	691
	10

	27
	1522
	14
	77
	118
	12
	127
	499
	10

	28
	2
	6
	78
	58
	11
	128
	58
	10

	29
	97
	9
	79
	357
	12
	129
	0
	10

	30
	85
	12
	80
	3174
	14
	130
	88
	10

	31
	479
	14
	81
	3
	2
	131
	46
	9

	32
	26
	6
	82
	84
	7
	132
	94
	10

	33
	30
	10
	83
	683
	10
	133
	1379
	11

	34
	2761
	12
	84
	22
	13
	134
	236
	12

	35
	11043
	14
	85
	1527
	14
	135
	84
	12

	36
	30
	6
	86
	5
	4
	136
	2753
	12

	37
	31
	10
	87
	248
	9
	137
	5462
	13

	38
	2755
	12
	88
	2729
	12
	138
	762
	13

	39
	11051
	14
	89
	95
	15
	139
	385
	11

	40
	6
	7
	90
	4
	4
	140
	5463
	13

	41
	4
	11
	91
	28
	10
	141
	1437
	14

	42
	760
	13
	92
	5456
	13
	142
	10915
	14

	43
	25
	7
	93
	4
	5
	143
	11050
	14

	44
	6
	11
	94
	119
	11
	144
	478
	14

	45
	1597
	13
	95
	1900
	15
	145
	1596
	13

	46
	87
	7
	96
	14
	5
	146
	207
	13

	47
	386
	11
	97
	10
	12
	147
	5524
	13

	48
	10914
	14
	98
	12
	5
	ESCAPE
	13
	9

	49
	4
	8
	99
	1378
	11
	
	
	

Table 184: Low Motion Inter Indexed Run and Level Table (Last = 0)

	Index
	Run
	Level
	Index
	Run
	Level
	Index
	Run
	Level

	0
	0
	1
	27
	2
	5
	54
	10
	3

	1
	0
	2
	28
	3
	1
	55
	11
	1

	2
	0
	3
	29
	3
	2
	56
	11
	2

	3
	0
	4
	30
	3
	3
	57
	11
	3

	4
	0
	5
	31
	3
	4
	58
	12
	1

	5
	0
	6
	32
	4
	1
	59
	12
	2

	6
	0
	7
	33
	4
	2
	60
	12
	3

	7
	0
	8
	34
	4
	3
	61
	13
	1

	8
	0
	9
	35
	4
	4
	62
	13
	2

	9
	0
	10
	36
	5
	1
	63
	14
	1

	10
	0
	11
	37
	5
	2
	64
	14
	2

	11
	0
	12
	38
	5
	3
	65
	15
	1

	12
	0
	13
	39
	5
	4
	66
	15
	2

	13
	0
	14
	40
	6
	1
	67
	16
	1

	14
	1
	1
	41
	6
	2
	68
	17
	1

	15
	1
	2
	42
	6
	3
	69
	18
	1

	16
	1
	3
	43
	7
	1
	70
	19
	1

	17
	1
	4
	44
	7
	2
	71
	20
	1

	18
	1
	5
	45
	7
	3
	72
	21
	1

	19
	1
	6
	46
	8
	1
	73
	22
	1

	20
	1
	7
	47
	8
	2
	74
	23
	1

	21
	1
	8
	48
	8
	3
	75
	24
	1

	22
	1
	9
	49
	9
	1
	76
	25
	1

	23
	2
	1
	50
	9
	2
	77
	26
	1

	24
	2
	2
	51
	9
	3
	78
	27
	1

	25
	2
	3
	52
	10
	1
	79
	28
	1

	26
	2
	4
	53
	10
	2
	80
	29
	1

Table 185: Low Motion Inter Indexed Run and Level Table (Last = 1)

	Index
	Run
	Level
	Index
	Run
	Level
	Index
	Run
	Level

	81
	0
	1
	104
	8
	1
	126
	22
	1

	82
	0
	2
	105
	8
	2
	127
	23
	1

	83
	0
	3
	106
	9
	1
	128
	24
	1

	84
	0
	4
	107
	9
	2
	129
	25
	1

	85
	0
	5
	108
	10
	1
	130
	26
	1

	86
	1
	1
	109
	10
	2
	131
	27
	1

	87
	1
	2
	110
	11
	1
	132
	28
	1

	88
	1
	3
	111
	11
	2
	133
	29
	1

	89
	1
	4
	112
	12
	1
	134
	30
	1

	90
	2
	1
	113
	12
	2
	135
	31
	1

	91
	2
	2
	114
	13
	1
	136
	32
	1

	92
	2
	3
	115
	13
	2
	137
	33
	1

	93
	3
	1
	116
	14
	1
	138
	34
	1

	94
	3
	2
	117
	14
	2
	139
	35
	1

	95
	3
	3
	118
	15
	1
	140
	36
	1

	96
	4
	1
	119
	15
	2
	141
	37
	1

	97
	4
	2
	120
	16
	1
	142
	38
	1

	98
	5
	1
	121
	17
	1
	143
	39
	1

	99
	5
	2
	122
	18
	1
	144
	40
	1

	100
	6
	1
	123
	19
	1
	145
	41
	1

	101
	6
	2
	124
	20
	1
	146
	42
	1

	102
	7
	1
	125
	21
	1
	147
	43
	1

	103
	7
	2
	
	
	
	
	
	

Table 186: Low Motion Inter Delta Level Indexed by Run Table (Last = 0)

	Run
	Delta Level
	Run
	Delta Level

	0
	14
	15
	2

	1
	9
	16
	1

	2
	5
	17
	1

	3
	4
	18
	1

	4
	4
	19
	1

	5
	4
	20
	1

	6
	3
	21
	1

	7
	3
	22
	1

	8
	3
	23
	1

	9
	3
	24
	1

	10
	3
	25
	1

	11
	3
	26
	1

	12
	3
	27
	1

	13
	2
	28
	1

	14
	2
	29
	1

Table 187: Low Motion Inter Delta Level Indexed by Run Table (Last = 1)

	Run
	Delta Level
	Run
	Delta Level

	0
	5
	22
	1

	1
	4
	23
	1

	2
	3
	24
	1

	3
	3
	25
	1

	4
	2
	26
	1

	5
	2
	27
	1

	6
	2
	28
	1

	7
	2
	29
	1

	8
	2
	30
	1

	9
	2
	31
	1

	10
	2
	32
	1

	11
	2
	33
	1

	12
	2
	34
	1

	13
	2
	35
	1

	14
	2
	36
	1

	15
	2
	37
	1

	16
	1
	38
	1

	17
	1
	39
	1

	18
	1
	40
	1

	19
	1
	41
	1

	20
	1
	42
	1

	21
	1
	43
	1

Table 188: Low Motion Inter Delta Run Indexed by Level Table (Last = 0)

	Level
	Delta Run
	Level
	Delta Run

	1
	29
	8
	1

	2
	15
	9
	1

	3
	12
	10
	0

	4
	5
	11
	0

	5
	2
	12
	0

	6
	1
	13
	0

	7
	1
	14
	0

Table 189: Low Motion Inter Delta Run Indexed by Level Table (Last = 1)

	Level
	Delta Run

	1
	43

	2
	15

	3
	3

	4
	1

	5
	0

10.9.4 Mid Rate Intra Tables

Table 190: Mid Rate Intra VLC Table

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	2
	2
	35
	83
	12
	69
	22
	8

	1
	6
	3
	36
	85
	12
	70
	23
	9

	2
	15
	4
	37
	11
	5
	71
	6
	10

	3
	13
	5
	38
	21
	7
	72
	5
	11

	4
	12
	5
	39
	30
	9
	73
	4
	11

	5
	21
	6
	40
	12
	10
	74
	89
	12

	6
	19
	6
	41
	86
	12
	75
	15
	6

	7
	18
	6
	42
	17
	6
	76
	22
	9

	8
	23
	7
	43
	27
	8
	77
	5
	10

	9
	31
	8
	44
	29
	9
	78
	14
	6

	10
	30
	8
	45
	11
	10
	79
	4
	10

	11
	29
	8
	46
	16
	6
	80
	17
	7

	12
	37
	9
	47
	34
	9
	81
	36
	11

	13
	36
	9
	48
	10
	10
	82
	16
	7

	14
	35
	9
	49
	13
	6
	83
	37
	11

	15
	33
	9
	50
	28
	9
	84
	19
	7

	16
	33
	10
	51
	8
	10
	85
	90
	12

	17
	32
	10
	52
	18
	7
	86
	21
	8

	18
	15
	10
	53
	27
	9
	87
	91
	12

	19
	14
	10
	54
	84
	12
	88
	20
	8

	20
	7
	11
	55
	20
	7
	89
	19
	8

	21
	6
	11
	56
	26
	9
	90
	26
	8

	22
	32
	11
	57
	87
	12
	91
	21
	9

	23
	33
	11
	58
	25
	8
	92
	20
	9

	24
	80
	12
	59
	9
	10
	93
	19
	9

	25
	81
	12
	60
	24
	8
	94
	18
	9

	26
	82
	12
	61
	35
	11
	95
	17
	9

	27
	14
	4
	62
	23
	8
	96
	38
	11

	28
	20
	6
	63
	25
	9
	97
	39
	11

	29
	22
	7
	64
	24
	9
	98
	92
	12

	30
	28
	8
	65
	7
	10
	99
	93
	12

	31
	32
	9
	66
	88
	12
	100
	94
	12

	32
	31
	9
	67
	7
	4
	101
	95
	12

	33
	13
	10
	68
	12
	6
	ESCAPE
	3
	7

	34
	34
	11
	
	
	
	
	
	

Table 191: Mid Rate Intra Indexed Run and Level Table (Last = 0)

	Index
	Run
	Level
	Index
	Run
	Level
	Index
	Run
	Level

	0
	0
	1
	23
	0
	24
	45
	3
	4

	1
	0
	2
	24
	0
	25
	46
	4
	1

	2
	0
	3
	25
	0
	26
	47
	4
	2

	3
	0
	4
	26
	0
	27
	48
	4
	3

	4
	0
	5
	27
	1
	1
	49
	5
	1

	5
	0
	6
	28
	1
	2
	50
	5
	2

	6
	0
	7
	29
	1
	3
	51
	5
	3

	7
	0
	8
	30
	1
	4
	52
	6
	1

	8
	0
	9
	31
	1
	5
	53
	6
	2

	9
	0
	10
	32
	1
	6
	54
	6
	3

	10
	0
	11
	33
	1
	7
	55
	7
	1

	11
	0
	12
	34
	1
	8
	56
	7
	2

	12
	0
	13
	35
	1
	9
	57
	7
	3

	13
	0
	14
	36
	1
	10
	58
	8
	1

	14
	0
	15
	37
	2
	1
	59
	8
	2

	15
	0
	16
	38
	2
	2
	60
	9
	1

	16
	0
	17
	39
	2
	3
	61
	9
	2

	17
	0
	18
	40
	2
	4
	62
	10
	1

	18
	0
	19
	41
	2
	5
	63
	11
	1

	19
	0
	20
	42
	3
	1
	64
	12
	1

	20
	0
	21
	43
	3
	2
	65
	13
	1

	21
	0
	22
	44
	3
	3
	66
	14
	1

	22
	0
	23
	
	
	
	
	
	

Table 192: Mid Rate Intra Indexed Run and Level Table (Last = 1)

	Index
	Run
	Level
	Index
	Run
	Level
	Index
	Run
	Level

	67
	0
	1
	79
	2
	4
	91
	10
	3

	68
	0
	2
	80
	3
	5
	92
	11
	1

	69
	0
	3
	81
	3
	1
	93
	12
	2

	70
	0
	4
	82
	4
	2
	94
	13
	3

	71
	0
	5
	83
	4
	3
	95
	14
	1

	72
	0
	6
	84
	5
	4
	96
	15
	2

	73
	0
	7
	85
	5
	1
	97
	16
	3

	74
	0
	8
	86
	6
	2
	98
	17
	1

	75
	1
	9
	87
	6
	3
	99
	18
	2

	76
	1
	1
	88
	7
	4
	100
	19
	1

	77
	1
	2
	89
	8
	1
	101
	20
	2

	78
	2
	3
	90
	9
	2
	
	
	

Table 193: Mid Rate Intra Delta Level Indexed by Run Table (Last = 0)

	Run
	Delta Level
	Run
	Delta Level

	0
	27
	8
	2

	1
	10
	9
	2

	2
	5
	10
	1

	3
	4
	11
	1

	4
	3
	12
	1

	5
	3
	13
	1

	6
	3
	14
	1

	7
	3
	
	

Table 194: Mid Rate Intra Delta Level Indexed by Run Table (Last = 1)

	Run
	Delta Level
	Run
	Delta Level

	0
	8
	11
	1

	1
	3
	12
	1

	2
	2
	13
	1

	3
	2
	14
	1

	4
	2
	15
	1

	5
	2
	16
	1

	6
	2
	17
	1

	7
	1
	18
	1

	8
	1
	19
	1

	9
	1
	20
	1

	10
	1
	
	

Table 195: Mid Rate Intra Delta Run Indexed by Level Table (Last = 0)

	Level
	Delta Run
	Level
	Delta Run

	1
	14
	15
	0

	2
	9
	16
	0

	3
	7
	17
	0

	4
	3
	18
	0

	5
	2
	19
	0

	6
	1
	20
	0

	7
	1
	21
	0

	8
	1
	22
	0

	9
	1
	23
	0

	10
	1
	24
	0

	11
	0
	25
	0

	12
	0
	26
	0

	13
	0
	27
	0

	14
	0
	
	

Table 196: Mid Rate Intra Delta Run Indexed by Level Table (Last = 1)

	Level
	Delta Run

	1
	20

	2
	6

	3
	1

	4
	0

	5
	0

	6
	0

	7
	0

	8
	0

10.9.5 Mid Rate Inter Tables

Table 197: Mid Rate Inter VLC Table

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	2
	2
	35
	10
	10
	69
	16
	7

	1
	15
	4
	36
	17
	6
	70
	26
	8

	2
	21
	6
	37
	9
	10
	71
	25
	8

	3
	23
	7
	38
	16
	6
	72
	24
	8

	4
	31
	8
	39
	8
	10
	73
	23
	8

	5
	37
	9
	40
	22
	7
	74
	22
	8

	6
	36
	9
	41
	85
	12
	75
	21
	8

	7
	33
	10
	42
	21
	7
	76
	20
	8

	8
	32
	10
	43
	20
	7
	77
	19
	8

	9
	7
	11
	44
	28
	8
	78
	24
	9

	10
	6
	11
	45
	27
	8
	79
	23
	9

	11
	32
	11
	46
	33
	9
	80
	22
	9

	12
	6
	3
	47
	32
	9
	81
	21
	9

	13
	20
	6
	48
	31
	9
	82
	20
	9

	14
	30
	8
	49
	30
	9
	83
	19
	9

	15
	15
	10
	50
	29
	9
	84
	18
	9

	16
	33
	11
	51
	28
	9
	85
	17
	9

	17
	80
	12
	52
	27
	9
	86
	7
	10

	18
	14
	4
	53
	26
	9
	87
	6
	10

	19
	29
	8
	54
	34
	11
	88
	5
	10

	20
	14
	10
	55
	35
	11
	89
	4
	10

	21
	81
	12
	56
	86
	12
	90
	36
	11

	22
	13
	5
	57
	87
	12
	91
	37
	11

	23
	35
	9
	58
	7
	4
	92
	38
	11

	24
	13
	10
	59
	25
	9
	93
	39
	11

	25
	12
	5
	60
	5
	11
	94
	88
	12

	26
	34
	9
	61
	15
	6
	95
	89
	12

	27
	82
	12
	62
	4
	11
	96
	90
	12

	28
	11
	5
	63
	14
	6
	97
	91
	12

	29
	12
	10
	64
	13
	6
	98
	92
	12

	30
	83
	12
	65
	12
	6
	99
	93
	12

	31
	19
	6
	66
	19
	7
	100
	94
	12

	32
	11
	10
	67
	18
	7
	101
	95
	12

	33
	84
	12
	68
	17
	7
	ESCAPE
	3
	7

	34
	18
	6
	
	
	
	
	
	

Table 198: Mid Rate Inter Indexed Run and Level Table (Last = 0)

	Index
	Run
	Level
	Index
	Run
	Level
	Index
	Run
	Level

	0
	0
	1
	20
	2
	3
	39
	9
	2

	1
	0
	2
	21
	2
	4
	40
	10
	1

	2
	0
	3
	22
	3
	1
	41
	10
	2

	3
	0
	4
	23
	3
	2
	42
	11
	1

	4
	0
	5
	24
	3
	3
	43
	12
	1

	5
	0
	6
	25
	4
	1
	44
	13
	1

	6
	0
	7
	26
	4
	2
	45
	14
	1

	7
	0
	8
	27
	4
	3
	46
	15
	1

	8
	0
	9
	28
	5
	1
	47
	16
	1

	9
	0
	10
	29
	5
	2
	48
	17
	1

	10
	0
	11
	30
	5
	3
	49
	18
	1

	11
	0
	12
	31
	6
	1
	50
	19
	1

	12
	1
	1
	32
	6
	2
	51
	20
	1

	13
	1
	2
	33
	6
	3
	52
	21
	1

	14
	1
	3
	34
	7
	1
	53
	22
	1

	15
	1
	4
	35
	7
	2
	54
	23
	1

	16
	1
	5
	36
	8
	1
	55
	24
	1

	17
	1
	6
	37
	8
	2
	56
	25
	1

	18
	2
	1
	38
	9
	1
	57
	26
	1

	19
	2
	2
	
	
	
	
	
	

Table 199: Mid Rate Inter Indexed Run and Level Table (Last = 1)

	Index
	Run
	Level
	Index
	Run
	Level
	Index
	Run
	Level

	58
	0
	1
	73
	12
	1
	88
	27
	2

	59
	0
	2
	74
	13
	1
	89
	28
	1

	60
	0
	3
	75
	14
	1
	90
	29
	2

	61
	1
	1
	76
	15
	1
	91
	30
	1

	62
	1
	2
	77
	16
	1
	92
	31
	2

	63
	2
	1
	78
	17
	1
	93
	32
	1

	64
	3
	1
	79
	18
	1
	94
	33
	2

	65
	4
	1
	80
	19
	1
	95
	34
	1

	66
	5
	1
	81
	20
	1
	96
	35
	2

	67
	6
	1
	82
	21
	2
	97
	36
	1

	68
	7
	1
	83
	22
	1
	98
	37
	1

	69
	8
	1
	84
	23
	2
	99
	38
	1

	70
	9
	1
	85
	24
	1
	100
	39
	1

	71
	10
	1
	86
	25
	2
	101
	40
	1

	72
	11
	1
	87
	26
	1
	
	
	

Table 200: Mid Rate Inter Delta Level Indexed by Run Table (Last = 0)

	Run
	Delta Level
	Run
	Delta Level

	0
	12
	14
	1

	1
	6
	15
	1

	2
	4
	16
	1

	3
	3
	17
	1

	4
	3
	18
	1

	5
	3
	19
	1

	6
	3
	20
	1

	7
	2
	21
	1

	8
	2
	22
	1

	9
	2
	23
	1

	10
	2
	24
	1

	11
	1
	25
	1

	12
	1
	26
	1

	13
	1
	
	

Table 201: Mid Rate Inter Delta Level Indexed by Run Table (Last = 1)

	Run
	Delta Level
	Run
	Delta Level

	0
	3
	21
	1

	1
	2
	22
	1

	2
	1
	23
	1

	3
	1
	24
	1

	4
	1
	25
	1

	5
	1
	26
	1

	6
	1
	27
	1

	7
	1
	28
	1

	8
	1
	29
	1

	9
	1
	30
	1

	10
	1
	31
	1

	11
	1
	32
	1

	12
	1
	33
	1

	13
	1
	34
	1

	14
	1
	35
	1

	15
	1
	36
	1

	16
	1
	37
	1

	17
	1
	38
	1

	18
	1
	39
	1

	19
	1
	40
	1

	20
	1
	
	

Table 202: Mid Rate Inter Delta Run Indexed by Level Table (Last = 0)

	Level
	Delta Run
	Level
	Delta Run

	1
	26
	7
	0

	2
	10
	8
	0

	3
	6
	9
	0

	4
	2
	10
	0

	5
	1
	11
	0

	6
	1
	12
	0

Table 203: Mid Rate Inter Delta Run Indexed by Level Table (Last = 1)

	Level
	Delta Run

	1
	40

	2
	1

	3
	0

10.9.6 High Rate Intra Tables

Table 204: High Rate Intra VLC Table

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	0
	2
	54
	7961
	13
	108
	72
	8

	1
	3
	3
	55
	7605
	13
	109
	1996
	11

	2
	13
	4
	56
	9
	4
	110
	2721
	12

	3
	5
	4
	57
	16
	5
	111
	384
	9

	4
	28
	5
	58
	41
	6
	112
	1125
	11

	5
	22
	5
	59
	98
	7
	113
	6405
	13

	6
	63
	6
	60
	243
	8
	114
	994
	10

	7
	58
	6
	61
	173
	8
	115
	3777
	12

	8
	46
	6
	62
	485
	9
	116
	15515
	14

	9
	34
	6
	63
	377
	9
	117
	756
	10

	10
	123
	7
	64
	156
	9
	118
	2248
	12

	11
	103
	7
	65
	945
	10
	119
	1985
	11

	12
	95
	7
	66
	686
	10
	120
	2344
	13

	13
	71
	7
	67
	295
	10
	121
	1505
	11

	14
	38
	7
	68
	1902
	11
	122
	12813
	14

	15
	239
	8
	69
	1392
	11
	123
	3778
	12

	16
	205
	8
	70
	629
	11
	124
	25624
	15

	17
	193
	8
	71
	3877
	12
	125
	7988
	13

	18
	169
	8
	72
	3776
	12
	126
	120
	7

	19
	79
	8
	73
	2720
	12
	127
	341
	9

	20
	498
	9
	74
	2263
	12
	128
	1362
	11

	21
	477
	9
	75
	7756
	13
	129
	6431
	13

	22
	409
	9
	76
	8
	5
	130
	250
	8

	23
	389
	9
	77
	99
	7
	131
	2012
	11

	24
	349
	9
	78
	175
	8
	132
	6407
	13

	25
	283
	9
	79
	379
	9
	133
	172
	8

	26
	1007
	10
	80
	947
	10
	134
	585
	11

	27
	993
	10
	81
	2013
	11
	135
	5041
	14

	28
	968
	10
	82
	1600
	11
	136
	502
	9

	29
	817
	10
	83
	3981
	12
	137
	2786
	12

	30
	771
	10
	84
	3009
	12
	138
	476
	9

	31
	753
	10
	85
	1169
	12
	139
	1261
	12

	32
	672
	10
	86
	40
	6
	140
	388
	9

	33
	563
	10
	87
	195
	8
	141
	6404
	13

	34
	294
	10
	88
	337
	9
	142
	342
	9

	35
	1984
	11
	89
	673
	10
	143
	2521
	13

	36
	1903
	11
	90
	1395
	11
	144
	999
	10

	37
	1900
	11
	91
	3779
	12
	145
	2345
	13

	38
	1633
	11
	92
	7989
	13
	146
	946
	10

	39
	1540
	11
	93
	101
	7
	147
	15208
	14

	40
	1394
	11
	94
	474
	9
	148
	757
	10

	41
	1361
	11
	95
	687
	10
	149
	5040
	14

	42
	1130
	11
	96
	631
	11
	150
	802
	10

	43
	628
	11
	97
	2249
	12
	151
	15209
	14

	44
	3879
	12
	98
	6017
	13
	152
	564
	10

	45
	3876
	12
	99
	37
	7
	153
	31029
	15

	46
	3803
	12
	100
	280
	9
	154
	1991
	11

	47
	3214
	12
	101
	1606
	11
	155
	51251
	16

	48
	3083
	12
	102
	2726
	12
	156
	1632
	11

	49
	3082
	12
	103
	6016
	13
	157
	31028
	15

	50
	2787
	12
	104
	201
	8
	158
	587
	11

	51
	2262
	12
	105
	801
	10
	159
	51250
	16

	52
	1168
	12
	106
	3995
	12
	160
	2727
	12

	53
	1173
	12
	107
	6430
	13
	161
	7960
	13

	
	
	
	
	
	
	ESCAPE
	122
	7

Table 205: High Rate Intra Indexed Run and Level Table (Last = 0)

	Index
	Run
	Level
	Index
	Run
	Level
	Index
	Run
	Level

	0
	0
	1
	42
	0
	43
	84
	2
	9

	1
	0
	2
	43
	0
	44
	85
	2
	10

	2
	0
	3
	44
	0
	45
	86
	3
	1

	3
	0
	4
	45
	0
	46
	87
	3
	2

	4
	0
	5
	46
	0
	47
	88
	3
	3

	5
	0
	6
	47
	0
	48
	89
	3
	4

	6
	0
	7
	48
	0
	49
	90
	3
	5

	7
	0
	8
	49
	0
	50
	91
	3
	6

	8
	0
	9
	50
	0
	51
	92
	3
	7

	9
	0
	10
	51
	0
	52
	93
	4
	1

	10
	0
	11
	52
	0
	53
	94
	4
	2

	11
	0
	12
	53
	0
	54
	95
	4
	3

	12
	0
	13
	54
	0
	55
	96
	4
	4

	13
	0
	14
	55
	0
	56
	97
	4
	5

	14
	0
	15
	56
	1
	1
	98
	4
	6

	15
	0
	16
	57
	1
	2
	99
	5
	1

	16
	0
	17
	58
	1
	3
	100
	5
	2

	17
	0
	18
	59
	1
	4
	101
	5
	3

	18
	0
	19
	60
	1
	5
	102
	5
	4

	19
	0
	20
	61
	1
	6
	103
	5
	5

	20
	0
	21
	62
	1
	7
	104
	6
	1

	21
	0
	22
	63
	1
	8
	105
	6
	2

	22
	0
	23
	64
	1
	9
	106
	6
	3

	23
	0
	24
	65
	1
	10
	107
	6
	4

	24
	0
	25
	66
	1
	11
	108
	7
	1

	25
	0
	26
	67
	1
	12
	109
	7
	2

	26
	0
	27
	68
	1
	13
	110
	7
	3

	27
	0
	28
	69
	1
	14
	111
	8
	1

	28
	0
	29
	70
	1
	15
	112
	8
	2

	29
	0
	30
	71
	1
	16
	113
	8
	3

	30
	0
	31
	72
	1
	17
	114
	9
	1

	31
	0
	32
	73
	1
	18
	115
	9
	2

	32
	0
	33
	74
	1
	19
	116
	9
	3

	33
	0
	34
	75
	1
	20
	117
	10
	1

	34
	0
	35
	76
	2
	1
	118
	10
	2

	35
	0
	36
	77
	2
	2
	119
	11
	1

	36
	0
	37
	78
	2
	3
	120
	11
	2

	37
	0
	38
	79
	2
	4
	121
	12
	1

	38
	0
	39
	80
	2
	5
	122
	12
	2

	39
	0
	40
	81
	2
	6
	123
	13
	1

	40
	0
	41
	82
	2
	7
	124
	13
	2

	41
	0
	42
	83
	2
	8
	125
	14
	1

Table 206: High Rate Intra Indexed Run and Level Table (Last = 1)

	Index
	Run
	Level
	Index
	Run
	Level
	Index
	Run
	Level

	126
	0
	1
	138
	4
	1
	150
	10
	1

	127
	0
	2
	139
	4
	2
	151
	10
	2

	128
	0
	3
	140
	5
	1
	152
	11
	1

	129
	0
	4
	141
	5
	2
	153
	11
	2

	130
	1
	1
	142
	6
	1
	154
	12
	1

	131
	1
	2
	143
	6
	2
	155
	12
	2

	132
	1
	3
	144
	7
	1
	156
	13
	1

	133
	2
	1
	145
	7
	2
	157
	13
	2

	134
	2
	2
	146
	8
	1
	158
	14
	1

	135
	2
	3
	147
	8
	2
	159
	14
	2

	136
	3
	1
	148
	9
	1
	160
	15
	1

	137
	3
	2
	149
	9
	2
	161
	16
	1

Table 207: High Rate Intra Delta Level Indexed by Run Table (Last = 0)

	Run
	Delta Level
	Run
	Delta Level

	0
	56
	8
	3

	1
	20
	9
	3

	2
	10
	10
	2

	3
	7
	11
	2

	4
	6
	12
	2

	5
	5
	13
	2

	6
	4
	14
	1

	7
	3
	
	

Table 208: High Rate Intra Delta Level Indexed by Run Table (Last = 1)

	Run
	Delta Level
	Run
	Delta Level

	0
	4
	9
	2

	1
	3
	10
	2

	2
	3
	11
	2

	3
	2
	12
	2

	4
	2
	13
	2

	5
	2
	14
	2

	6
	2
	15
	1

	7
	2
	16
	1

	8
	2
	
	

Table 209: High Rate Intra Delta Run Indexed by Level Table (Last = 0)

	Level
	Delta Run
	Level
	Delta Run

	1
	14
	29
	0

	2
	13
	30
	0

	3
	9
	31
	0

	4
	6
	32
	0

	5
	5
	33
	0

	6
	4
	34
	0

	7
	3
	35
	0

	8
	2
	36
	0

	9
	2
	37
	0

	10
	2
	38
	0

	11
	1
	39
	0

	12
	1
	40
	0

	13
	1
	41
	0

	14
	1
	42
	0

	15
	1
	43
	0

	16
	1
	44
	0

	17
	1
	45
	0

	18
	1
	46
	0

	19
	1
	47
	0

	20
	1
	48
	0

	21
	0
	49
	0

	22
	0
	50
	0

	23
	0
	51
	0

	24
	0
	52
	0

	25
	0
	53
	0

	26
	0
	54
	0

	27
	0
	55
	0

	28
	0
	56
	0

Table 210: High Rate Intra Delta Run Indexed by Level Table (Last = 1)

	Level
	Delta Run

	1
	16

	2
	14

	3
	2

	4
	0

10.9.7 High Rate Inter Tables

Table 211: High Rate Inter VLC Table

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	2
	2
	59
	7
	5
	118
	31989
	15

	1
	0
	3
	60
	472
	9
	119
	117
	7

	2
	30
	5
	61
	728
	11
	120
	3364
	12

	3
	4
	5
	62
	7975
	13
	121
	63977
	16

	4
	18
	6
	63
	13460
	14
	122
	46
	7

	5
	112
	7
	64
	53
	6
	123
	7970
	13

	6
	26
	7
	65
	993
	10
	124
	33
	7

	7
	95
	8
	66
	1436
	12
	125
	1359
	13

	8
	71
	8
	67
	14531
	14
	126
	20
	7

	9
	467
	9
	68
	12
	6
	127
	14916
	14

	10
	181
	9
	69
	357
	10
	128
	228
	8

	11
	87
	9
	70
	7459
	13
	129
	31991
	15

	12
	949
	10
	71
	5688
	14
	130
	94
	8

	13
	365
	10
	72
	104
	7
	131
	29061
	15

	14
	354
	10
	73
	1683
	11
	132
	55
	8

	15
	1998
	11
	74
	14917
	14
	133
	11379
	15

	16
	1817
	11
	75
	32
	7
	134
	475
	9

	17
	1681
	11
	76
	3984
	12
	135
	23005
	16

	18
	710
	11
	77
	31990
	15
	136
	455
	9

	19
	342
	11
	78
	232
	8
	137
	26923
	15

	20
	3986
	12
	79
	1423
	12
	138
	422
	9

	21
	3374
	12
	80
	11503
	15
	139
	22757
	16

	22
	3360
	12
	81
	69
	8
	140
	180
	9

	23
	1438
	12
	82
	2874
	13
	141
	127952
	17

	24
	1128
	12
	83
	497
	9
	142
	176
	9

	25
	678
	12
	84
	15174
	14
	143
	45513
	17

	26
	7586
	13
	85
	423
	9
	144
	998
	10

	27
	7264
	13
	86
	5750
	14
	145
	92016
	18

	28
	6723
	13
	87
	86
	9
	146
	366
	10

	29
	2845
	13
	88
	26922
	15
	147
	255906
	18

	30
	2240
	13
	89
	909
	10
	148
	283
	10

	31
	1373
	13
	90
	58121
	16
	149
	1023629
	20

	32
	3
	3
	91
	170
	10
	150
	217
	10

	33
	10
	5
	92
	116241
	17
	151
	1023631
	20

	34
	119
	7
	93
	735
	11
	152
	168
	10

	35
	229
	8
	94
	46009
	17
	153
	182051
	19

	36
	473
	9
	95
	712
	11
	154
	1865
	11

	37
	997
	10
	96
	232480
	18
	155
	929924
	20

	38
	358
	10
	97
	432
	11
	156
	1686
	11

	39
	1684
	11
	98
	91024
	18
	157
	364101
	20

	40
	338
	11
	99
	3999
	12
	158
	734
	11

	41
	1439
	12
	100
	92017
	18
	159
	728200
	21

	42
	7996
	13
	101
	3792
	12
	160
	561
	11

	43
	6731
	13
	102
	464963
	19
	161
	1859850
	21

	44
	1374
	13
	103
	3370
	12
	162
	433
	11

	45
	12
	4
	104
	1023628
	20
	163
	7439405
	23

	46
	125
	7
	105
	1121
	12
	164
	3371
	12

	47
	68
	8
	106
	1023630
	20
	165
	3719703
	22

	48
	992
	10
	107
	2919
	13
	166
	3375
	12

	49
	1897
	11
	108
	1375
	13
	167
	1456403
	22

	50
	3633
	12
	109
	63
	6
	168
	1458
	12

	51
	7974
	13
	110
	109
	9
	169
	1456402
	22

	52
	1372
	13
	111
	3728
	12
	170
	1129
	12

	53
	27
	5
	112
	1358
	13
	171
	7439404
	23

	54
	226
	8
	113
	19
	6
	172
	6722
	13

	55
	933
	10
	114
	281
	10
	173
	2241
	13

	56
	713
	11
	115
	2918
	13
	ESCAPE
	115
	7

	57
	7971
	13
	116
	11
	6
	
	
	

	58
	15175
	14
	117
	565
	11
	
	
	

Table 212: High Rate Inter Indexed Run and Level Table (Last = 0)

	Index
	Run
	Level
	Index
	Run
	Level
	Index
	Run
	Level

	0
	0
	1
	37
	1
	6
	74
	7
	3

	1
	0
	2
	38
	1
	7
	75
	8
	1

	2
	0
	3
	39
	1
	8
	76
	8
	2

	3
	0
	4
	40
	1
	9
	77
	8
	3

	4
	0
	5
	41
	1
	10
	78
	9
	1

	5
	0
	6
	42
	1
	11
	79
	9
	2

	6
	0
	7
	43
	1
	12
	80
	9
	3

	7
	0
	8
	44
	1
	13
	81
	10
	1

	8
	0
	9
	45
	2
	1
	82
	10
	2

	9
	0
	10
	46
	2
	2
	83
	11
	1

	10
	0
	11
	47
	2
	3
	84
	11
	2

	11
	0
	12
	48
	2
	4
	85
	12
	1

	12
	0
	13
	49
	2
	5
	86
	12
	2

	13
	0
	14
	50
	2
	6
	87
	13
	1

	14
	0
	15
	51
	2
	7
	88
	13
	2

	15
	0
	16
	52
	2
	8
	89
	14
	1

	16
	0
	17
	53
	3
	1
	90
	14
	2

	17
	0
	18
	54
	3
	2
	91
	15
	1

	18
	0
	19
	55
	3
	3
	92
	15
	2

	19
	0
	20
	56
	3
	4
	93
	16
	1

	20
	0
	21
	57
	3
	5
	94
	16
	2

	21
	0
	22
	58
	3
	6
	95
	17
	1

	22
	0
	23
	59
	4
	1
	96
	17
	2

	23
	0
	24
	60
	4
	2
	97
	18
	1

	24
	0
	25
	61
	4
	3
	98
	18
	2

	25
	0
	26
	62
	4
	4
	99
	19
	1

	26
	0
	27
	63
	4
	5
	100
	19
	2

	27
	0
	28
	64
	5
	1
	101
	20
	1

	28
	0
	29
	65
	5
	2
	102
	20
	2

	29
	0
	30
	66
	5
	3
	103
	21
	1

	30
	0
	31
	67
	5
	4
	104
	21
	2

	31
	0
	32
	68
	6
	1
	105
	22
	1

	32
	1
	1
	69
	6
	2
	106
	22
	2

	33
	1
	2
	70
	6
	3
	107
	23
	1

	34
	1
	3
	71
	6
	4
	108
	24
	1

	35
	1
	4
	72
	7
	1
	
	
	

	36
	1
	5
	73
	7
	2
	
	
	

Table 213: High Rate Inter Indexed Run and Level Table (Last = 1)

	Index
	Run
	Level
	Index
	Run
	Level
	Index
	Run
	Level

	109
	0
	1
	131
	8
	2
	153
	19
	2

	110
	0
	2
	132
	9
	1
	154
	20
	1

	111
	0
	3
	133
	9
	2
	155
	20
	2

	112
	0
	4
	134
	10
	1
	156
	21
	1

	113
	1
	1
	135
	10
	2
	157
	21
	2

	114
	1
	2
	136
	11
	1
	158
	22
	1

	115
	1
	3
	137
	11
	2
	159
	22
	2

	116
	2
	1
	138
	12
	1
	160
	23
	1

	117
	2
	2
	139
	12
	2
	161
	23
	2

	118
	2
	3
	140
	13
	1
	162
	24
	1

	119
	3
	1
	141
	13
	2
	163
	24
	2

	120
	3
	2
	142
	14
	1
	164
	25
	1

	121
	3
	3
	143
	14
	2
	165
	25
	2

	122
	4
	1
	144
	15
	1
	166
	26
	1

	123
	4
	2
	145
	15
	2
	167
	26
	2

	124
	5
	1
	146
	16
	1
	168
	27
	1

	125
	5
	2
	147
	16
	2
	169
	27
	2

	126
	6
	1
	148
	17
	1
	170
	28
	1

	127
	6
	2
	149
	17
	2
	171
	28
	2

	128
	7
	1
	150
	18
	1
	172
	29
	1

	129
	7
	2
	151
	18
	2
	173
	30
	1

	130
	8
	1
	152
	19
	1
	
	
	

Table 214: High Rate Inter Delta Level Indexed by Run Table (Last = 0)

	Run
	Delta Level
	Run
	Delta Level

	0
	32
	13
	2

	1
	13
	14
	2

	2
	8
	15
	2

	3
	6
	16
	2

	4
	5
	17
	2

	5
	4
	18
	2

	6
	4
	19
	2

	7
	3
	20
	2

	8
	7
	21
	2

	9
	3
	22
	2

	10
	2
	23
	1

	11
	2
	24
	1

	12
	2
	
	

Table 215: High Rate Inter Delta Level Indexed by Run Table (Last = 1)

	Run
	Delta Level
	Run
	Delta Level

	0
	4
	16
	2

	1
	3
	17
	2

	2
	3
	18
	2

	3
	3
	19
	2

	4
	2
	20
	2

	5
	2
	21
	2

	6
	2
	22
	2

	7
	2
	23
	2

	8
	2
	24
	2

	9
	2
	25
	2

	10
	2
	26
	2

	11
	2
	27
	2

	12
	2
	28
	2

	13
	2
	29
	1

	14
	2
	30
	1

	15
	2
	
	

Table 216: High Rate Inter Delta Run Indexed by Level Table (Last = 0)

	Level
	Delta Run
	Level
	Delta Run

	1
	24
	18
	0

	2
	22
	19
	0

	3
	9
	20
	0

	4
	6
	21
	0

	5
	4
	22
	0

	6
	3
	23
	0

	7
	2
	24
	0

	8
	2
	25
	0

	9
	1
	26
	0

	10
	1
	27
	0

	11
	1
	28
	0

	12
	1
	29
	0

	14
	1
	30
	0

	15
	0
	31
	0

	16
	0
	32
	0

	17
	0
	
	

Table 217: High Rate Inter Delta Run Indexed by Level Table (Last = 1)

	Level
	Delta Run

	1
	30

	2
	28

	3
	3

	4
	0

10.10 Zigzag Tables

10.10.1 Intra zigzag tables

Table 218: Intra Normal Scan

	0
	2
	3
	9
	10
	21
	22
	36

	1
	4
	8
	11
	20
	23
	35
	37

	5
	7
	12
	19
	24
	34
	38
	49

	6
	13
	18
	25
	33
	39
	48
	50

	14
	16
	26
	32
	40
	47
	51
	58

	15
	27
	31
	41
	46
	52
	57
	59

	17
	29
	42
	44
	53
	55
	60
	62

	28
	30
	43
	45
	54
	56
	61
	63

Table 219: Intra Horizontal Scan

	0
	1
	3
	4
	10
	11
	22
	23

	2
	5
	9
	12
	21
	24
	36
	37

	6
	8
	13
	20
	25
	35
	38
	48

	7
	14
	19
	26
	34
	39
	47
	49

	15
	18
	27
	33
	40
	46
	50
	57

	16
	28
	32
	41
	45
	51
	56
	58

	17
	30
	42
	44
	52
	55
	59
	62

	29
	31
	43
	53
	54
	60
	61
	63

Table 220: Intra Vertical Scan

	0
	3
	8
	9
	20
	21
	34
	35

	1
	7
	10
	19
	22
	33
	36
	49

	2
	11
	18
	23
	32
	37
	48
	50

	4
	12
	17
	24
	31
	38
	47
	51

	5
	16
	25
	30
	39
	46
	52
	57

	6
	15
	29
	40
	45
	53
	56
	58

	13
	26
	28
	41
	44
	55
	59
	62

	14
	27
	42
	43
	54
	60
	61
	63

10.10.2 Inter zigzag tables

Table 221: Inter 8x8 Scan

	0
	2
	3
	9
	10
	23
	24
	38

	1
	4
	8
	11
	22
	25
	37
	39

	5
	7
	12
	21
	26
	36
	40
	51

	6
	13
	20
	27
	35
	41
	50
	52

	14
	19
	28
	34
	42
	49
	53
	60

	15
	18
	33
	43
	48
	54
	59
	61

	16
	29
	32
	44
	47
	55
	58
	62

	17
	30
	31
	45
	46
	56
	57
	63

Table 222: Inter 8x4 Scan

	0
	1
	2
	4
	8
	14
	21
	27

	3
	5
	6
	9
	13
	17
	24
	29

	7
	10
	12
	15
	18
	22
	25
	30

	11
	16
	19
	20
	23
	26
	28
	31

Table 223: Inter 4x8 Scan

	0
	2
	7
	19

	1
	4
	9
	22

	3
	6
	12
	24

	5
	10
	15
	26

	8
	14
	18
	28

	11
	17
	23
	29

	13
	20
	25
	30

	16
	21
	27
	31

Table 224: Inter 4x4 Scan
	0
	3
	7
	11

	1
	4
	8
	12

	2
	6
	9
	14

	5
	10
	13
	15

10.11 Motion Vector Differential Tables

Table 225: Motion Vector Differential VLC Table 0

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	0
	6
	25
	167
	10
	50
	21
	5

	1
	2
	7
	26
	49
	8
	51
	22
	5

	2
	3
	7
	27
	194
	10
	52
	39
	6

	3
	8
	8
	28
	195
	10
	53
	204
	9

	4
	576
	14
	29
	581
	14
	54
	103
	8

	5
	3
	6
	30
	582
	14
	55
	23
	5

	6
	2
	5
	31
	583
	14
	56
	24
	5

	7
	6
	6
	32
	292
	13
	57
	25
	5

	8
	5
	7
	33
	293
	13
	58
	104
	7

	9
	577
	14
	34
	294
	13
	59
	410
	10

	10
	578
	14
	35
	13
	6
	60
	105
	7

	11
	7
	6
	36
	2
	3
	61
	106
	7

	12
	8
	6
	37
	7
	5
	62
	107
	7

	13
	9
	6
	38
	24
	6
	63
	108
	7

	14
	40
	8
	39
	50
	8
	64
	109
	7

	15
	19
	9
	40
	102
	9
	65
	220
	8

	16
	37
	10
	41
	295
	13
	66
	411
	10

	17
	82
	9
	42
	13
	5
	67
	442
	9

	18
	21
	7
	43
	7
	4
	68
	222
	8

	19
	22
	7
	44
	8
	4
	69
	443
	9

	20
	23
	7
	45
	18
	5
	70
	446
	9

	21
	579
	14
	46
	50
	7
	71
	447
	9

	22
	580
	14
	47
	103
	9
	72
	7
	3

	23
	166
	10
	48
	38
	6
	
	
	

	24
	96
	9
	49
	20
	5
	
	
	

Table 226: Motion Vector Differential VLC Table 1

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	0
	5
	25
	3012
	14
	50
	58
	6

	1
	4
	7
	26
	3013
	14
	51
	163
	8

	2
	5
	7
	27
	3014
	14
	52
	236
	8

	3
	3
	6
	28
	3015
	14
	53
	237
	8

	4
	4
	6
	29
	3016
	14
	54
	3023
	14

	5
	3
	5
	30
	3017
	14
	55
	119
	7

	6
	4
	5
	31
	3018
	14
	56
	120
	7

	7
	5
	6
	32
	3019
	14
	57
	242
	8

	8
	20
	7
	33
	3020
	14
	58
	122
	7

	9
	6
	5
	34
	3021
	14
	59
	486
	9

	10
	21
	7
	35
	3022
	14
	60
	1512
	13

	11
	44
	8
	36
	1
	2
	61
	487
	9

	12
	45
	8
	37
	4
	3
	62
	246
	8

	13
	46
	8
	38
	15
	6
	63
	494
	9

	14
	3008
	14
	39
	160
	8
	64
	1513
	13

	15
	95
	9
	40
	161
	8
	65
	495
	9

	16
	112
	9
	41
	41
	6
	66
	1514
	13

	17
	113
	9
	42
	6
	3
	67
	1515
	13

	18
	57
	8
	43
	11
	4
	68
	1516
	13

	19
	3009
	14
	44
	42
	6
	69
	1517
	13

	20
	3010
	14
	45
	162
	8
	70
	1518
	13

	21
	116
	9
	46
	43
	6
	71
	1519
	13

	22
	117
	9
	47
	119
	9
	72
	31
	5

	23
	3011
	14
	48
	56
	6
	
	
	

	24
	118
	9
	49
	57
	6
	
	
	

Table 227: Motion Vector Differential VLC Table 2

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	0
	3
	25
	276
	11
	50
	297
	11

	1
	512
	12
	26
	277
	11
	51
	298
	11

	2
	513
	12
	27
	278
	11
	52
	299
	11

	3
	514
	12
	28
	279
	11
	53
	300
	11

	4
	515
	12
	29
	280
	11
	54
	301
	11

	5
	2
	3
	30
	281
	11
	55
	302
	11

	6
	3
	4
	31
	282
	11
	56
	303
	11

	7
	258
	11
	32
	283
	11
	57
	304
	11

	8
	259
	11
	33
	284
	11
	58
	305
	11

	9
	260
	11
	34
	285
	11
	59
	306
	11

	10
	261
	11
	35
	286
	11
	60
	307
	11

	11
	262
	11
	36
	1
	1
	61
	308
	11

	12
	263
	11
	37
	5
	5
	62
	309
	11

	13
	264
	11
	38
	287
	11
	63
	310
	11

	14
	265
	11
	39
	288
	11
	64
	311
	11

	15
	266
	11
	40
	289
	11
	65
	312
	11

	16
	267
	11
	41
	290
	11
	66
	313
	11

	17
	268
	11
	42
	6
	4
	67
	314
	11

	18
	269
	11
	43
	7
	4
	68
	315
	11

	19
	270
	11
	44
	291
	11
	69
	316
	11

	20
	271
	11
	45
	292
	11
	70
	317
	11

	21
	272
	11
	46
	293
	11
	71
	318
	11

	22
	273
	11
	47
	294
	11
	72
	319
	11

	23
	274
	11
	48
	295
	11
	
	
	

	24
	275
	11
	49
	296
	11
	
	
	

Table 228: Motion Vector Differential VLC Table 3

	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size
	Index
	VLC Codeword
	VLC Size

	0
	0
	15
	25
	6
	10
	50
	5
	3

	1
	1
	11
	26
	14
	11
	51
	18
	5

	2
	1
	15
	27
	8
	10
	52
	29
	6

	3
	2
	15
	28
	106
	15
	53
	152
	8

	4
	3
	15
	29
	107
	15
	54
	77
	7

	5
	4
	15
	30
	108
	15
	55
	24
	5

	6
	1
	12
	31
	15
	11
	56
	25
	5

	7
	5
	15
	32
	109
	15
	57
	26
	5

	8
	4
	12
	33
	9
	10
	58
	39
	6

	9
	3
	11
	34
	55
	14
	59
	108
	7

	10
	5
	12
	35
	10
	10
	60
	13
	9

	11
	8
	12
	36
	1
	4
	61
	109
	7

	12
	6
	15
	37
	2
	4
	62
	55
	6

	13
	9
	12
	38
	1
	5
	63
	56
	6

	14
	10
	12
	39
	2
	7
	64
	57
	6

	15
	11
	12
	40
	3
	8
	65
	116
	7

	16
	12
	12
	41
	12
	9
	66
	11
	10

	17
	7
	15
	42
	6
	5
	67
	153
	8

	18
	104
	15
	43
	2
	3
	68
	234
	8

	19
	14
	12
	44
	6
	4
	69
	235
	8

	20
	105
	15
	45
	7
	5
	70
	118
	7

	21
	4
	10
	46
	28
	6
	71
	119
	7

	22
	10
	11
	47
	7
	8
	72
	15
	4

	23
	15
	12
	48
	15
	5
	
	
	

	24
	11
	11
	49
	8
	4
	
	
	

Annex A
 Inverse Transform Specification
(This annex forms an integral part of this recommendation, and is normative)

The formulas in Figure 102 through Figure 105 defines the Inverse Transform required for conformance. An exact match to the values produced as specified in this annex is required. Figure 102 defines the implentation for the 8x8 Inverse Transform. Figure 103 defines the implentation for the 8x4 Inverse Transform. Figure 104 defines the implentation for the 4x8 Inverse Transform. Figure 105 defines the implentation for the 4x4 Inverse Transform.
The size of the input and output samples is representable in 16 bits, although the input requires only 12 bits and the output requires only 10 bits. 16 bit modulo arithmetic is necessary and sufficient when calculating sums and differences. When multiplying two numbers, a 16 bit signed representation of the product is necessary and sufficient.
The transform matrices for a 1D 8 point inverse transformation and a 1D 4 point inverse transformation are presented in Figure 98 and Figure 99.
[image: image112.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

=

4

9

15

16

16

15

9

4

6

16

16

6

6

16

16

6

9

16

4

15

15

4

16

9

12

12

12

12

12

12

12

12

15

4

16

9

9

16

4

15

16

6

6

16

16

6

6

16

16

15

9

4

4

9

15

16

12

12

12

12

12

12

12

12

8

T

Figure 98: Matrix for 1-D 8-point Inverse Transform
[image: image113.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

=

10

-

22

22

-

10

17

17

17

17

22

-

10

-

10

22

17

17

17

17

4

T

Figure 99: Matrix for 1-D 4-point Inverse Transform
These matrices are split into even and odd components, with the even component divided by 2. The even components are of relevance to the definition of the normative inverse transform, and are shown in Figure 100 and Figure 101.
[image: image114.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

=

2

5

7

8

8

7

5

2

3

8

8

3

3

8

8

3

4

8

2

7

7

2

8

4

6

6

6

6

6

6

6

6

7

2

8

5

5

8

2

7

8

3

3

8

8

3

3

8

8

7

4

2

2

4

7

8

6

6

6

6

6

6

6

6

8

e

T

Figure 100: Even component of 8-point Inverse Transform
[image: image115.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

=

5

-

11

11

-

5

8

8

8

8

11

-

5

-

5

11

8

8

8

8

4

e

T

Figure 101: Even component of 4-point Inverse Transform
In the equations shown in Fig. 105 through 108, the dequantized transform coefficients forming the input to the inverse transform are represented as the matrix D. Matrix R represents the reconstructed output. D1 is the intermediate result after row-wise transformation, which is always the first step. Bitshifts defined on a matrix are carried out componentwise on the matrix entries, in signed integer arithmetic. The prime operator applied to a matrix denotes its transpose.
[image: image116.wmf](

)

3

4

8

1

>>

+

×

=

T

D

D

[image: image117.wmf][

]

6

32

1

1

1

0

0

0

0

1

0

0

0

1

0

0

1

0

0

0

2

2

2

2

2

2

2

2

1

8

1

2

1

2

1

1

1

>>

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

æ

+

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

-

+

×

¢

=

>>

=

>>

=

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

×

¢

=

a

b

b

a

a

b

b

a

e

b

b

a

a

b

a

D

D

D

D

D

D

D

D

D

T

R

D

D

D

D

D

D

D

Figure 102: 8x8 Inverse Transform
[image: image118.wmf](

)

3

4

4

1

>>

+

×

=

T

D

D

[image: image119.wmf][

]

6

32

1

1

1

0

0

0

0

1

0

0

0

1

0

0

1

0

0

0

2

2

2

2

2

2

2

2

1

8

1

2

1

2

1

1

1

>>

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

æ

+

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

-

+

×

¢

=

>>

=

>>

=

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

×

¢

=

a

b

b

a

a

b

b

a

e

b

b

a

a

b

a

D

D

D

D

D

D

D

D

D

T

R

D

D

D

D

D

D

D

Figure 103: 8x4 Inverse Transform
[image: image120.wmf](

)

3

4

8

1

>>

+

×

=

T

D

D

[image: image121.wmf][

]

6

32

1

1

0

0

1

1

0

0

1

1

2

2

2

2

1

4

1

2

1

2

1

1

1

>>

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

+

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

+

×

¢

=

>>

=

>>

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

×

¢

=

a

b

b

a

e

b

b

a

a

b

a

D

D

D

D

D

T

R

D

D

D

D

D

D

D

Figure 104: 4x8 Inverse Transform
[image: image122.wmf](

)

3

4

8

1

>>

+

×

=

T

D

D

[image: image123.wmf][

]

6

32

1

1

0

0

1

1

0

0

1

1

2

2

2

2

1

4

1

2

1

2

1

1

1

>>

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

+

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

+

×

¢

=

>>

=

>>

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

×

¢

=

a

b

b

a

e

b

b

a

a

b

a

D

D

D

D

D

T

R

D

D

D

D

D

D

D

Figure 105: 4x4 Inverse Transform
Annex B
Spatial Alignment of Video Samples in Variable Resolution Coding

(This annex forms an integral part of this recommendation and is normative)

The following section describes the upsampling and downsampling process used in codec implementation. On the encoder side, downsampling is applied to the input frame if the current resolution is smaller than the original resolution as described in section 7.1.1.4. On the decoder side, upsampling is applied to the decoded frame if the current resolution is smaller than the original resolution. Since both of these operations occur outside the reconstruction loop, the implementer is free to use any method to upsample or downsample the frames. However, attention should be paid to the relative spatial positioning of the samples produced from the upsampling and downsampling processes. In particular, the video samples of the downsampled frame should have the following spatial alignment with respect to the video samples of the frame at the original resolution.

[image: image124.emf]Samples of

the Frame at

Original

Resolution

Samples of the

Frame

Downsampled in

both directions

Figure 106: Relative Spatial Alignment of the video samples of the Downsampled Frame,

and video samples of the Original Frame.
The following definitions are used for the downsampling/upsampling pseudocode examples:

Nu = number of samples in upsampled (full resolution) line

Nd = number of samples in a downsampled (half resolution) line

The term ‘line’ refers to all the samples in a horizontal row or vertical column in a Y, Cr or Cb component plane. Upsampling or downsampling operations are identical for both rows and columns, so the following examples are illustrated using one dimensional line of samples. In cases where both vertical and horizontal upsampling or downsampling is performed, the horizontal lines are resampled first, followed by the vertical lines.

For luminance lines:

Nd = Nu / 2
(where Nu is the number of samples in a full resolution luminance line)

if ((Nd & 15) != 0)

Nd = Nd + 16 – (Nd & 15)

For chroma lines:

Nd = Nu / 2
(where Nu is the number of samples in a full resolution chroma line)

if ((Nd & 7) != 0)

Nd = Nd + 8 – (Nd & 7)

Annex C
 Hypothetical reference decoder
(This annex forms an integral part of this recommendation and is normative)

Coded video bit streams shall meet the constraints imposed by a hypothetical reference decoder (HRD) defined in this annex. The HRD is conceptually connected to the output of an encoder, and consists of a buffer, a decoder, and a display unit, as illustrated in Figure C.1.

[image: image125.emf]Encoder

Original

Video

Source

Video

Bitstream

Decoder

Buffer

Decoder

Bits for

frame i

Decoder

Display Unit

Decoded

frame i

Hypothetical Reference Decoder

(HRD)

Figure C.1. Components of an HRD: decoder buffer, decoder, and display unit

The HRD does not mandate buffering, decoding, or display mechanisms for decoder implementations. Its main goal is to limit the encoder’s bit rate fluctuations according to a basic buffering model, so that the resources necessary to decode the bit stream are predictable.

The HRD may operate in constant-delay mode or variable-delay mode. Constant-delay is appropriate for most applications, including broadcast, streaming, packaged media (e.g., DVD), etc. Variable-delay is appropriate for video conferencing.

All computations in this Annex are done with real-values, so that no rounding errors can propagate.

C.1
Leaky Bucket Model

C.1.2
This subclause is informative and defines a leaky bucket model.

The buffering model that governs the operation of the HRD is known as a leaky bucket and is described in this section. A leaky bucket is characterized by three parameters, (R, B, F), where:

· R is the peak transmission bit rate (in bits per second) at which bits enter the decoder buffer,

· B is the capacity (in bits) of the decoder buffer, and

· F is the initial decoder buffer fullness (in bits)
, which shall be smaller than or equal to B.

In the HRD, the video bit stream is received at bit rate smaller than or equal to the peak transmission rate R, and it is stored into a decoder buffer of size B until the buffer fullness reaches F bits. Then, the decoder instantaneously removes the bits for the first video frame of the sequence from the buffer, and instantaneously decodes that frame. The bits for the following frames are also removed and decoded instantaneously at subsequent time intervals.

Figure C.2 illustrates the decoder buffer fullness as a function of time for a bit stream that is contained in a leaky bucket of parameters (R, B, F). The decoder buffer fullness β i after removing frame i, with i > 1, can be expressed as follows:

β1 = F – b1
β i = min(B, β i–1 + Ri (ti – ti–1) – bi),

(C.1)

where ti is the decoding time for frame i, and bi is the number of bits for frame i. The parameter Ri is the average bit rate (in bits per second) that enters the buffer during the time interval (ti, ti-1) and is such that Ri <= R for all i. In Figure C.2, the transmission rate happens to be constant and equal to the peak R, and hence Ri = R for all i.

In the leaky bucket model defined for this HRD, the decoder buffer may fill up, but shall not overflow. To be more concrete, the buffer fullness at any time instant shall be less than or equal to B. As a result, in equation (C.1), observe that the min(B, x) operator implies that β i <= B, for all i. An example of a decoder buffer that fills up in several periods of time is shown in Figure C.3.

When the decoder buffer is full, it is assumed that the encoder will not send any more bits until there is room in the buffer. This phenomenon occurs frequently in practice. For example, a DVD includes a video coded bit stream of average rate 4-6 Mbps, while the disk drive speed or peak rate R is about 10 Mbits/sec. Since the bit rate used in most time intervals is less than 10 Mbits/sec, the decoder buffer is often full. More generally, if an encoder is producing fewer bits than those available in the channel, the decoder buffer will stop filling up.

[image: image126]
Figure C.2. The plot illustrates an example of decoder buffer fullness when decoding a generic video bit stream that is contained in a leaky bucket of parameters (R, B, F). R is the peak incoming (or channel) bit rate in bits/sec, and in this case the transmission rate is constant and equal to the peak R throughout the video sequence. B is the buffer size in bits and F is the initial decoder buffer fullness in bits. D = F/R is the initial or start-up (buffer) delay in seconds. The number of bits for the ith frame is bi. The coded video frames are removed from the buffer (typically according to the video frame rate), as shown by the drops in buffer fullness, and are decoded instantaneously.

[image: image127]
Figure C.3. Plot of decoder buffer fullness, where the fullness reaches the maximum buffer size B during some time segments. In this example, such segments are a subset of the intervals (t2, t3) and (t3, t4). When the decoder buffer is full, the encoder does not send any bits.
Decoder buffer underflow occurs usually if an encoder produces relatively large frames. The decoder buffer fullness may then be reduced to the point that the bits for the next frame are not available at the decoding time.

A leaky bucket with parameters (R, B, F) is said to contain a coded video bit stream if there is no underflow of the decoder buffer (i.e., β i >= 0, for all i). To be more concrete, a leaky bucket with parameters (R, B, F) contains a coded video bit stream if the following constraints hold:

β 1 = F – b1
β i = min(B, β i–1 + Ri (ti – ti–1) – bi),
i > 1

Ri <= R

all i

β i >= 0

all i

(C.2)

C.1.2
This subclause defines a requirement on all video bit streams when the HRD operates in constant-delay mode.

A compliant video bit stream shall meet the restrictions imposed by equation (C.2), so that at least one leaky bucket (R, B, F) contains the bit stream. The leaky bucket values (R, B, F) shall be signaled in the bit stream, so that the rate and buffer size resources necessary to decode this bit stream are predictable.

C.1.3
This subclause is informative only. It describes CBR and VBR bit streams.
A video bit stream that meets the constraints of the equations in (C.2) may be denoted a variable bit rate or VBR bit stream, e.g., see [2].

If the constraints in equation (C.2) apply to a bit stream without the min(B, x) operator (i.e., β i = β i–1 + Ri (ti – ti–1) – bi , for all i), and there is no buffer overflow (i.e., β i + bi <= B, for all i), the bit stream may be denoted a constant bit rate or CBR bit stream.

Since CBR bit streams are a special case of VBR bit streams, this recommendation does not make a distinction between them.
C.2
Multiple Leaky Buckets

This clause is informative only and explains the concept of multiple leaky buckets.

A given video stream can be contained in many leaky buckets. For example, if a video stream is contained in a leaky bucket with parameters (R, B, F), it will also be contained in a leaky bucket with a larger buffer size (R, B’, F), B’ > B, or in a leaky bucket with a higher peak transmission bit rate (R’, B, F), R’ > R, or in a leaky bucket with larger initial buffer fullness (R, B, F’), F’ > F, F ≤ B. Moreover, it can also be contained in a leaky bucket with a lower peak transmission bit rate (R’, B, F), R’ < R, if the video is time-limited. In the worst case, as R’ approaches 0, the buffer size and initial buffer fullness will need to be as large as the bit stream itself. In short, a video bit stream can be transmitted at any peak transmission bit rate (regardless of the average bit rate of the sequence) without suffering decoder buffer underflow, as long as the buffer size and delay are large enough.

[image: image128.wmf]
Figure C.3. Illustration of peak bit rate Rmin and buffer size Bmin values for a given video bit stream. This curve indicates that in order to transmit the stream at a peak bit rate R, the decoder needs to buffer at least Bmin(R) bits. Observe that higher peak rates require smaller buffer sizes. Alternatively, if the size of the decoder buffer is B, the minimum peak rate required for transmitting the bit stream is the associated Rmin(B).
Further, as proven in [1], for any value of the peak transmission bit rate R, and assuming Ri = R for all i in equation (C.2), one can find the minimum buffer size Bmin and the minimum initial buffer fullness Fmin that will contain the video bit stream. These minimum values can be computed using a simple search using the constraints in (C.2), as demonstrated in [1]. By computing Bmin for each R, we can plot a curve of optimum R-B values such as the one in Figure C.3.
C.3

Bit Stream Syntax for the Hypothetical Reference Decoder

C.3.1
This subclause only applies when the HRD operates in constant-delay mode. It describes syntax required in a video bit stream that is compliant to the Advanced profile, when operating in such mode.
The encoder shall signal N leaky bucket models, each of which shall contain the video bit stream, as defined in (C.2). The desired value of N can be selected by the encoder (where N > 0).

The parameter values of these leaky buckets can be expressed as follows:

(R1, B1, F1), (R2, B2, F2), … , (RN, BN, FN),

(C.3)

The HRD syntax element values may be communicated by external means to a decoder for video bit streams compliant to the Simple and Main profiles.

The HRD syntax element values shall be inserted at the sequence header for video bit streams compliant to the Advanced profile, except when the encoder is operating in variable-delay mode. The sequence header for the Advanced profile is described in Section 5.1.
Observe that the number of bits used in prior frames does not affect the equations in (C.2) to determine the leaky bucket constraints for the remaining of the video bit stream, and hence the leaky bucket values may be modified throughout the video bit stream. Also, an encoder may want to use fewer leaky buckets later in the bit stream to avoid syntax overhead.

The HRD syntax elements are inserted in the video bit stream headers as follows:

	hrd_parameters()
	Descriptor
	Range

	{
	
	

	
hrd_num_leaky_buckets
	FLC-5
	(1, 32)

	
bit_rate_exponent
	FLC-4
	(6,21)

	
buffer_size_exponent
	FLC-4
	(4,19)

	
for(n=1; n <= hrd_num_leaky_buckets; n++)
	
	

	 {
	
	

	

hrd_rate[n]
	FLC-16
	(1,216)

	

hrd_buffer[n]
	FLC-16
	(1,216)

	

hrd_fullness[n]
	FLC - 8
	(0, 255)

	
}
	
	

hrd_num_leaky_buckets – A number between 1 and 32 that specifies the number of leaky buckets N. The value of N-1 is encoded as a fixed length code in binary using 5 bits.

hrd_rate[n] and bit_rate_exponent – These syntax elements define the peak transmission rate Rn in bits per second for the nth leaky bucket. The mantissa of Rn is encoded in the syntax element hrd_rate[n] using a fixed-length code of 16 bits, and has the range from 1 to 216 . The base-2 exponent of Rn is encoded in the syntax element bit_rate_exponent in fixed length using 4 bits , and takes the range from 6 to 21.

The rates must be ordered from smallest to largest, i.e., hrd_rate[n] < hrd_rate[n+1].

hrd_buffer[n] and buffer_size_exponent – These syntax elements define the buffer size Bn in bits for the nth leaky bucket. The mantissa of Bn is encoded in the syntax element hrd_buffer[n], using a fixed length code of 16 bits, and has the range 1 to 216. The value of the base-2 exponent of Bn is encoded in the syntax element buffer_size_exponent using a fixed length of 4 bits, and takes the range from 4 to 19.

The buffer sizes must be ordered from largest to smallest, i.e., hrd_buffer[n] >= hrd_buffer[n+1].

hrd_fullness[n] – This syntax element defines the decoder buffer fullness as an upwards rounded fraction of the buffer size Bn, in units of Bn/256. This element may take values in the range 1 to 256 and is encoded in binary using the 8 bit values 0 through 255 to uniformly cover the range. Its value is computed as follows:

hrd_fullness[n] = [image: image129.wmf]1

)

,

min(

256

,

-

ú

ú

ù

ê

ê

é

+

´

n

i

n

i

n

B

b

B

b

(C.4)

where min(Bn, β i,n + bi) is the decoder buffer fullness in bits before removing the current ith frame.

In equation (C.2), the decoder buffer fullness after removing the ith frame equals β i. Here we use similar notation for the equivalent value β i,n, but the subscript n denotes the nth leaky bucket.

The [image: image130.wmf]é

ù

x

 operator rounds up the value of x to the nearest higher integer. For example, [image: image131.wmf]é

ù

14.3

 = 15.

Observe that in the first frame of the video stream (i.e., i=1), the initial buffer fullness Fn = (β 1,n + b1).

C.3.2
This subclause is informative only.

In practice, an encoder can do the following:

(a) Pre-select the leaky bucket values in (C.3) and encode the bit stream with a rate control that makes sure that all of the leaky bucket constraints are met.

(b) Encode the bit stream and then use the equations in (C.2) to compute a set of leaky buckets containing the bit stream at N different values of R.

(c) Do both (a) and (b), i.e., pre-select the leaky buckets and later compute more after the bit stream is encoded.

Approach (a) can be applied to live or on-demand transmission applications, while (b) and (c) only apply to on-demand. Observe that the N leaky bucket approach used in the HRD of this recommendation is also used in the H.264 standard (c.f., [1]). If N=1, the hypothetical reference decoder is a subset of MPEG-2’s Video Buffering Verifier [2].

C.4
Interpolating Leaky Buckets

This clause is informative for the HRD, although equations (C.5) and (C.6) are normative for time-conformant decoders.

Another key observation proven in [1] is that the curve of (Rmin, Bmin) pairs, or that of (Rmin, Fmin) for any bit stream (such as the one in Figure C.3) is piecewise linear and convex. Because of the convexity, if N points of the curve are provided, the decoder can linearly interpolate the values to arrive at some points (Rinterp, Binterp, Finterp) that are slightly but safely larger than (Rmin, Bmin, Fmin).

As mentioned earlier, the leaky buckets in (C.3) are ordered from smallest to largest bit rate, i.e., Rn < Rn+1. Let us assume that the encoder computes these leaky bucket models correctly and hence Bn > Bn+1. Figure C.4 illustrates a set of N leaky bucket models and their interpolated or extrapolated (R, B) values.

[image: image132.emf]

B N

…

(R 1 , B 1)

(R 2 , B 2)

(R 3 , B 3)

(R N - 1 , B N - 1)

(R N , B N)

B (bits)

B (bits)

T R R B B) (

1 1

  

R (bits /sec)

Figure C.4. Example of (R, B) values available for the generalized hypothetical reference decoder (GHRD), all of which are guaranteed to contain the bit stream. T is the time length or duration of the encoded video sequence.

The interpolated buffer size B between points n and n+1 follow the straight line:

 [image: image133.wmf]1

1

1

1

+

+

+

+

-

-

+

-

-

=

n

n

n

n

n

n

n

n

B

R

R

R

R

B

R

R

R

R

B

,

 Rn < R < Rn+1.

(C.5)

Likewise, the initial decoder buffer fullness F can be linearly interpolated:

[image: image134.wmf]1

1

1

1

+

+

+

+

-

-

+

-

-

=

n

n

n

n

n

n

n

n

F

R

R

R

R

F

R

R

R

R

F

,
 Rn < R < Rn+1.

(C.6)

The resulting leaky bucket with parameters (R, B, F) is guaranteed to contain the bit stream, because, as proven in [1], the minimum buffer size Bmin is convex in both R and F, that is, the minimum buffer size Bmin corresponding to any convex combination (R,F) = a(Rk,Fk) + (1-a)(Rk+1,Fk+1), 0 < a < 1, is less than or equal to B = aBk + (1-a)Bk+1.

As discussed earlier, if R is larger than RN, the leaky bucket (R, BN, FN) will also contain the bit stream, and hence BN and FN are the buffer size and initial decoder buffer fullness recommended when R ≥ RN. If R is smaller than R1, then the upper bound B = B1 + (R1-R)T can be used (and one can set F = B), where T is the time length of the video sequence in seconds. These (R, B) values outside the range of the N points are also shown in Figure C.4.
Using equations (C.5) and (C.6), when the transmission peak rate of a given encoding/decoding system is known, the decoder can determine a nearly minimum leaky bucket buffer size and delay. Alternatively, knowing the physical buffer size, a smart decoder can ask a transmitter to use the smallest peak rate that will enable decoding in such buffer size. In short, the leaky bucket model values in equation (C.3) can be linearly interpolated or extrapolated to be able to determine nearly optimum leaky buckets.
C.5

Display issues

This clause is informative only.

The leaky bucket model does not address when a video frame is displayed in the HRD display unit. Any compliant decoder, including this HRD, should display frames in the proper order. For example, if a frame is composed of two fields, it is assumed that the field that comes first in time will be displayed first. P frames and B frames should also be re-ordered properly before display. If 3:2 pull-up occurs after decoding, the correct fields should be repeated to produce an accurate 3:2 telecine pattern on the display. Nevertheless, constraints on display times (e.g., according to the decoding times t1, t2, etc.) are beyond the scope of this draft and belong to the system layer. The objective of the HRD in this recommendation is only to impose some basic buffering constraints on the video bit stream, rather than mandate any decoding, buffering, or display mechanisms to implementers.

C.6
Time-Conformant Decoders

This clause is normative for decoder implementations that wish to be time-conformant. This is the only clause in the HRD that refers to and constraints practical decoder implementations.

Time-conformant decoders are of interest for broadcast or other applications with a fixed end-to-end delay, where a practical decoder needs to decode the bit streams without suffering from buffer underflow. If a practical decoder wishes to be time-conformant, the HRD parameters provide some helpful constraints.

Given a fixed transmission rate and decoder buffer size, a time-conformant decoder implementation must buffer enough data initially to prevent buffer underflow during the decoding process. Such a decoder must therefore operate according to either one of the N leaky buckets, or one of the interpolated leaky buckets defined in (C.5) and (C.6).

Given a channel rate R, a time-conformant decoder implementation shall use equations (C.5) and (C.6) to find a minimum value of B and F, shall confirm that the physical buffer size in the decoder is larger than or equal to B, and shall buffer at least F bits before starting the decoding process.

Given a physical buffer size B, a time-conformant decoder implementation shall use equations (C.5) and (C.6) to find a minimum value of R and F, shall ensure that the channel rate is larger than or equal to R, and shall buffer at least F bits before starting the decoding process.

C.7
Variable-Delay Mode

This clause refers to the variable-delay mode of operation in the HRD, which is useful for video conferencing applications.

This mode of operation in the HRD is signaled when HRD parameter are not signaled in the sequence header. In this mode:

· The syntax element hrd_num_leaky_buckets can only take values 0 or 1.

If equal to 0, the leaky bucket used is (R1, B1, F1), where R1 and B1 correspond to the values Rmax and Bmax for the given profile and level of the bit stream, as defined in Annex D. The initial buffer fullness equals the buffer size, i.e., F1=B1.
If equal to 1, the leaky bucket used is (R1, B1, F1) and is signaled in the bit stream according to the syntax defined in subclause C.3.1.

· The initial buffer fullness is F1. In practice, F1 may equal the number of bits for the first frame, i.e., F1= b1.

· The decoder buffer in the HRD is examined every T seconds, where T is the inverse of the maximum frame rate in the example column of Table D.2, for the respective profile and level of the given bit stream. If at least one complete coded picture is in the buffer, then all the data for the earliest picture in the bit stream order is instantaneously removed. Immediately before removing the picture, the buffer fullness must be less than B1.

In this mode, the HRD waits until a complete video frame has arrived at the buffer, before decoding the frame. As a result, the delay is minimized for a given frame, but the end-to-end delay is not constant. This mode enables the encoder to send big pictures to the decoder while preventing buffer overflow.

The variable-delay mode of operation is similar to the low-delay mode in MPEG-2 [2], or the default HRD operating mode in H.263 [3].
C.8

Benefits of multiple leaky buckets

This clause is informative only and describes the benefits of indicating multiple leaky buckets that contain a video bit stream.

In the constant-delay mode, prior hypothetical reference decoders operate with a fixed peak bit rate, buffer size, and initial delay. However, in many of today’s video applications (e.g., video streaming through the Internet) the peak transmission bit rate varies according to the network path (e.g., how the user connects to the network: by modem, ISDN, DSL, cable, etc.) and also fluctuates in time according to network conditions (e.g., congestion, the number of users connected, etc.) In addition, the video bit streams are delivered to a variety of devices with different buffer capabilities (e.g., hand-sets, PDAs, PCs, set-top-boxes, DVD-like players, etc.) and are created for scenarios with different delay requirements (e.g., low-delay streaming, progressive download or pseudo-streaming, etc.) The multiple leaky bucket approach used in the HRD of this specification is more flexible than prior HRDs and enables a system to decode a bit stream at different peak transmission bit rates, and with different buffer sizes and start-up delays.

To be more concrete, given a desired peak transmission bit rate, a time-conformant decoder will select the smallest buffer size and delay (according to the available leaky bucket data) that will be able to decode the bit stream without suffering from buffer underflow. Conversely, for a given buffer size, the hypothetical decoder will select and operate at the minimum required peak transmission bit rate.

There are multiple benefits of this generalized hypothetical reference decoder. For example, a content provider can create a bit stream once, and a server can deliver it to multiple devices of different capabilities, using a variety of channels having different peak transmission bit rates. Or a server and a terminal can negotiate the best leaky bucket for the given networking conditions, e.g., the one that will produce the lowest start-up (buffer) delay, or the one that will require the lowest peak transmission bit rate for the given buffer size of the device. The multiple leaky bucket approach has been shown to provide large savings in peak rate, buffer size, delay and even quality in encoding/decoding systems [1].

Annex D
 Profile and Levels
(This annex forms an integral part of this recommendation and is normative)

Profiles and levels define subsets of the syntax and semantics of this recommendation.

A profile defines constraints on the algorithms or compression features used to create a bit stream, and a level defines additional restrictions on a given profile. More advanced profiles require more features to be implemented in a decoder, and higher levels generally imply higher requirements in processing speed and memory within a profile.

Encoders shall produce bit streams compliant to a given profile and level, and decoders shall decode bit streams compliant to a given profile and level. Therefore, profiles and levels are critical to ensure interoperability between encoders, coded bit streams, and decoders.

D.1
Overview

There are three profiles in this recommendation, Simple, Main and Advanced:

· The Simple profile targets low-rate internet streaming and low-complexity applications such as mobile communications, or playback of media in personal digital assistants. There are two levels of conformance in this profile.

· The Main profile targets high-rate internet applications such as streaming, movie delivery via IP, HD DVD for PC playback, or TV/VOD over IP. This profile contains three levels of conformance.

· The Advanced profile targets broadcast applications, such as digital TV or HDTV. It is the only profile that supports interlaced content. In addition, this profile contains the required syntax elements to transmit video bit streams compliant to this recommendation into generic systems, such as MPEG-2 Transport or Program Streams [1]. This profile also contains three levels.

Table D.1 lists all the profiles and levels, and the label associated to each of them.
	Profile
	Level
	Label

	Simple
	Low
	SP@LL

	
	Medium
	SP@ML

	Main
	Low
	MP@LL

	
	Medium
	MP@ML

	
	High
	MP@HL

	Advanced
	Low
	AP@LL

	
	Medium
	AP@ML

	
	High
	AP@HL

Table D.1: List of profiles and levels in this recommendation.

D.2
Profiles

Table D.2 indicates the constraints on the algorithms or compression features for each of the profiles. If a compression feature is listed in the table, it is only supported by the profiles marked with “X”. Otherwise, such feature is used in all profiles.

	Compression Feature
	Section in spec
	Simple profile
	Main Profile
	Advanced Profile

	Loop filter
	7.6
	
	X
	X

	Dynamic resolution change
	7.1.1.4, 7.2.4.2
	
	X
	

	Adaptive macroblock quantization
	6.1.1.25,6.1.3.6, 6.1.3.7
	
	X
	X

	Bidirectional (B) Frames
	7.3,9.3,9.6
	
	X
	X

	Intensity compensation
	7.2.8,9.2.7
	
	X
	X

	Range Reduction
	6.1.1.4,7.1.1.5,

7.2.4.12
	
	X
	

	Interlace: Field coding mode
	9.1, 9.2,9.3
	
	
	X

	Interlace: Frame coding mode
	9.4,9.5,9.6
	
	
	X

	Syntax elements for transmission over generic systems layer
	5.1
	
	
	X

Table D.2. Codec options in the Simple, Main and Advanced profile.

D.3
Levels

There are several levels for each of the profiles. Each level limits the video resolution, frame rate, HRD bit rate, HRD buffer requirements, and the motion vector range.

As explained in Annex C, the encoder can define multiple leaky buckets in (C.4) that contain a given video bit stream. The HRD is able to decode a bit stream operating according to any of those leaky bucket parameters, or even according to interpolations or extrapolations of such parameters.

For a bit stream to be compliant to a given profile and level, at least one of the leaky bucket parameters in (C.4) must be within the limits defined by the profile and level.

	Profile@Level
	MB/s
	MB/f
	Examples
	Rmax
	Bmax
	MV [H] x [V]

	SP@LL
	1,485
	99
	QCIF

15 Hz
	96
	20
	[-64, 63¾] x [-32, 31¾]

	SP@ML
	5,940
	396
	QVGA, 24 Hz CIF, 15 Hz
	384
	77
	[-64, 63¾] x [-32, 31¾]

	MP@LL
	7,200
	396
	CIF
30 Hz
	2,000
	306
	[-128, 127¾] x [-64, 63¾]

	MP@ML
	40,500
	1,620
	480p, 30 Hz

576p, 25 Hz
	10,000
	611
	[-512, 511¾] x [-128, 127¾]

	MP@HL
	245,760
	8,192
	1080p
30 Hz
	20,000
	2,442
	[-1024, 1023¾] x [-256, 255¾]

	AP@LL
	5,940
	396
	CIF

30 Hz
	2,000
	306
	[-128, 127¾] x [-64, 63¾]

	AP@ML
	40,500
	1,620
	480p/i, 30Hz

576p/i, 25Hz
	10,000
	611
	[-512, 511¾] x [-128, 127¾]

	AP@HL
	243,000
	8,100
	720p, 60 Hz

1080i, 30 Hz
	20,000
	2,442
	[-1024, 1023¾] x [-256, 255¾]

Table D.2 Limitations of profiles and levels.

MB/s

Maximum number of macroblocks per second

MB/f

Maximum number of macroblocks within a frame

Example
Example of maximum video resolution and frame rate. Other combinations that meet the profile and level requirements are also possible. In AP@ML, “480p/i, 30 Hz” indicates that both 480p at 30 Hz and 480i at 30 Hz (60 fields/sec) are supported.

Rmax
HRD’s maximum peak transmission bit rate in units of 1,000 bits/sec.

Bmax
HRD’s maximum buffer size in units of 16,384 bits

MV
[H]x[Y]
Motion vector range in full pixel units. [H] = horizontal, [V] = vertical.

D.4
Syntax

The Simple, Main and Advance profiles are signaled to the decoder in the bit stream, by the syntax element Profile, which is included in the sequence header as described in Section 5.1.1. The following codes are used to signal profiles.

00
Simple

01
Main

11
Advanced

10

Reserved

The levels for Simple and Main profile shall be communicated to the decoder by external means. The levels for Advance profile are indicated in the syntax element LEVEL, which is included in the sequence header, as described in Section 5.1.4. The following codes are used to signal the levels in this profile:

00
AP@LL

01
AP@ML

10
AP@HL

11

Reserved

For the Advanced Profile, the syntax element LEVEL, will be followed by a syntax element LEVEL_EXT. This syntax element will always be set to 00. A decoder will ignore this syntax element.
Annex E
 Start Codes
(This annex forms an integral part of this recommendation and is normative)

An Independently Decodable Unit (IDU) of compressed video data must begin with an identifier called Start Code (SC). An IDU could refer to a single picture, or a group of macroblocks in a picture (also called slice), or a group of pictures (GOP), or a sequence header.

This recommendation mandates a sequence of four bytes as the start code, which consists of an unique three-byte Start Code Prefix (SCP), and an one byte Start Code Suffix (SCS). The SCP shall be the unique sequence of three bytes (0x000001) . The SCS is used to identify the type of IDU that follows the start code. For example, the suffix of the start code before a picture is different from the suffix of the start code before a slice. Start codes are always byte-aligned.
A non-normative Encapsulation Mechanism (EM) is described to prevent emulation of the start code prefix in the bitstream. The compressed data before encapsulation is called Raw Independently Decodable Unit (RIDU), while Encapsulated IDU (EIDU) refers to the data after encapsulation.
Section E.1 provides an encoder-side perspective on how start code and encapsulation operates, and is informative. Section E.2 specifies detection of start codes and EIDUs at the decoder, and is normative. Section E.3 deals with extraction of an RIDU from an EIDU, and is also normative. Section E.4 specifies start code suffixes for various IDU types, and is also normative.

E.1
Start-codes and Encapsulation – An encoder viewpoint (Informative)

The encapsulation of a RIDU to obtain an EIDU is described below.

Step 1: A trailing ‘1’ bit is added to the end of the RIDU. The EM now stuffs between 0 and 7 bits onto the end of the IDU such that the IDU ends in a byte-aligned location. The value of these stuffing bits is ‘0’. As a result, at the end of this step, the IDU is represented in an integer number of bytes, in which the last byte of the IDU cannot be a zero-valued byte. The resulting string of bytes is called the payload bytes of the IDU.
Step 2: The three-byte start code prefix (0x000001), and the appropriate start code suffix that identifies the IDU type, are placed at the beginning of the EIDU.
Step 3: The remainder of the EIDU is formed by processing the payload bytes of the IDU through the following emulation prevention process. The emulation of start code prefixes in the IDU is eliminated via byte-stuffing. The emulation prevention process is equivalent to the following operation:

1) Replace each string within the payload of 2 consecutive bytes of value 0x00 followed by a byte that contains zero values in its six MSBs (regardless of the LSB values) with 2 bytes of value 0x00 followed by a byte equal to 0x03 followed by a byte equal to the last byte of the original three-byte data string. This process is illustrated in Table E-1.

Table E-1: Emulation Prevention Pattern Replacement
	Pattern to Replace
	Replacement Pattern

	0x00, 0x00, 0x00
	0x00, 0x00, 0x03, 0x00

	0x00, 0x00, 0x01
	0x00, 0x00, 0x03, 0x01

	0x00, 0x00, 0x02
	0x00, 0x00, 0x03, 0x02

	0x00, 0x00, 0x03
	0x00, 0x00, 0x03, 0x03

Step 3: The three-byte start code prefix (0x000001), and the appropriate start code suffix that identifies the IDU type, are attached to the beginning of the IDU. The resulting payload is an encapsulated IDU.
The encoder is also allowed to insert any number of zero-valued stuffing bytes after the end of an EIDU. Equivalently, any number of zero-valued stuffing bytes can be inserted before a start code prefix. The start code is structured such that it can be detected by a decoder even in the presence of these zero-valued stuffing bytes. In some transmission environments such as H.320, the encoder may use this feature to insert extra zero-valued stuffing bytes as desired, which can enable the decoder to quickly recover the location of the start- codes even if it has lost track of the intended alignment of the bitstream to byte boundaries. Further, these zero-valued stuffing bytes may also be useful in splicing bitstreams, filling a constant bit-rate channel, etc. Zero-Valued Stuffing bytes prior to start codes, or at the end of an EIDU, are not processed through the encapsulation mechanism – only RIDU data requires such processing.
 E.2 Detection of Start codes and EIDU (Normative)
The detection of an EIDU starts with the search for the start code prefix.

E.2.1
Detection of Start Codes Starting from Byte-Aligned Positions (Normative)
In a decoder that cannot lose byte-alignment, or once byte alignment has been established, start code detection is conducted as follows.

1. Whenever a string of two or more bytes of value 0x00 followed by a byte of value 0x01 is found, a start code prefix detection is declared.
When 2 successive start-codes prefixes are detected, the payload bitstream between them is declared as a new EIDU.
E.2.2
Detection of Start Codes After Loss of Byte Alignment in a Decoder (Informative)

In a decoder that has lost byte-alignment (as can happen in some transmission environments), start-code prefix detection and byte-alignment detection are conducted as follows:

Whenever a string of three or more bytes of value 0x00 is found, followed by any non-zero byte, a start code prefix detection is declared and byte alignment is understood to be recovered such that the first non-zero bit in the non-zero byte must be the last bit of a byte-aligned start code.
E.3 Extraction of RIDU from EIDU (Normative)

The extraction of a raw IDU from an encapsulated IDU is described below.

Step 1: The start-code suffix is used to identify the type of IDU.

Step 2: The first step is to remove the zero-valued stuffing bytes at the end of EIDU. After this step, the last byte of the IDU must have a non-zero value.

Step 3: The bytes used for emulation prevention are detected and removed. The process is as follows:

Whenever a string of two bytes of value 0x00 is followed by a byte equal to 0x03, the byte equal to 0x03 is understood to be an emulation prevention byte and is discarded.
This process is illustrated in Table E-2.

Table E-2: Decoder Removal of Emulation Prevention Data
	Pattern to Replace
	Replacement Pattern

	0x00, 0x00, 0x03, 0x00
	0x00, 0x00, 0x00

	0x00, 0x00, 0x03, 0x01
	0x00, 0x00, 0x01

	0x00, 0x00, 0x03, 0x02
	0x00, 0x00, 0x02

	0x00, 0x00, 0x03, 0x03
	0x00, 0x00, 0x03

The following byte patterns, if seen within the bitstream, represent error conditions (noting that loss of proper byte alignment by the decoder is considered an error condition):

a) A string of two bytes of value 0x00 followed by a byte equal to 0x02 indicates error condition.

b) A string of three or more bytes of value 0x00, if not followed by a byte of 0x01, is an error condition (note that if two or more bytes equal to zero are followed by a byte of value 0x01 and byte alignment has not been lost, detection of a subsequent start code is declared).

c) A string of two bytes of value 0x00, followed by a byte of value 0x03, followed by a byte which is not one of 0x00, 0x01, or 0x02, or 0x03.
Step 4: In the last byte of the IDU, the last non-zero bit is identified, and that non-zero bit, and all the zero bits that follow, are discarded. The result is a raw IDU.
E.4
Start-code Suffixes for IDU Types (Normative)

The start code suffixes for various IDU types are presented in Table E-3.
Table E-3 Start Code Suffixes for Various IDU Types
	IDU Type
	Start-code Suffix

	SequenceHeader
	0x0F

	Picture
	0x0E

	Slice
	0x0D

	User_data
	0x0C

SequenceHeader suffix is sent to identify IDUs which carry sequence header. See Section 5.1 for more details on sequence headers.

Picture suffix is sent to identify IDUs which contain the picture, and the picture header.
Slice suffix is sent to identify IDUs which carry slices, and the slice header. See Section 6.1.2 for more details on slices and slice header.

User_data IDU is used to transmit any user defined data. See Annex F more details.
Annex F
 User data

(This annex forms an integral part of this recommendation and is normative)

Closed Captions and auxiliary user data shall be transmitted in separate User Data independent data units (IDU), as specified in this annex. The User Data IDUs will be identified by the corresponding start code suffix, which is defined in Annex E.

The User Data syntax elements are inserted in the video bit stream headers as follows:

	User_data_parameters()
	Descriptor

	{
	

	
User_data_identifier
	FLC-32

	
for(n=1; n <= end_of_idu; n++)
	

	 {
	

	

User_data[n]
	FLC-8

	
}
	

User_data_identifier is a fixed-length syntax element that identifiers the type of user data. This syntax element is encoded using 32 bits.

User_data is an array of 8-bit fixed length syntax elements that represent the user data.

Annex G
 System Layer binding for VC-9 simple/main profile: ASF Transport Example
(This annex forms an integral part of this recommendation and is informative)

In the main and simple profiles of the VC-9 codec, the sequence-level header information and the compressed size of each frame are to be transmitted through external means. In the existing implemenatations of VC-9, this information is transmitted via Advanced Systems Format (ASF) Layer. This annex documents how ASF is used to transmit the header information of VC-9 in simple and main profiles. The complete ASF specification can be found in reference [5].

To summarize:

a) The video sequence header is transmitted in the ASF header called Stream Properties Object.
b) The bits belonging to each compressed frame is called ASF payload which is inside an ASF packet, and all the ASF packets are located in a Data object.

G.1
Introduction
The base unit of organization for ASF files is called the ASF object. It consists of a 128-bit GUID for the object, a 64-bit integer object size, and the variable-length object data. The value of the object size field is the sum of 24 bytes plus the size of the object data in bytes.

All ASF objects and structures (including data packet headers) are stored in little-endian byte order (the inverse of network byte order). However, ASF files can contain media stream data in either byte order within the data packets.
ASF files are logically composed of three types of top-level objects: the Header Object, the Data Object, and the Index Object(s). The Header Object is mandatory and must be placed at the beginning of every ASF file. The Data Object is also mandatory and must follow the Header Object. The Index Object(s) are optional, but they are useful in providing time-based random access into ASF files. When present, the Index Object(s) must be the last object(s) in the ASF file.
G.2
Transmission of Sequence Header
The sequence header is transmitted in the structure called Video Stream Property Object, which belongs to Stream Properties Object. Stream Properties Object is a specific kind of ASF header object.

To find the sequence header, we first detect the stream property object. This is achieved by checking if GUID equals B7DC0791-A9B7-11CF-8EE6-00C00C205365.

The Stream Properties Object is represented using the following structure:

	Field Name
	Field Type
	Size (bits)

	Object ID
	GUID
	128

	Object Size
	QWORD
	64

	Stream Type
	GUID
	128

	Error Correction Type
	GUID
	128

	Time Offset
	QWORD
	64

	Type-Specific Data Length
	DWORD
	32

	Error Correction Data Length
	DWORD
	32

	Flags
	WORD
	16

	Stream Number
	
	7 (LSB)

	Reserved
	
	8

	Encrypted Content Flag
	
	1

	Reserved
	DWORD
	32

	Type-Specific Data
	BYTE
	varies

	Error Correction Data
	BYTE
	varies

Based on the definition of the stream property object, the decoder parses it to check if Stream Type equals BC19EFC0-5B4D-11CF-A8FD-00805F5C442B, in which case the object is the Video Stream Property Object .
For VC-9, Type-Specific Data is AsfXGenericImageTypeSpecific structure, and the sequence header is transmitted in this structure. The sequence header is obtained by parsing the AsfXGenericImageTypeSpecific based on the following definition. The length of sequence header equals biSize minus the size of BITMAPINFOHEADER.
The AsfXGenericImageTypeSpecific is represented using the following structure:

	Field Name
	Field Type
	Size (bits)

	Window Width
	DWORD
	32

	Window Height
	DWORD
	32

	Flags
	BYTE
	8

	Image Info Length
	WORD
	16

	BITMAPINFOHEADER
	
	

	biSize
	DWORD
	32

	biWidth
	DWORD
	32

	biHeight
	DWORD
	32

	Biplanes
	WORD
	16

	biBitCount
	WORD
	16

	biCompression
	DWORD
	32

	biSizeImage
	DWORD
	32

	biXPelsPerMeter
	DWORD
	32

	biYPelsPerMeter
	DWORD
	32

	biClrUsed
	DWORD
	32

	biClrImportant
	DWORD
	32

	Video Sequence header
	
	varies

Thus, the video sequence header is transmitted.

G.3
Actual compressed bits and the size of compressed bits
Actual compressed bits are in the ASF payload, and the size of compressed bits is in the ASF payload header. There are four kinds of ASF payloads, and they are all variable length. Thus, it is necessary to parse each field from the data object header down to the payload to get the actual compressed bits.

Data Object {

 Data Object Header

Packet1 {

 Packet Header

 Payload1 {

 Payload Header {

 …

 Compressed bits size

 …

 }

 Compressed bits

 }

 …

 Payloadj {

 Payload Header

 {

 Subpayload1 {

 Compressed bit size

 Compressed bits

 }

 …

 Subpayloadi {

 Compressed bit size

 Compressed bits

 }

 …

 Subpayloadn {

 Compressed bit size

 Compressed bits
 }

 }

 …

 Payloadm {

 }

}

…

Packeti {

 …

}

…

Packetn {

 …

}

}

The data object is obtained by detecting when GUID equals 75B22636-668E-11CF-A6D9-00AA0062CE6C.

The Data Object is represented using the following structure:

	Field Name
	Field Type
	Size (bits)

	Object ID
	GUID
	128

	Object Size
	QWORD
	64

	File ID
	GUID
	128

	Total Data Packets
	QWORD
	64

	Reserved
	WORD
	16

	Data Packets
	
	Varies

ASF data packet definition

In general, ASF media types logically consist of sub-elements that are referred to as media objects. What a media object happens to be in a given media stream is entirely stream-dependent (for example, it would be a frame within a video stream). An ASF Data Packet is a conveniently sized grouping of complete or fragmented media objects from several media streams.

ASF Data Packets are structured in the following way:

The following sections detail the content of each block shown in the previous diagram.

Error Correction data
Refer to the ASF spec [5] for more details on decoding error correction data.

Payload parsing information

Following error correction data (if any) is the payload parsing information. Payload parsing information has the following structure:

	Field Name
	Field Type
	Size (bits)

	Length Type Flags
	BYTE
	8

	Multiple Payloads Present
	
	1 (LSB)

	Sequence Type
	
	2

	Padding Length Type
	
	2

	Packet Length Type
	
	2

	Error Correction Present
	
	1

	Property Flags
	BYTE
	8

	Replicated Data Length Type
	
	2 (LSB)

	Offset Into Media Object Length Type
	
	2

	Media Object Number Length Type
	
	2

	Stream Number Length Type
	
	2

	Packet Length
	BYTE, WORD or DWORD
	0, 8, 16, 32

	Sequence
	BYTE, WORD or DWORD
	0, 8, 16, 32

	Padding Length
	BYTE, WORD or DWORD
	0, 8, 16, 32

	Send Time
	DWORD
	32

	Duration
	WORD
	16

The fields are defined as follows:

Length Type Flags

The flags are stored in LSB order.

Multiple Payloads Present (bit 0)

Specifies, if set, that the Data Packet contains multiple payloads. Whenever this flag is set, there will be data from multiple media stream samples in the Data Packet.

Sequence Type (bits 1-2)

Specifies the number of bits used to code the Sequence field. The following values are defined:

	Value Type
	Description

	00
	The Sequence field does not exist.

	01
	The Sequence field is coded using a BYTE.

	10
	The Sequence field is coded using a WORD.

	11
	The Sequence field is coded using a DWORD.

The value of field should be set to 00.

Padding Length Type (bits 3-4)

Specifies the number of bits used to code the Padding Length field. The following values are defined:

	Value Type
	Description

	00
	The Padding Length field does not exist.

	01
	The Padding Length field is coded using a BYTE.

	10
	The Padding Length field is coded using a WORD.

	11
	The Padding Length field is coded using a DWORD.

Packet Length Type (bits 5-6)

Specifies the number of bits used to code the Packet Length field. The following values are defined:

	Value Type
	Description

	00
	The Packet Length field does not exist.

	01
	The Packet Length field is coded using a BYTE.

	10
	The Packet Length field is coded using a WORD.

	11
	The Packet Length field is coded using a DWORD.

The value of field should be set to 00 when creating content.

Error Correction Present (bit 7)

Specifies, if set, that this Data Packet starts with error correction information. If not set, the structure of the Data Packet starts with the payload data as described above. If it is set, the Data Packet starts with the Error Correction Data structure, as shown in section Error! Reference source not found. and this bit in Length Type Flags following error correction data in the Data Packet is not used and shall be ignored.

Property Flags

The flags are stored in LSB order.

Replicated Data Length Type (bits 0-1)

Specifies the number of bits used to code the Replicated Data Length field. The following values are defined:

	Value Type
	Description

	00
	The Replicated Data Length field does not exist.

	01
	The Replicated Data Length field is coded using a BYTE.

	10
	The Replicated Data Length field is coded using a WORD.

	11
	The Replicated Data Length field is coded using a DWORD.

The value of this field should be set to 01.

Offset Into Media Object Length Type (bits 2-3)

Specifies the number of bits used to code the Offset Into Media Object Length field. The following values are defined:

	Value Type
	Description

	00
	The Offset Into Media Object Length field does not exist.

	01
	The Offset Into Media Object Length field is coded using a BYTE.

	10
	The Offset Into Media Object Length field is coded using a WORD.

	11
	The Offset Into Media Object Length field is coded using a DWORD.

The value of this field should be set to 11.

Note that for compressed payloads (see sections 0 and 0) this field takes on a different meaning; instead, it is a presentation time.
Media Object Number Length Type (bits 4-5)

Specifies the number of bits used to code the Media Object Number Length field. The following values are defined:

	Value Type
	Description

	00
	The Media Object Number Length field does not exist.

	01
	The Media Object Number Length field is coded using a BYTE.

	10
	The Media Object Number Length field is coded using a WORD.

	11
	The Media Object Number Length field is coded using a DWORD.

The value of this field shall be set to 01.

Stream Number Length Type (bits 6-7)

Specifies the number of bits used to code the Stream Number Length field. The value of this field shall be set to 01 to indicate that the Stream Number Length field is coded using a BYTE.

Packet Length

This field specifies the length of the data packet. This field exists only if the value of the Packet Length Type field is not ‘00’. Whenever present, the Packet Length field can be coded using ether a BYTE, a WORD, or a DWORD. This is specified by the value of the Packet Length Type field.

Sequence

This field is reserved for future use, and should be ignored. This field exists if and only if the value of the Sequence Type field is not 00. Whenever present, the Sequence field can be coded using either a BYTE, WORD or a DWORD. This is specified by the value of the Sequence Type field.

Padding Length

This field specifies the length of the padding at the end of a data packet. This field exists only if the value of the Padding Length Type field is not ‘00’. Whenever present, the Padding Length field can be coded using either a BYTE, WORD, or DWORD and must contain the correct padding length. This is specified by the value of the Padding Length Type field.

Send Time

Specifies the send time of the Data Packet. The Send Time field must be coded using a DWORD, and is specified in millisecond units.

Duration

Specifies the duration of the Data Packet. The Duration field is coded using a WORD, and is specified in millisecond units.

Payload data

The actual media data follows the payload parsing information. This data can contain one or several payloads of data depending upon the value of the Multiple Payloads field of the structure described in the previous section. If Multiple Payloads is set to 1, the actual data is composed of multiple payloads, as described in section 0.

Single payload

Payload data in a Data Packet with a unique payload has the following structure:

	Field Name
	Field Type
	Size (bits)

	Payload
	See below
	

where the Payload field is parsed as follows. Note that if the Replicated Data Length field contains a value of 1, the payload is a compressed payload and should be interpreted as described in section 0.

Payload

	Field Name
	Field Type
	Size (bits)

	Stream Number
	BYTE
	8

	Media Object Number
	BYTE, WORD, or DWORD
	0, 8, 16, 32

	Offset Into Media Object
	BYTE, WORD, or DWORD
	0, 8, 16, 32

	Replicated Data Length
	BYTE, WORD, or DWORD
	0, 8, 16, 32

	Replicated Data
	BYTE
	varies

	Payload Data
	BYTE
	varies

The fields are defined as follows:

Stream Number

Specifies the stream number of the stream this data payload belongs to as well as whether the payload belongs to a media object that is a key frame.

	Field Name
	Field Type
	Size (bits)

	Stream Number and Key frame Bit
	BYTE
	8

	Stream Number
	
	7 (LSB)

	Key frame Bit
	
	1

For the low seven bits, allowed values are between 1 and 127.

Media Object Number

Specifies the number of the media object this data payload belongs to. This field shall not be present if the Media Object Number Length Type field of the payload parsing information structure is set to 00. Whenever present, the Media Object Number field can be coded using either a BYTE, a WORD, or a DWORD. This is specified by the value of the Media Object Number Length Type field. For content created according to this specification, this field is coded using a BYTE.

Offset Into Media Object

Specifies the byte offset in the media object this data payload belongs to. This field shall not be present if the Offset Into Media Object Length Type field of the payload parsing information structure is set to 00. Whenever present, the Offset Into Media Object field can be coded using either a BYTE, a WORD, or a DWORD. This is specified by the value of the Offset Into Media Object Length Type field. For content created according to this specification, this field is coded using a DWORD.

Replicated Data Length

Specifies the size, in bytes, of the Replicated Data field. This field shall not be present if the Replicated Data Length Type field of the payload parsing information structure is set to 00. Whenever present, the Replicated Data Length field can be coded using either a BYTE, a WORD, or a DWORD. This is specified by the value of the Replicated Data Length Type field. For content created according to this specification, this field is coded using a BYTE. If the value of this field is set to 1, the payload should be interpreted as a compressed payload, as described in section 0. Otherwise, valid values are 0 or values greater than or equal to 8.
Replicated Data

Specifies an array of replicated data. The number of bytes in this array is specified by the Replicated Data Length field. This data will be identical in value for all payloads for the same Media Object. Whenever present, this data always starts with a DWORD that contains the size, in bytes, of the Media Object this payload belongs to, immediately followed by a DWORD that contains the presentation time, in milliseconds, of the Media Object this payload belongs to. Following those two DWORDs is optional extension data for media samples. Please see section Error! Reference source not found. for details on how to use this data.

Payload Data

Specifies an array containing the actual data for the payload. The number of bytes in this array can be calculated from the overall Packet Length field, and is equal to the Packet Length minus the packet header length, minus the payload header length (including Replicated Data), minus the Padding Length.
Single payload, compressed payload data

The following is the compressed payload interpretation of a single payload, as determined when the Replicated Data Length field of a single payload has a value of 1. A compressed payload contains one or more sub-payloads.

Compressed payloads can allow some space in the data packets to be saved. They can be used to represent a group of payloads only when all of the following conditions are met:

· All payloads are for the same stream.

· Either all payloads need to be marked as a key frame, or (more commonly) none of the frames needs to be marked as a key frame.

· Each payload represents an entire media object (rather than a fragment thereof).

· No payload has more than 256 bytes of data.

· No payload has more than the standard 8 bytes of replicated data.

· The Media Object Numbers of the payloads are consecutive.

· The presentation times of the payloads are spaced in constant intervals.

Each of the sub-payloads should be treated as an independent payload.

Payload

A Payload is described as follows:

	Field Name
	Field Type
	Size (bits)

	Stream Number
	BYTE
	8

	Media Object Number
	BYTE, WORD or DWORD
	0, 8, 16, 32

	Presentation Time
	BYTE, WORD or DWORD
	0, 8, 16, 32

	Replicated Data Length
	BYTE, WORD or DWORD
	0, 8, 16, 32

	Presentation Time Delta
	BYTE
	8

	Sub-Payload Data
	BYTE
	varies

The fields are defined as follows:

Stream Number

Specifies the stream number of the stream that this data payload belongs to as well as whether the payload belongs to a media object that is a key frame.

	Field Name
	Field Type
	Size (bits)

	Stream Number and Key frame Bit
	BYTE
	8

	Stream Number
	
	7 (LSB)

	Key frame Bit
	
	1

For the low seven bits, allowed values are between 1 and 127.

Media Object Number

Specifies the number of the media object that the first sub-payload belongs to. The media object number of each subsequent sub-payload is the Media Object Number field plus the sub-payload number. This field shall not be present if the Media Object Number Length Type field of the payload parsing information structure is set to 00. Whenever present, the Media Object Number field can be coded using either a BYTE, WORD or a DWORD. This is specified by the value of the Media Object Number Length Type field. For content created according to this specification, this field is coded using a BYTE.

Presentation Time

Specifies the presentation time, in milliseconds, of the media object that the first sub-payload belongs to. This field must be present; the Offset Into Media Object Length Type field of the payload parsing information structure must not be set to 00. The Presentation Time field can be coded using either a BYTE, WORD or a DWORD. This is specified by the value of the Offset Into Media Object Length Type field. For content created according to this specification, this field is coded using a DWORD.

Please note that this field is used to express the Offset Into Media Object value for non-compressed payloads; however, for compressed payloads it is used to express the Presentation Time.
Replicated Data Length

Specifies the size, in bytes, of the Replicated Data field. This field must be present; the Replicated Data Length Type field of the payload parsing information structure must not be set to 00. Whenever present, the Replicated Data Length field can be coded using either a BYTE, WORD or a DWORD. This is specified by the value of the Replicated Data Length Type field. For content created according to this specification, this field is coded using a BYTE. The Replicated Data Length field must contain the value 1, or else the payload should be interpreted as a normal, non-compressed payload.

Presentation Time Delta

Specifies the presentation time delta, in milliseconds, to be applied to sub-payloads after the first. The presentation time of a media object in a sub-payload shall be interpreted as the Presentation Time field plus the Presentation Time Delta times the sub-payload number. This value is ignored if there is only one sub-payload.

Sub-Payload Data

Specifies an array containing the sub-payloads. The number of bytes in this array can be calculated from the overall Packet Length field.

Contains one or more sub-payloads, described as follows. Note that the number of sub-payloads is not explicitly specified; the last sub-payload should be detected by the end of the sub-payload data matching the end of the Sub-Payload Data, as indicated by the Payload Data Length field.

	Field Name
	Field Type
	Size (bits)

	Sub-Payload #0 Data Length
	BYTE
	8

	Sub-Payload #0 Data
	BYTE
	varies

	Sub-Payload #1 Data Length
	BYTE
	8

	Sub-Payload #1 Data
	BYTE
	varies

	…
	
	varies

Each sub-payload should be interpreted as an independent payload, with properties described above.

Multiple payloads

Payload data in a Data Packet with multiple payloads has the following structure:

	Field Name
	Field Type
	Size (bits)

	Payload Flags
	BYTE
	8

	Number of Payloads
	
	6 (LSB)

	Payload Length Type
	
	2

	Payloads
	See text
	

The fields are defined as follows:

Payload Flags

The flags are stored in LSB order.

Number of Payloads (bits 0-5)

Specifies the number of payloads contained in the Payloads field. This field must not contain the value 0.

Payload Length Type (bits 6-7)

Specifies the number of bits used to code the Payload Length field contain in each of the payloads of this packet. The following values are defined:

	Value Type
	Description

	01
	The Payload Length field is coded using a BYTE.

	10
	The Payload Length field is coded using a WORD.

	11
	The Payload Length field is coded using a DWORD.

The value of this field should be set to 10.

Payloads

This field contains an array of payloads. The number of entries in this array is specified by the Number of Payloads field. The Payload is commonly described as follows; however, if the Replicated Data Length field contains a value of 1, the payload should be interpreted as described in section 0:

	Field Name
	Field Type
	Size (bits)

	Stream Number
	BYTE
	8

	Media Object Number
	BYTE, WORD or DWORD
	0, 8, 16, 32

	Offset Into Media Object
	BYTE, WORD or DWORD
	0, 8, 16, 32

	Replicated Data Length
	BYTE, WORD or DWORD
	0, 8, 16, 32

	Replicated Data
	BYTE
	varies

	Payload Length
	BYTE, WORD or DWORD
	8, 16, 32

	Payload Data
	BYTE
	varies

The Payload fields are defined as follows:

Stream Number

Specifies the stream number of the stream this data payload belongs to as well as whether the payload belongs to a media object that is a key frame.

	Field Name
	Field Type
	Size (bits)

	Stream Number and Key frame Bit
	BYTE
	8

	Stream Number
	
	7 (LSB)

	Key frame Bit
	
	1

For the low seven bits, allowed values are between 1 and 127.

Media Object Number

Specifies the number of the media object this data payload belongs to. This field shall not be present if the Media Object Number Length Type field of the payload parsing information structure is set to 00. Whenever present, the Media Object Number field can be coded using either a BYTE, a WORD, or a DWORD. This is specified by the value of the Media Object Number Length Type field. For content created according to this specification, this field is coded using a BYTE.

Offset Into Media Object

Specifies the byte offset in the media object this data payload belongs to. This field shall not be present if the Offset Into Media Object Length Type field of the payload parsing information structure is set to 00. Whenever present, the Offset Into Media Object field can be coded using either a BYTE, a WORD, or a DWORD. This is specified by the value of the Offset Into Media Object Length Type field. For content created according to this specification, this field is coded using a DWORD.

Replicated Data Length

Specifies the size, in bytes, of the Replicated Data field. This field shall not be present if the Replicated Data Length Type field of the payload parsing information structure is set to 00. Whenever present, the Replicated Data Length field can be coded using either a BYTE, a WORD, or a DWORD. This is specified by the value of the Replicated Data Length Type field. For content created according to this specification, this field is coded using a BYTE. If the value of this field is set to 1, the payload should be interpreted as a compressed payload, as described in section 0. Otherwise, valid values are 0 or values greater than or equal to 8.
Replicated Data

Specifies an array of replicated data. The number of bytes in this array is specified by the Replicated Data Length field. This data will be identical in value for all payloads for the same Media Object. Whenever present, this data always starts with a DWORD that contains the size, in bytes, of the Media Object this payload belongs to, immediately followed by a DWORD that contains the presentation time, in milliseconds, of the Media Object this payload belongs to. Following those two DWORDs is optional extension data for media samples. Please see section Error! Reference source not found. for details on how to use this data.

Payload Length

Specifies the number of bytes in the Payload Data array. The value of this field must not be 0. The Payload Length field can be coded using either a BYTE, a WORD, or a DWORD. This is specified by the value of the Payload Length Type field. For content created according to this specification, this field is coded using a WORD.
Payload Data

Specifies an array containing the actual data for the payload.

Multiple payloads, compressed payload data

The following describes the structure of a compressed payload in a multiple payload packet, as determined when the Replicated Data Length field of a payload has a value of 1. A compressed payload contains one or more sub-payloads.

Compressed payloads can allow some space in the data packets to be saved. They can be used to represent a group of payloads only when all of the following conditions are met:

· All payloads are for the same stream.

· None of the payloads needs to be marked as a key frame.

· Each payload represents an entire media object (rather than a fragment thereof).

· No payload has more than 256 bytes of data.

· No payload has more than the standard 8 bytes of replicated data.

· The Media Object Numbers of the payloads are consecutive.

· The presentation times of the payloads are spaced in constant intervals.

Each of the sub-payloads should be treated as an independent payload.

	Field Name
	Field Type
	Size (bits)

	Payload Flags
	BYTE
	8

	Number of Payloads
	
	6 (LSB)

	Payload Length Type
	
	2

	Compressed Payloads
	See text
	

The fields are defined as follows:

Payload Flags

The flags are stored in LSB order.

Number of Payloads (bits 0-5)

Specifies the number of payloads contained in the Payloads field. This field must not contain the value 0.

Payload Length Type (bits 6-7)

Specifies the number of bits used to code the Payload Length field contained in each of the payloads of this packet. The following values are defined:

	Value Type
	Description

	01
	The Payload Length field is coded using a BYTE.

	10
	The Payload Length field is coded using a WORD.

	11
	The Payload Length field is coded using a DWORD.

The value of this field should be set to 10.

Compressed Payloads

	Field Name
	Field Type
	Size (bits)

	Stream Number
	BYTE
	8

	Media Object Number
	BYTE, WORD or DWORD
	0, 8, 16, 32

	Presentation time
	BYTE, WORD or DWORD
	0, 8, 16, 32

	Replicated Data Length
	BYTE, WORD or DWORD
	0, 8, 16, 32

	Presentation time delta
	BYTE
	8

	Payload Length
	BYTE, WORD or DWORD
	8, 16, 32

	Sub-Payload Data
	BYTE
	varies

The fields are defined as follows:

Stream Number

Specifies the stream number of the stream this data payload belongs to as well as whether the payload belongs to a media object that is a key frame.

	Field Name
	Field Type
	Size (bits)

	Stream Number and Key frame Bit
	BYTE
	8

	Stream Number
	
	7 (LSB)

	Key frame Bit
	
	1

For the low seven bits, allowed values are between 1 and 127.

Media Object Number

Specifies the number of the media object that the first sub-payload belongs to. The media object number of each subsequent sub-payload is the Media Object Number field plus the sub-payload number. This field shall not be present if the Media Object Number Length Type field of the payload parsing information structure is set to 00. Whenever present, the Media Object Number field can be coded using either a BYTE, WORD or a DWORD. This is specified by the value of the Media Object Number Length Type field. For content created according to this specification, this field is coded using a BYTE.

Presentation Time

Specifies the presentation time, in milliseconds, of the media object that the first sub-payload belongs to. This field must be present; the Offset Into Media Object Length Type field of the payload parsing information structure must not be set to 00. The Presentation Time field can be coded using either a BYTE, WORD or a DWORD. This is specified by the value of the Offset Into Media Object Length Type field. For content created according to this specification, this field is coded using a DWORD.

Please note that this field is used to express the Offset Into Media Object value for non-compressed payloads; however, for compressed payloads it is used to express the Presentation Time.
Replicated Data Length

Specifies the size, in bytes, of the Replicated Data field. This field must be present; the Replicated Data Length Type field of the payload parsing information structure must not be set to 00. Whenever present, the Replicated Data Length field can be coded using either a BYTE, WORD or a DWORD. This is specified by the value of the Replicated Data Length Type field. For content created according to this specification, this field is coded using a BYTE. The Replicated Data Length field must contain the value 1, or else the payload should be interpreted as a normal, non-compressed payload.

Presentation Time Delta

Specifies the presentation time delta, in milliseconds, to be applied to sub-payloads after the first. The presentation time of a media object in a sub-payload shall be interpreted as the Presentation Time field plus the Presentation Time Delta times the sub-payload number. This value is ignored if there is only one sub-payload.

Payload Length

Specifies the number of bytes in the Sub-Payload Data array. The value of this field must not be 0. The Payload Length field can be coded using either a BYTE, a WORD, or a DWORD. This is specified by the value of the Payload Length Type field. For content created according to this specification, this field is coded using a WORD.
Sub-Payload Data

Specifies an array containing the sub-payloads.

Contains one or more sub-payloads, described as follows. Note that the number of sub-payloads is not explicitly specified; the last sub-payload should be detected by the end of the sub-payload data matching the end of the Sub-Payload Data, as indicated by the Payload Length field.

	Field Name
	Field Type
	Size (bits)

	Sub-Payload #0 Data Length
	BYTE
	8

	Sub-Payload #0 Data
	BYTE
	varies

	Sub-Payload #1 Data Length
	BYTE
	8

	Sub-Payload #1 Data
	BYTE
	varies

	…
	
	varies

Each sub-payload should be interpreted as an independent payload, with properties described above.

Padding data

Following the payload data, an ASF Data Packet may contain padding data. Details on decoding padding data is provided in the ASF spec [5].
Bibliography

[1] J. Ribas-Corbera, P.A. Chou, and S.L. Regunathan, “A generalized hypothetical reference decoder for H.264/AVC,” IEEE Transactions on Circuits and Systems for Video Technology, Aug. 2003.

[2] ISO/IEC 138180-2, Information Technology – Generic Coding of Moving Pictures and Associated Audio Information: Video (MPEG-2/H.262), Annex C “Video Buffering Verifier,” 2nd Edition, 2000.

[3] Video Coding for Low Bit Rate Communication, ITU-T recommendation H.263, Annex B “Hypothetical Reference Decoder,” Jan 1998.
[4] ISO/IEC 13818-1:2000 Information Technology – Generic Coding of Moving Pictures and Associated Audio Information: Systems (2nd Edition).
[5] “Advanced Systems Format (ASF) Specification,” http://www.microsoft.com/ windows/windowsmedia/format/asfspec.aspx

Predicted block

b2

 Trans

Inverse

Quantize

 (Progressive I

Inverse

DC VLD

AC VLD

Quantized DCT

run level last

....

AC Prediction

DC Prediction

BLOCK LAYER

CBPCY

ACPRED

PICTURE LAYER

 MB LAYER

TRANSDCTAB

TRANSACFRM2

 I Picture simple/main

TRANSACFRM

INTERLCMB

INTERLCF

RESPIC

Or

Optional

Optional

Padding Data

Error Correction Data

Opaque Data

Optional

Optional

Padding Data

Payload Parsing Information

Error Correction Data

Payload Data

MB LAYER

SLICE_ADDR

SLICE LAYER

Error block

VLE

VLE

RLE

RLE

scan

Zig-zag

Quantize

Transform/

scan

Zig-zag

Quantize

Transform/

Run Level Last

Run Level Last

.......

.......

Error block

Bottom 8x4

block

Top 8x4 Error

block

Predicted 8x8

Estimation

Motion

MVx, MVy

Current 8x8 block

reference frame)

predicted block in

displacement of

(specifies

Motion vector

RLD

Inverse

zig-zag

scan

8x8 Trans

8x4 Trans

4x8 Trans

4x4 Trans

MB LAYER

F

t0

t1

t2

b0

b1

tn

bn

B

0

seconds

bits

slopeR

D

t0 -D

t0

t1

t2

B

0

seconds

bits

slopeR

t3

t4

t5

.......

RLD

Inverse zig-

zag scan

Inverse

quant/

8x4 IDCT

Quantized 8x4

DCT

coefficients

Top 8x4 Error

block

VLD

.......

RLD

Inverse zig-

zag scan

Inverse

quant/

8x4 ITrans

Quantized 8x4

Trans

coefficients

Bottom 8x4

Error block

VLD

Run Level Last

Run Level Last

Motion vector

(specifies

displacement of

predicted block in

reference frame)

Predicted 8x8

block

MVx, MVy

reconstructed

block

Slice3

Slice2

Slice1

Cb

Cr

Y

Block

6

5

4

3

2

1

Macroblock

Picture

PQUANTIZER

PQINDEX

MVRANGE

HALFQP

BF

PTYPE

RANGE_RED_FRM

INTERPFRM

FRMCNT

PIC_HEADER

PIC_HEADER_FLAG

Simple/Main Profile)

Quantized Trans Coeffs

AC VLE

RLE

8x8 Transform Coeffs

8x8 pixel block

run level last

zig-zag scan

....

AC Prediction

DC Prediction

DC VLE

Quantized Trans

Predicted block

Transform

Quantize

CBPCY

MQDIFF

ABSMQ

ACPRED

OVERFLAGMB

BLOCK LAYER

MB layer Intra Progr.

Advanced Profile

DCCOEF

ACPREDBLK

DCCOEFESC

DCSIGN

ACCOEF1

ESCMODE

ACCOEF2

LVLSIGN

ESCLR

ESCLVLSZ

ESCRUNSZ

ESCRUN

LVLSGN2

ESCLVL

BLOCK LAYER

(INTRA)

TTBLK

ACCOEF1

ESCMODE

ACCOEF2

ESCLVLSZ

ESCRUNSZ

ESCRUN

LVLSIGN

ESCLVL

ESCLR

LVLSGN2

SUBBLKPAT

BLOCK LAYER

(INTER)

� An informative comment: MPEG-4 style deblocking and deringing operations may be used as post processing filters by a VC-9 decoder.

� A leaky bucket can also be specified by parameters (R, B, Fe), where Fe is the initial encoder buffer fullness. Here, we have chosen to use the initial decoder buffer fullness F.

Document type: Standard

Document subtype:

Document stage: Working Draft 2

Document language: English

_1126723019.vsd
HUFHD LAYER

LEVEL LAYER

RUN LAYER

Advanced 2-layer
Decoding Layer

_1127032008.vsd
Process�

PICTURE LAYER
(Advanced Profile
B Picture)�

TTMBF�

TTFRM�

DCTACMBF�

DCTACFRM�

MB LAYER�

DCTDCTAB�

�

MVMODE�

SKIPMB�

�

MVTAB�

�

CBPTAB�

DIRECTMB�

�

MVTYPEMB�

�

VOPDQUANT�

�

POSTPROC�

INTERPFRM�

PTYPE�

HALFQP�

MVRANGE�

PQINDEX�

BFRACTION�

PQINDEX�

PQUANTIZER�

PIC_PREAMB�

�

PROGUV�

_1127051016.vsd
DISP_SIZE_FLAG

PIC_SIZE_FLAG

PIC_HORIZ_SIZE

PIC_VERT_SIZE

CHROMA_FORMAT

COLOR_PRIM

LEVEL

LEVEL_EXT

DISP_HORIZ_SIZE

DISP_VERT_SIZE

COLOR_FORMAT_FLAG

TRANSFER_CHAR

MATRIX_COEF

HRD_PARAM

HRD_PARAM_FLAG

LOOPFILTER

FASTUVMC

INTERLACE

FRAMERATE

ASPECT_RATIO_FLAG

SEQUENCE LAYER

EXTENDED_MV

EXTENDED_DMV

FRAMERATEFLAG

ASPECT_RATIO

DQUANT

VSTRANSFORM

PROFILE

0

OVERLAP

MAXBFRAMES

QUANTIZER

CODINGMETHOD

POSTPROC

FRSKIPFLAG

TFCNTRFLAG

BROADCAST

FS_FLAG

_1126877690.unknown

_1127029182.vsd
Process�

PICTURE LAYER
(Simple/Main
B Picture)�

TTMBF�

TTFRM�

DCTACMBF�

DCTACFRM�

MB LAYER�

DCTDCTAB�

�

RESPIC�

MVMODE�

SKIPMB�

�

MVTAB�

�

CBPTAB�

DIRECTMB�

�

MVTYPEMB�

�

VOPDQUANT�

�

FRMCNT�

INTERPFRM�

PREPROCFRM�

PTYPE�

HALFQP�

MVRANGE�

PQINDEX�

BFRACTION�

PQUANTIZER�

_1126812258.vsd
REPSEQHDR

PQINDEX

OVERFLAGS

PQUANTIZER

CONDOVER

TRANSACFRM2

TRANSDCTAB

TRANSACFRM

PTYPE

VOPDQUANT

MB LAYER

_1126705764.vsd
LUMSCALE

PROGUV

PQINDEX

LUMSHIFT

PQUANTIZER

MVTYPEMB

TRANSDCTAB

MVMODE2

PTYPE

VOPDQUANT

MB LAYER

_1126722878.vsd
DCCOEF

DCSIGN

Advanced 2-Layer Decoding LAYER

Block LAYER
(INTRA)

ACPREDBLK

DCCOEFESC

_1126722907.vsd
SUBBLKPAT

Advanced 2-Layer Decoding LAYER

Block LAYER
(INTER)

TTBLK

_1125253934.vsd
NUMCOEF�

NUMZERO�

HUFHD LAYER�

 �

_1126647758.vsd
REPSEQHDR

PROGUV

PQINDEX

OVERFLAGS

PQUANTIZER

CONDOVER

TRANSACFRM2

TRANSDCTAB

TRANSACFRM

PTYPE

VOPDQUANT

MB LAYER

_1125254157.vsd
�

VALSR�

NUMSR�

RUNISR�

RUN LAYER�

�

_1125253777.vsd
�

RUNISL�

VALSL�

NUMSL�

LEVEL LAYER�

SIGN�

RUNISL1�

 �

_1125163844.vsd
PQINDEX�

PTYPE�

HALFQP�

PQUANTIZER�

MVRANGE�

2MVBPTAB�

FORWARDMB�

�

4MVBPTAB�

VOPDQUANT�

TTMBF�

TTFRM�

TRANSDCTAB�

MB LAYER�

DMVRANGE�

MVMODE2�

LUMSCALE�

LUMSHIFT�

BFRACTION�

Picture Layer
(Interlace Field and Frame P, B)�

TRANSACFRM�

NUMREF�

REFFIELD�

SKIPMB�

�

DIRECTMB�

POSTPROC�

MBMODETAB�

PICPREAM�

�

�

MVTAB�

CBPTAB�

4MVSWITCH�

INTCOMP�

MVMODE�

